DECOMPOSING COMPLETE GRAPHS INTO CUBES

SAAD I. EL-ZANATI AND C. VANDEN EYNDEN

4520 Mathematics Department
Illinois State University
Normal, Illinois 61790-4520, USA

Abstract

This paper concerns when the complete graph on \(n \) vertices can be decomposed into \(d \)-dimensional cubes, where \(d \) is odd and \(n \) is even. (All other cases have been settled.) Necessary conditions are that \(n \) be congruent to 1 modulo \(d \) and 0 modulo \(2^d \). These are known to be sufficient for \(d \) equal to 3 or 5. For larger values of \(d \), the necessary conditions are asymptotically sufficient by Wilson’s results. We prove that for each odd \(d \) there is an infinite arithmetic progression of even integers \(n \) for which a decomposition exists. This lends further weight to a long-standing conjecture of Kotzig.

Keywords: graph decomposition, graph factorization, \(d \)-cube.

2000 Mathematics Subject Classification: 05C70, 05B30.

1. Introduction

A sequence \(H_1, H_2, \ldots, H_n \) of graphs with union \(G \) is called a decomposition of \(G \) if each edge of \(G \) is in \(H_i \) for exactly one \(i \), and in this case we write \(G = H_1 + H_2 + \cdots + H_n \). If in addition the subgraphs \(H_i \) are all isomorphic to \(H \), then we write \(G = nH \), and say that \(H \) divides \(G \). We call such a decomposition an \(H \)-decomposition of \(G \). If \(G_1 \) is a subgraph of \(G \) that includes all the vertices of \(G \) and each component of \(G_1 \) is isomorphic to \(H \), then we call \(G_1 \) an \(H \)-factor of \(G \). We denote the complete graph on \(n \) vertices by \(K_n \), and the complete bipartite graph with \(j \) vertices on one side and \(k \) on the other by \(K_{j,k} \). If \(m \leq n \) by \(K_n \setminus K_m \) we mean the complete graph on a set of \(n \) vertices with all edges internal to some subset of \(m \) vertices (called the hole) removed. By a \(k \)-set we mean a set with \(k \) elements.
The *d-cube*, denoted Q_d, is the graph whose vertices can be labelled with all the binary d-tuples, such that two vertices are adjacent if and only if they differ in a single coordinate. It is easy to see that Q_d is d-regular, bipartite, and has 2^d vertices and $d2^{d-1}$ edges.

The decomposition of graphs is the focus of a great deal of research (see [2] for a thorough discussion of the subject). In particular, decompositions of K_n into smaller complete graphs and decompositions of K_n into cycles have received much attention. In 1979, Anton Kotzig initiated interest in d-cube decompositions of complete graphs by asking for which values of d and n there exists a Q_d-decomposition of K_n (Problem 15 of [12]). In 1981 he established necessary conditions on d and n for the existence of Q_d-decompositions of K_n for all d and proved the sufficiency of these conditions for some cases [13]. Since Q_d is d-regular with 2^d vertices and $d2^{d-1}$ edges, it is easy to see that the following are necessary conditions for the existence of a d-cube decomposition of K_n:

1. If $n > 1$ then $n \geq 2^d$,
2. $d \mid n - 1$, and
3. $d2^d \mid n(n - 1)$.

For a fixed d, these necessary conditions require that n lies in certain congruence classes modulo d. In 1981, Kotzig [13] proved the following results.

Theorem 1. If there exists a Q_d-decomposition of K_n, then

(a) if d is even, then $n \equiv 1 \pmod{d2^d}$;
(b) if d is odd, then either
 (i) $n \equiv 1 \pmod{d2^d}$, or
 (ii) $n \equiv 0 \pmod{2^d}$ and $n \equiv 1 \pmod{d}$.

Theorem 2. There is a Q_d-decomposition of K_n if $n \equiv 1 \pmod{d2^d}$.

These two theorems established the sufficiency of conditions (1) through (3) for the cases when d is even and when d is odd and n is odd. Sufficiency of these conditions in the case $d = 3$ was shown by Maheo [14] in 1980. Recently, the case $d = 5$ was settled by Bryant *et al.* [4]. This however still leaves the following unsolved problem.

Problem 1. Let $d > 5$ be odd and let n be such that $n \equiv 0 \pmod{2^d}$ and $n \equiv 1 \pmod{d}$. Show that $Q_d \mid K_n$.
Although this problem has been cited often in the literature (see for example [2, 10, 11, 12]), little progress was made on the case d odd and n even until recently. Of course the well-known 1975 theorem of Wilson [15] implies that for each d we have $Q_d \mid K_n$ for all sufficiently large n satisfying conditions (1) through (3). A new technique for Q_d-decompositions using partitions of vector spaces into linearly independent sets was introduced in [6] in 1998. This technique was used in [8] to give, for each odd d, an explicit infinite sequence of even values of n such that $Q_d \mid K_{2n}$.

Theorem 3 [8]. Let d be odd and let s be the order of 2 (mod d). If r is any integer with $r \geq d/s$, then $Q_d \mid K_{2rs}$.

Other articles dealing with various d-cube decompositions include [1, 3] and [9].

In this paper we prove that for each odd d there is an infinite arithmetic progression of even integers n for which a Q_d-decomposition of K_n exists.

2. Preliminaries

Let Z_2 be the field of order 2. We denote Z_2^m, regarded as a vector space over Z_2, by V_m. Note that we can think of V_m as the vertex set of Q_m. We denote by $\langle S \rangle$ the subspace of V_m generated by $S \subseteq V_m$. For $a \in V_m$ and $A, B \subseteq V_m$ we define $a + B = \{a + b : b \in B\}$, we define $A + B = \bigcup_{a \in A}(a + B)$. If A and B are subsets of V_m with $0 \notin B$, then let $G(A, B)$ be the graph with vertex set $A \cup (A + B)$ and edge set $\{a, a + b : a \in A, b \in B\}$.

The following is the $k = 2$ case of Lemma 1 of [6].

Theorem 4. Suppose B is a linearly independent subset of V_m with d elements. Then $G(V_m, B)$ is a Q_d-factor of the complete graph on V_m.

The following somewhat more general result appears in [4], but we repeat the short proof here.

Lemma 5. Suppose $A, B \subseteq V_m$, with $A \supseteq A + B$, $|B| = d$, and B linearly independent. Then $G(A, B)$ is a Q_d-factor of the complete graph on A.

Proof. Note that $G(\langle B \rangle, B) \cong Q_d$ by Theorem 4.

Now $A \supseteq A + B \supseteq (A + B) + B \supseteq \ldots$, and so $A \supseteq A + \langle B \rangle$, implying $A = A + \langle B \rangle$. Also if $a \in A$, then $G(a + \langle B \rangle, B) = a + G(\langle B \rangle, B) \cong Q_d$ by
the above. Furthermore the sets \(a + < B > \) for \(a \in A \) are cosets of \(< B > \), and so either identical or disjoint. Thus \(G(A, B) = G(A + < B >, B) = \bigcup_{a \in A} G(a + < B >, B) \), which is the vertex disjoint union of copies of \(Q_d \).

In [8] we prove a lemma (Lemma 3), which becomes the following when applied to \(V_m \).

Theorem 6. Let \(W \) be a subspace of \(V_m \), and let \(d_1, d_2, \ldots, d_t \) be integers with \(1 \leq d_i \leq m \) for \(1 \leq i \leq t \) and \(\sum_{i=1}^{t} d_i = |V_m \setminus W| \). Then \(V_m \setminus W \) can be partitioned into linearly independent sets \(X_1, X_2, \ldots, X_t \) such that \(|X_i| = d_i \) for \(1 \leq i \leq t \).

Likewise Theorem 5 of [8] becomes the following when we take \(k = 2 \) and \(j = n = m \).

Theorem 7. Let \(d_1, d_2, \ldots, d_t \) be integers such that \(1 \leq d_i \leq m \) for \(1 \leq i \leq t \) and \(\sum_{i=1}^{t} d_i = 2^m - 1 \). Then \(K_{2^m} \) can be decomposed into a \(Q_{d_1} \)-factor, a \(Q_{d_2} \)-factor, \ldots, and a \(Q_{d_t} \)-factor.

3. Main Results

Theorem 8. Let \(d, a \) and \(b \) be integers with \(0 < d \leq a < b \) such that \(2^a - 1 \equiv 2^b - 1 \equiv r \pmod{d} \), where \(0 \leq r < d \). Then \(K_{2^b} \setminus K_{2^a} \) can be written as a \(Q_r \)-factor on the non-hole vertices plus a graph divisible by \(Q_d \).

Proof. Let \(W \) be the subspace of \(V_b \) consisting of all vectors \((x_1, x_2, \ldots, x_b)\) such that \(x_1 = x_2 = \ldots = x_{b-a} = 0 \). Clearly \(W \) has \(2^a \) vectors and is isomorphic to \(V_a \). We will take the vertex set of \(K_{2^b} \setminus K_{2^a} \) to be \(V_b \), with hole \(W \).

Let \(2^a - 1 = qd + r \). By Theorem 6 we can partition \(W \setminus \{0\} \) into linearly independent sets \(B_1, B_2, \ldots, B_q, R \), with \(|B_i| = d \) for all \(i \) and \(|R| = r \), and partition \(V_b \setminus W \) into linearly independent \(d \)-sets \(C_1, C_2, \ldots, C_s \), where \(s = (2^b - 2^a)/d \).

Note that the hypotheses of Lemma 5 on \(A \) and \(B \) apply to each graph \(G(V_b \setminus W, R) \), \(G(V_b \setminus W, B_i) \), and \(G(V_b, C_i) \). Thus the graph \(G(V_b \setminus W, R) \) is a \(Q_r \)-factor of the complete graph on \(V_b \setminus W \), and the graphs \(G(V_b \setminus W, B_i) \), and \(G(V_b, C_i) \) are \(Q_d \)-factors of the complete graphs on \(V_b \setminus W \) and \(V_b \), respectively, for all appropriate \(i \).
Now we claim that the graph $K_{2^b} \setminus K_{2^a}$, interpreted as the complete graph on V_b with all edges internal to W removed, consists of the r-factor $G(V_b \setminus W, R)$ of $V_b \setminus W$ along with $\bigcup_{i=1}^q G(V_b \setminus W, B_i) \bigcup \bigcup_{i=1}^s G(V_b, C_i)$.

If A and B satisfy the hypotheses of Lemma 5, then the graph $G(A, B)$ contains $|A||B|/2$ edges. Thus $G(V_b \setminus W, R)$, $G(V_b \setminus W, B_i)$, and $G(V_b, C_i)$ contain $(2^b - 2^a)r/2$, $(2^b - 2^a)d/2$, and $2^b d/2$ edges, respectively. Then

$$G(V_b \setminus W, R) \bigcup \left(\bigcup_{i=1}^q G(V_b \setminus W, B_i) \right) \bigcup \left(\bigcup_{i=1}^s G(V_b, C_i) \right)$$

contains

$$\frac{(2^b - 2^a)r}{2} + \frac{(2^b - 2^a)d}{2} + \frac{2^b d}{2} = \frac{(2^b - 2^a)(2^a - 1)}{2} + \frac{(2^b - 2^a)2^b}{2}$$

$$= \frac{2^b(2^b - 1) - 2^a(2^a - 1)}{2}$$

edges, which is the correct number of edges in $K_{2^b} \setminus K_{2^a}$. Thus it suffices to show that if x and y are distinct elements of V_b, but not both in W, then the edge $\{x, y\}$ is included in the above union. We can assume that $x \notin W$.

First assume that $y - x \in W$. Then $y - x$ is in R or B_i for some i, and $\{x, y\}$ is an edge of $G(V_b \setminus W, R)$ or $G(V_b \setminus W, B_i)$, respectively.

Now assume that $y - x \notin W$. Then $y - x \in C_i$ for some i, and $\{x, y\}$ is an edge of $G(V_b, C_i)$.

The following is Theorem 4 of [7]

Theorem 9. There exists a d-cube decomposition of $K_{x, 2^d - 1, 2y, 2^d - 1}$ for all positive integers x, y, and d.

Theorem 10. Let d and a be integers with d odd and $0 < d \leq a$ such that $2^d - 1 \equiv r \pmod{d}$, where $0 \leq r < d$. Let s be the order of 2 modulo d and set $b = a + s$. Then for any nonnegative integer k, $K_{2^a + k(2^b - 2^a)}$ can be decomposed into a Q_r-factor and a graph divisible by Q_d.

Proof. Let $2^a - 1 = dq + r$. Then by Theorem 7 the graph K_{2^a} can be decomposed into a Q_r-factor and $q Q_d$-factors. Likewise by Theorem 8 the graph $K_{2^b} \setminus K_{2^a}$ can be written as a Q_s-factor on its nonhole vertices plus a graph divisible by Q_d. Let $2^a - 1 = dt$. Then by Theorem 9 with $x = y = 2^{a-d+1} k$ the graph $K_{2^{a-d} 2^b - 2^a}$ is divisible by Q_d.

Now consider the vertex set of $K_{2^a+k(2^b-2^a)}$ to be partitioned into a 2^a-set X and $k \cdot (2^b-2^a)$-sets Y_1, Y_2, \ldots, Y_k. We can consider $K_{2^a+k(2^b-2^a)}$ as the union of the complete graph K_{2^a} on X, k complete graphs with holes $K_{2^b} \setminus K_{2^a}$ on the sets $X \cup Y_i$ with hole X, and $\binom{k}{2}$ complete bipartite graphs $K_{2^b-2^a, 2^b-2^a}$ with bipartite sets Y_i and Y_j, $i \neq j$. By the previous paragraph these graphs taken together decompose into a Q_r-factor and a graph divisible by Q_d.

Now we can show that if d is odd there exists an infinite arithmetic progression of integers n such that Q_d divides K_n.

Theorem 11. Let d be any odd positive integer, let s be the order of 2 modulo d and let t be the least integer not less than d/s. Then Q_d divides K_n where $n = 2^{st} + k(2^{st+s} - 2^{st})$.

Proof. We take $a = st$ in Theorem 10. Then $r = 0$ and so only d-cubes are involved in the decomposition.

References

Received 5 May 2005
Revised 19 September 2005