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Abstract: Cellulosic enzymes, including cellulase, play an important role in biotechnological processes
in the fields of food, cosmetics, detergents, pulp, paper, and related industries. Low thermal and
storage stability of cellulase, presence of impurities, enzyme leakage, and reusability pose great
challenges in all these processes. These challenges can be overcome via enzyme immobilization
methods. In recent years, cellulase immobilization onto nanomaterials became the focus of research
attention owing to the surface features of these materials. However, the application of these
nanomaterials is limited due to the efficacy of their recovery process. The application of magnetic
nanoparticles (MNPs) was suggested as a solution to this problem since they can be easily removed
from the reaction mixture by applying an external magnet. Recently, MNPs were extensively employed
for enzyme immobilization owing to their low toxicity and various practical advantages. In the
present review, recent advances in cellulase immobilization onto functionalized MNPs is summarized.
Finally, we discuss enhanced enzyme reusability, activity, and stability, as well as improved enzyme
recovery. Enzyme immobilization techniques offer promising potential for industrial applications.

Keywords: cellulase immobilization; magnetic nanoparticles; stability; functionalized nanoparticles

1. Introduction

The environmental pollution produced by fossil fuels, the increasing growth of population, and the
expensive costs of traditional energy sources compel researchers to develop novel approaches toward
ecofriendly and biodegradable energy sources. Biomass, specifically cellulose, nature’s most abundant
biopolymer, is a low-cost energy source which can be degraded as biomaterials to yield chemical
products applicable in many industrial applications [1,2].

Cellulosic enzymes such as cellulases are catalysts which convert cellulose to glucose, and are
widely used in different industries, including food, pulp and paper, laundry, beverages, textile,
agriculture, pharmaceutics, medicine, and especially in biofuel production [3]. Glucose is the main
product of cellulose conversion, which is applied as a precursor for the production of various valuable
products. Cellulase, which is synthesized by microorganisms including bacteria and fungi [4,5], is the
most powerful hydrolyzing enzyme and can be easily employed [6].

Chemical, physical, and biological methods were employed for cellulosic hydrolysis, from which
the enzymatic conversion gained much attention because of its mild reaction conditions. Therefore,
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these methods provide high yield with no inhibitory by-products and are considered environmentally
friendly. Cellulases are highly selective catalysts and the degradation process is naturally carried out
in pH 4.5–5.5 at 40–50 ◦C [7–9].

Cellulases are responsible for biochemical conversion processes and convert the lignocellulosic
biomass (hemicellulose and cellulose) into an intermediate sugar, which further acts as the substrate for
ethanol production [10–14]. Biocatalysts have limitations such as limited availability, substrate scope,
and operational stability [15]. Recent findings can help scientists overcome these limitations. The main
challenge in the application of biocatalysts is their high cost; therefore, reusability and recovery of
the enzymes are two significant factors that should be considered for industrial applications [16,17].
In industrial processes, enzymatic reactions are generally performed in high-temperature conditions
which can lead to changes in the natural structure of cellulase [18,19]. For this reason, enzyme properties
must be greatly improved. Immobilization is a powerful tool to increase the stability and reusability
of enzymes.

Enzyme immobilization on support materials is a well-established approach for enhancement of
enzyme features such as activity, stability, reusability, purification, reduction of inhibition, and selectivity.
Enzyme immobilization on a solid support provides good distribution of the catalysts with less
aggregation. On the other hand, covalent binding between the support and the enzyme results in
increased enzymatic stability, which in turn leads to enhanced enzymatic activity [1,20,21].

Different methods for enzyme immobilization exist, including covalent binding, adsorption,
ionic bonding, entrapment, and encapsulation [22–27]. There are also numerous approaches to
facilitate enzyme immobilization on nanomaterials, including enzymatic modifications, enzymatic
immobilization and biosensor development [28,29], enzymatic degradation, enzyme nanoparticles,
and enzyme mimics of nanomaterials [30–33]. Among several available nanoparticles, magnetic
nanoparticles (MNPs) received more attention owing to their advantageous features including low
toxicity and high surface area, which allows a large number of enzyme molecules to be loaded to their
surface [30,34,35].

In recent decades, most research studies on cellulase immobilization illustrated that the
enzyme structure was improved, and bound cellulase maintains high activity for a long time.
Furthermore, the immobilized cellulase is more resistant to structural alterations induced by increased
temperature [36–39]. The activity of bounded cellulase was shown to be higher at most pH values than
the free form due to enhanced stability [40–42].

Fe3O4 MNPs obtained great attention due to their low toxicity, simple preparation, unique size,
strong magnetic properties, and proper physical properties, as well as simple recovery from the media
with an external magnetic field [43,44]. Although, magnetite nanoparticles tend to agglomerate and
be easily oxidized upon air exposure, it is very important to functionalize its surface in order to
avoid oxidization.

The enzymes can bind to the surface of MNPs through van der Waals and electrostatic forces,
hydrophobic, or π–π stacking connections by means of non-covalent binding. However, the main
challenge of non-covalent immobilization is protein leakage from the surface of the MNPs. Thus,
the covalent binding using cross-linkers is widely applied to resolve this problem. Among the
cross-linkers, glutaraldehyde is commonly employed as the coupling agent for covalent cellulase
immobilization to the support since it is soluble in aqueous solvents and provides firm inter- and
intra-covalent bonds [45–49].

A summary of different methods used for MNP functionalization for cellulase immobilization is
presented in Figure 1. These functionalization methods are further described and their advantageous
features are thoroughly discussed. The current review is focused on recent findings on immobilized
cellulases on MNP supports with various functionalized groups and their advantages.
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immobilization process significantly enhances thermal and chemical stability [18]. 

Zhang et al. reported an enzymatic catalysis with chemocatalysis in an iPrOH/water solvent 
mixture by employing a novel approach for green conversion of ionic liquid (IL) while pretreating 
cellulose with 5-hydroxymethylfurfural (HMF). This pretreatment of media converted cellulose to 
glucose and glucose to HMF, while HMF and glucose yields were 43.6% and 86.2%, respectively 
(Scheme 1). The results obtained from enzymatic cascades and reaction systems prove that this 
method can be applied as an operative route for biomass energy maintenance [51]. 
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2. Cellulase Immobilization on Silica-Functionalized MNPs

Silica functionalized MNPs provide suitable supports with low aggregation in solutions. Silica
functionalization enhances biocompatibility, as well as thermal and chemical stability, of the MNP
surface [34,50]. Co-immobilization of tri-enzymes consisting of cellulase, pectinase, and xylanase was
investigated for industrial applications. The results revealed that kinetic parameters (i.e., Vmax and
Km) of the tri-enzyme were not affected by the immobilization process. It can be concluded that the
immobilization process significantly enhances thermal and chemical stability [18].

Zhang et al. reported an enzymatic catalysis with chemocatalysis in an iPrOH/water solvent
mixture by employing a novel approach for green conversion of ionic liquid (IL) while pretreating
cellulose with 5-hydroxymethylfurfural (HMF). This pretreatment of media converted cellulose to
glucose and glucose to HMF, while HMF and glucose yields were 43.6% and 86.2%, respectively
(Scheme 1). The results obtained from enzymatic cascades and reaction systems prove that this method
can be applied as an operative route for biomass energy maintenance [51].
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Scheme 1. Schematic representation of the cascaded enzymatic and chemical steps for ionic liquid (IL)
pretreated cellulose into 5-hydroxymethylfurfural (HMF) in water (enzyme) and iPrOH/water solvent
mixtures with enzyme and SBA-15 grafted sulfated zirconium dioxide (SZ) conformed monolayers,
respectively. Reproduced with permission from Reference [51].
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In another study, Trichoderma reesei cellulase was immobilized on two different
nanomatrices (MNPs and silica nanoparticles (SNPs)) to improve enzymatic efficiency. Then,
1-ethyl-3-methylimidazoliumacetate [EMIM][Ac] was applied as an IL for cellulase immobilization
and was used for pretreatment of sugarcane bagasse and wheat straw. The results obtained from this
study revealed a great hydrolysis yield (89%). This process, due to IL reusability and the enhanced
stability of the immobilized enzyme, can be potentially used for biorefineries [52].

The immobilization and characterization of holocellulase from Aspergillus niger on five different
nanoparticles (NPs) via available methods was reported by Kuma et al. Enzyme molecules were
covalently immobilized on magnetic enzyme–nanoparticle complexes (MENC), and the results obtained
from this study revealed that the immobilization of indigenous enzymes and their consumption can be
used for saccharification of paddy straw [53].

Jia et al. established and applied novel MNP cross-linked cellulase aggregates (Figure 2) in order
to improve enzyme reusability and stability for biomass bioconversion. The immobilized cellulase
further represented suitable activity and stability following reusability in biomass applications [54].
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Figure 2. Scanning electron microscopy (SEM) images of (a) Fe3O4; (b) 3-aminopropyl triethoxysilane
(APTES)-Fe3O4; (c) cellulase cross-linked enzyme aggregates (CLEAs); (d) magnetic cellulase CLEAs.
Reproduced from Reference [54].

The key parameters of enzyme immobilization such as pH, temperature, efficiency, reusability,
and coupling agents, as well as supports and substrates, are presented in Table 1. As mentioned before,
glutaraldehyde is the most commonly used cross-linker for enzyme immobilization. Our findings
suggest that biocompatible, biodegradable, and nontoxic polymers such as polyethylene glycol (PEG)
can also be used as an alternative cross-linker for this process.
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Table 1. Cellulase immobilization on silica-functionalized magnetic nanoparticles (MNPs).

Enzyme Substrate Support Coupling
Agent Amount * pH Temperature Reusability

Ref.
Cycle Efficiency

Pectinase
Xylanase
Cellulase

Polygalacturonic acid
Xylan
CMC

(Fe3O4) on APTES Glutaraldehyde 12, 5, 31 mg/mL 4.8 70 ◦C 5 87%, 69%,
and 58% [18]

Cellulase Cellulose Fe3O4 encapsulated
with SBA-15 PEG-1000 1.6 mg 4.8 25–85 ◦C 5 87.5% [51]

Cellulase Wheat straw and
sugarcane

[EMIM][Ac]
functionalized-MNPs

and SNP
Glutaraldehyde 10 and, 7.5 mg/mL 3.5–9.5 20–80 ◦C 10 85% and 76% [52]

Holocellulase FP, CMC, and xylan APTES-Fe3O4 Glutaraldehyde 2 mg/mL 3–7 40–80 ◦C 2 60–80% [53]

Cellulase CMC APTES-Fe3O4 Glutaraldehyde 176 mg/g 3–8 30–80 ◦C 6 88% [54]

Abbreviations: 1-ethyl-3-methylimidazoliumacetate [EMIM][Ac]; silica nanoparticles (SNPs); filter paper (FP); polyethylene glycol (PEG); carboxyl methyl cellulose (CMC);
3-aminopropyltriethoxysilane (APTES); * amount of immobilized enzyme.
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3. Carrier Free Cellulase Immobilization Strategy

In recent years, MNPs were commonly applied as a solid support for recovery systems [55].
Carrier-free immobilization approaches like co-immobilization by cross-linked enzyme crystals
(CLECs) and cross-linking enzyme aggregates (CLEAs) are conceivable methods to boost the enzyme
stability [56–59]. Tri-enzyme was co-immobilized on MNPs to improve reusability by cross-linking
with glutaraldehyde. In this study, co-immobilized MNPs remained stable for more than a month at
5 ◦C and also retained activity for up to four cycles. It was suggested that this platform can be effectively
applied for the extraction of different plants [19]. In another similar study, enzymes including xylenes,
cellulases, and amylases were derived from bacteria and applied for cellulase immobilization on MNPs
to enhance stability and facilitate reusability (Figure 3). The results obtained demonstrated that the
enzyme-coupled MNPs exhibited excellent stability and recovery. Tri-enzyme immobilized MNPs can
be potentially applied in plant biomass production [60].
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Moreover, electrostatic and hydrophobic interactions between the enzyme molecules and MNPs 
were also investigated. Results from infrared (IR) spectroscopy revealed a high affinity for β-sheet 
formation in the tertiary structure content of enzyme molecules. In this study, cellulase loading on 
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Figure 3. Functional characterization of immobilized enzyme-carrying magnetic nanoparticles (MNPs)
and untreated (control) nanoparticles where fitting. The text insets describe individual plots or
photographs relating to nanoparticles carrying BSX, RMCel12A, or PfuAmyGT, or all the tri-enzymes
(multipotent). (a) Effect of pH; (b) variations in stability upon storage; (c) reusability of immobilized
enzyme preparations; (d) visual evidence for degradation of biomass (corn cob or rice husk) by
RMCel12A or BSX. Reproduced with permission from Reference [60].

Different MNPs were prepared and characterized, while the significance of MNP characterization
was exclusively discussed by Schwaminger and his colleagues (Scheme 2). Moreover, electrostatic
and hydrophobic interactions between the enzyme molecules and MNPs were also investigated.
Results from infrared (IR) spectroscopy revealed a high affinity for β-sheet formation in the tertiary
structure content of enzyme molecules. In this study, cellulase loading on different MNPs was studied,
and the results showed that higher loading efficiencies would be achieved by using a higher α-helical
section [61].
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Scheme 2. Schematic representation of cellulase immobilization onto three types of MNPs. Reproduced
with permission from Reference [61].

In another study, fungus cell filtrate was applied to synthesize MNPs, which was further
characterized. The results obtained from this study revealed that the free enzyme was more efficient
than the immobilized form and that cellulase molecules retained high activity following immobilization.
The authors suggested that cellulase immobilization on MNPs provides good reusability, making
the process more efficient for sustainable bioethanol production [62]. As summarized in Table 2,
the significant parameters of cellulase immobilization such as pH, temperature, reusability, and coupling
agents, as well as supports and substrates, are presented for carrier-free immobilization approach.
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Table 2. Carrier-free MNP systems for cellulase immobilization.

Enzyme Substrate Support Coupling
Agent Amount pH Temperature Reusability

Ref.
Cycle Efficiency

Cellulase,
pectinase,

and xylanase

CMC, pectin, and
xylan Fe3O4 Glutaraldehyde

5.06 ± 0.46 mg/mL
3.39 ± 0.12 mg/mL
2.95 ± 0.14 mg/mL

5.5 55–75 ◦C 4
80.25 ± 1.03%
84.76 ± 1.71%
75.62 ± 0.76%

[19]

Xylanase,
cellulase,
amylase

Xylan, CMC,
starch MNPs Glutaraldehyde 3 mg/mL 2–12 Thermostable

up to 70 ◦C 13 69, 48, and
50% [60]

Cellulase N/A *
magnetite,

maghemite, and
hematite MNPs

N/A 0.6 g·g−1 N/A NA N/A N/A [61]

Cellulase Microcrystalline Fe3O4 Glutaraldehyde 250 mg N/A 27 ◦C, 40 ◦C,
50 ◦C and 60 ◦C 3 52% [62]

* Not available.
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4. Cellulase Immobilization on Amino-Functionalized MNPs

Functionalization of MNPs is a commonly used strategy for tri-enzyme immobilization via covalent
bonding. Amines are among the most common functionalized groups that can be linked to proteins via
cross-linking agents. Cellulase (from Trichoderma reesei) and pectinase (from Aspergillus aculeatus) were
simultaneously immobilized on amino-functionalized MNPs (AMNPs) for antioxidant extraction from
waste fruit peels. This immobilization method led to increased thermal stability, half-life, and Vmax for
both enzymes; however, it caused a slight decrease in their activity. Immobilized enzymes on MNPs show
increased reusability of the biocatalyst. Results showed that glutaraldehyde’s concertation is an important
factor affecting the activity of immobilized enzyme [63]. In a similar study, pectinase and cellulase were
immobilized on AMNPs and utilized in the extraction of tomato peel lycopene. The immobilization
process decreased enzyme activity while increasing its stability. Ultrasonic irradiation is used to highly
activate immobilized cellulase, as well as increase the efficiency of biocatalyst. Results also showed
that the biocatalyst decreased extraction time in comparison to free enzyme forms [64]. Hyperactivity
of immobilized cellulase on AMNPs was investigated in another study. Application of ultrasound
irradiation enhanced cellulase activity up to 3.6-fold. Sonication also increased Vmax and decreased Km

of cellulase. The results obtained from this study showed that MNP/enzyme ratio, concentration of
cross-linking agent, and cross-linking time affected the enzyme activity [65].

Co-immobilization of cellulase and lysozyme on AMNPs was performed for extraction of lipids
from microalgae (Scheme 3). Their findings showed that enzyme stability and catalytic efficiency
were increased; however, the activity and kinetic parameters of both enzymes decreased following
immobilization [66].

Magnetochemistry 2019, 5, x FOR PEER REVIEW 10 of 24 

 

4. Cellulase Immobilization on Amino-Functionalized MNPs 

Functionalization of MNPs is a commonly used strategy for tri-enzyme immobilization via 
covalent bonding. Amines are among the most common functionalized groups that can be linked to 
proteins via cross-linking agents. Cellulase (from Trichoderma reesei) and pectinase (from Aspergillus 
aculeatus) were simultaneously immobilized on amino-functionalized MNPs (AMNPs) for 
antioxidant extraction from waste fruit peels. This immobilization method led to increased thermal 
stability, half-life, and Vmax for both enzymes; however, it caused a slight decrease in their activity. 
Immobilized enzymes on MNPs show increased reusability of the biocatalyst. Results showed that 
glutaraldehyde’s concertation is an important factor affecting the activity of immobilized enzyme 
[63]. In a similar study, pectinase and cellulase were immobilized on AMNPs and utilized in the 
extraction of tomato peel lycopene. The immobilization process decreased enzyme activity while 
increasing its stability. Ultrasonic irradiation is used to highly activate immobilized cellulase, as well 
as increase the efficiency of biocatalyst. Results also showed that the biocatalyst decreased extraction 
time in comparison to free enzyme forms [64]. Hyperactivity of immobilized cellulase on AMNPs 
was investigated in another study. Application of ultrasound irradiation enhanced cellulase activity 
up to 3.6-fold. Sonication also increased Vmax and decreased Km of cellulase. The results obtained from 
this study showed that MNP/enzyme ratio, concentration of cross-linking agent, and cross-linking 
time affected the enzyme activity [65]. 

Co-immobilization of cellulase and lysozyme on AMNPs was performed for extraction of lipids 
from microalgae (Scheme 3). Their findings showed that enzyme stability and catalytic efficiency 
were increased; however, the activity and kinetic parameters of both enzymes decreased following 
immobilization [66]. 

 
Scheme 3. Co-immobilization of cellulase and lysozyme on amino-functionalized MNPs (AMNPs) 
for extraction of lipid. Reproduced with permission from Reference [66]. 

It is believed that co-immobilization of cellulose is greatly influenced by the enzyme 
concentration on the MNP surface. In addition, the immobilization process increases the efficiency of 
biocatalyst via multiple enzymes; however, applicable enzyme concertation is limited and enzyme 
activity is reduced due to low availability of surface area. As summarized in Table 3, enzyme 
immobilization on AMNPs via covalent bonding can increase thermal and chemical stability while 

Scheme 3. Co-immobilization of cellulase and lysozyme on amino-functionalized MNPs (AMNPs) for
extraction of lipid. Reproduced with permission from Reference [66].

It is believed that co-immobilization of cellulose is greatly influenced by the enzyme concentration
on the MNP surface. In addition, the immobilization process increases the efficiency of biocatalyst via
multiple enzymes; however, applicable enzyme concertation is limited and enzyme activity is reduced
due to low availability of surface area. As summarized in Table 3, enzyme immobilization on AMNPs
via covalent bonding can increase thermal and chemical stability while generally reducing enzyme
activity. MNPs provide biocatalyst reusability, while sonication hyperactivates immobilized cellulase
which can compensate for the enzyme activity. It can be concluded that enzyme immobilization on
AMNPs can be used for industrial applications.
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Table 3. Cellulase immobilization on amino-functionalized MNPs (AMNPs).

Enzyme Substrate Support Coupling
Agent Amount pH Temperature Reusability

Ref.
Cycle Efficiency

Pectinase, cellulase Carboxymethyl
cellulose (CMC) AMNPs Glutaraldehyde 9 and 3 mg/mL 6.5 50–70 ◦C 8 87% and 82% [63]

Pectinase, cellulase pectin, cellulose AMNPs Glutaraldehyde 50 mg 5 25–35 ◦C 8 85% and 80% [64]
Cellulase cellulose AMNPs Glutaraldehyde N/A 3–8 30–80 ◦C 7 58% [65]

Cellulase, lysozyme cell walls AMNPs Glutaraldehyde 0.5 mg 3–7 60–80 ◦C 6 78.1% and 69.6% [66]
Cellulase CMC Cu/AMNPs APTES N/A 2–7 20–80 ◦C 5 73% [67]

Amino-functionalized MNPs (AMNPs); 3-aminopropyl-triethoxysilane (APTES).
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In a recent study, AMNPs in combination with copper (Cu) (as an affinity ligand) were employed
for immobilization of A. niger-derived cellulase. Metal affinity ligands are commonly used due to
their high chemical stability, low cost, and modifying capability. Loading concentration and cellulase
activity were investigated by full factorial design, considering pH, and Cu/MNP and enzyme/MNP
ratios as independent variables. Obtained data revealed that Cu improved the immobilized enzyme’s
activity, storage stability, and loading capacity (i.e., 164 mg/g MNPs). The biocatalyst remained stable
under a wide range of pHs and temperatures [67].

5. Cellulase Immobilization on Composite-Functionalized MNPs

MNPs used as enzyme immobilization supports can be coated with various nanomaterials. MNP
coating prevents nanoparticles oxidation, improves enzyme immobilization efficacy, and may decrease
toxicity of the support materials. The coating process should not alter the magnetic properties of
nanoparticles, which are essential for the biocatalyst’s reusability through a magnetic field. Different
composite coatings were prepared for cellulase immobilization, and the effects of coating on enzyme
activity and stability were studied.

In recent years, metallic, metallic oxide, and carbon-related materials were widely applied
and blended with different polymers to prepare novel nanocomposites for enzyme immobilization.
Specifically, gold, MgO, and graphene oxide (GO) were blended with different polymers such as PEG,
glutamic acid, and poly(methyl methacrylate) for enhancing the enzyme stability.

Immobilized cellulase on MNPs coated with layered double hydroxide (LDH) nanosheets were
used to reduce the magneto-induced effect on the enzyme. Results showed that utilizing nanocomposite
materials could increase specific enzyme activity and loading efficiency, but could reduce enzyme
reusability. Immobilized cellulase also demonstrated higher stability in a wide range of temperatures
and pH values [68]. MgO-coated MNPs were used as a support for covalent immobilization of cellulase
from Chlorella sp. CYB2. MgO played a significant role for improvement of immobilization yield,
activity recovery, and hydrolysis of the substrate [69].

In another study, poly(methyl methacrylate)-coated MNPs were used for cellulase immobilization
as shown in Scheme 4. Enzyme stability and activity were affected by the immobilization process as
detailed in Table 4. The results obtained revealed that poly(methyl methacrylate) as a coating polymer
did not have any significant effect on the particles’ magnetic properties (Figure 4) [70].

Scheme 4. Overview of hydrolysis of cellulose by poly(methyl methacrylate)-coated MNPs applied for
enzyme immobilization and enzyme reusability. Reproduced with permission from Reference [70].
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Table 4. Cellulase immobilization on composite functionalized MNPs.

Enzyme Substrate Support Coupling Agent Amount pH Temperature Reusability
Ref.

Cycle Efficiency

Cellulase CMC (Fe3O4) layered double
hydroxides (LDHs) Glutaraldehyde 1.2 g/L 5.5 50 ◦C 6 31.8% [68]

Cellulase cellulose MgO–Fe3O4 Xylan aldehyde 150 mg/g 4.5–6.5 50–70 ◦C 7 84.5% [69]

Cellulase CMC Poly(methyl methacrylate)
MNPs N/A 5% (w/v) 3–8 35–75 ◦C 8 69% [70]

Cellulase Microcrystalline
cellulose or filter paper Fe3O4-NH2@4-arm-PEG-NH2 Glutaraldehyde 132 mg/g 3–7 30–80 ◦C 6 76%. [45]

Cellulase Microcrystalline
cellulose or filter paper GO@Fe3O4@4arm PEG NH2 Glutaraldehyde 2–8 mg 3.5–5.5 30–80 ◦C 7 65% and 70% [71]

Cellulase Microcrystalline or
filter paper Glu@PEGylated mAu@PSN Glutamic acid 25 mg 3–8 35–75 ◦C 5 76% [72]
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Four-arm dendritic polymers composed of PEG-NH2 (Scheme 5) were used as coating materials
for immobilization of cellulase derived from Trichoderma viride onto MNPs. The enzyme was covalently
bonded to the dendrimer via coupling agents. The dendrimer improved the thermal stability and
activity of cellulase [45]. GO-decorated four-arm PEG-NH2 was applied as a coating composite of
MNPs in another study (Scheme 6). The obtained results showed that polymers with higher molecular
weights can increase loading capacity, enzymatic activity, and storage stability of cellulase [71].
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Scheme 5. Preparation process of four-arm dendritic polymers comprising polyethylene glycol
(PEG)-NH2. Reproduced with permission from Reference [45].

Core–shell magnetic gold mesoporous silica was exploited as a support for cellulase immobilization
(Scheme 7). Thermal and chemical stabilities were considerably augmented in a wide range of pH
values and temperatures. Vibrating-sample magnetometer (VSM) study results showed that the
magnetic behavior of MNPs was not altered following the coating process [72].
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Scheme 7. Cellulase immobilization on core–shell magnetic gold mesoporous silica support. Reproduced
with permission from Reference [72].
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As presented in Table 4, cellulase was immobilized on MNP surfaces via different coating
materials. Polymers are extensively applied as preferred coating materials for cellulase immobilization.
The immobilization of cellulase on MNPs via covalent binding improves biocatalyst activity and
stability, regardless of coating type.

6. Cellulase Immobilization on Chitosan-Functionalized MNPs

Chitosan, a biocompatible and biodegradable polymer, is exclusively used as a coating agent
in enzyme immobilization processes. Chitosan can provide a positively charged coating, while
acting as a toxicity reducing agent or adhesive enhancer for simple immobilization processes or
in vivo applications.

Cellulase enzyme was covalently immobilized on chitosan-coated MNPs (Ch-MNPs) using
coupling agents. The immobilization of cellulase decreased enzyme activity compared to free enzyme,
while thermal stability and reusability of the enzyme was improved. The immobilization process
significantly increased the Km value and the biocatalyst efficiently hydrolyzed lignocellulosic materials
from Agave atrovirens leaves with acceptable yield [37]. In a similar study, cellulase was immobilized on
MNPs using a cross-linking agent (Scheme 8), and the optimal enzyme loading efficiency and standard
recovery ratio were studied [46].
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Maximizing the rate of cellulase and xylanase immobilization onto Ch-MNP was studied, and
the obtained data showed that 12 mg of protein was cross-linked per gram of MNPs. The results also
showed that size distribution, shape, and surface chemistry of MNPs affected the coating process
and immobilization efficiency [73]. In the case of enzymatic saccharification, laccase from Trametes
versicolor was immobilized onto Ch-MNPs (Scheme 9). It was concluded that the catalytic activity,
thermal and chemical stability, and the Km value were improved significantly following enzyme
immobilization [74].

Chitosan as a coating material for MNPs was utilized for enzyme cross-linking in order to enhance
the stability parameters (Table 5). Chitosan-coated MNPs are prepared in a one-step process which can
be a simple and cost-effective method for enzyme immobilization.



Magnetochemistry 2019, 5, 36 16 of 22

Table 5. Cellulase immobilization on chitosan-functionalized MNPs.

Enzyme Substrate Support Coupling
Agent Amount pH Temperature Reusability

Ref.
Cycle Efficiency

Cellulase CMC Chitosan-coated MNPs
(Ch-MNPs) Glutaraldehyde 26.06 mg 2.5–8.5 20–70 ◦C 15 80% [37]

Cellulase CMC Magnetic
Fe3O4

−chitosan Glutaraldehyde 32.29 mg 3–7 30–70 ◦C 5 80% [46]

Xylanase and cellulase
1:0.5 N/A Chitosan-coated magnetite

particles Glutaraldehyde N/A N/A N/A N/A N/A [73]

Laccase Lignin Chitosan (C)-MNP Glutaraldehyde 25 mg 2–7 25–75 ◦C 5 50% [74]
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7. An Overview of Principal Factors Affecting Cellulase Immobilization onto MNPs

Among the different methods available for cellulase immobilization on functionalized MNPs,
covalent binding by applying glutaraldehyde as the coupling agent is the most efficient process.
Different types of functionalized MNPs were studied for cellulase immobilization [39,75–77].
Gold magnetic silica nanoparticles were used as a promising platform for cellulase immobilization.
Graphene oxide is another candidate which retains high enzymatic activity. In addition to functionalized
groups, chitosan- and silica-coated MNPs could be used as efficient solid supports for biomaterials
hydrolysis. The application of ultrasound is another approach for improving the properties of
immobilized enzyme. Different functionalization methods of MNPs for the cellulase immobilization
approach and the attributes of each approach are outlined in Table 6.

Table 6. Recent advances in immobilizing cellulase onto MNPs.

Different Functionalized MNPs Applied in Cellulase Immobilization Approaches

Immobilization Approach Attributes Ref.

Silica-based surface
functionalization

Enhanced chemical stability while avoiding
the aggregation of nanoparticles [51–54]

Composite-based surface
functionalization

Providing unique physical and electronic
properties and also providing a large
surface area for biomolecules to anchor

[69–72]

Amino-based surface
functionalization

Novel strategies to enhance the enzyme’s
thermal and chemical stability [63–67]

Chitosan-based surface
functionalization

Providing an appropriate surface for
biomolecules to anchor [46,74]

Carrier-free immobilization Novel strategies to improve enzyme activity [60–62]

8. Summary and Outlook

Biotechnology opened new horizons for human beings, especially in the field of industry. Due to
increased environmental pollution, and of the increase in human population, biotechnology employs
nano-biomaterials in order to enhance product yield. Cellulase is one of the most widely used
biocatalysts that converts cellulosic materials into monosaccharides such as glucose, which are further
used for biofuel production. However, biomass conversion to glucose needs to be efficient and
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cost-effective; as a result, researchers are focusing on the development of novel approaches with
enhanced enzyme reusability and lower cost, along with easy enzyme recovery from the reaction
mixture. During the last two years, studies showed that immobilized cellulases on nanocarrier supports
provide promising potential as novel nano-biocatalysts which can be further exploited for achieving
higher enzyme activity and storage stability in the immobilization processes. Meanwhile, MNPs are
suitable nano-carriers to separate enzymes from the reaction mixture by using an external magnet
while being efficient by reducing recycling costs. Various MNPs with different functional groups as
solid supports exist, including inorganic metals, graphene, chitosan, and organic compounds. Despite
recent advances, novel approaches are still required for achieving more efficient nano-biocatalysts.
The increasing demand for low-cost immobilized cellulase and the ever-increasing applications in
different industries are the main reasons for research attention in this field.
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