5. Cognitive and Affective Computing

Toyoaki Nishida
Kyoto University
Studies on conversational interactions

(1) Narratives and content flow
(2) Social discourse
(3) Verbal communication
(4) Nonverbal communication
(5) Cognitive process

[Nishida et al 2014]
The question is not whether intelligent machines can have any emotions, but whether machines can be intelligent without any emotions” (Minsky: Society of Mind).

[BDI] does not provide any theoretical ground to answer question such as: What should be an agent’s desires (and why)? Why should one desire be preferred over another? [Lim 2010]

Deeper source of behaviors ➔ Affective computing

[Georgeff 1990]
The vehicle on the left may appear to fear the light, while that on the right may appear as if it liked the light.

[Braitenberg 1984]
ALIVE

[Maes 1995; Nishida et al 2014]
Silas the dog

- Interests / Goals / Motivations
- Behavior
 - Inhibition
 - Releasing mechanism
 - Sensory system
 - Motor commands
- World

[Blumberg 1997]
- Emergent emotions and emotional behavior
 - Attributed to systems based on their observable emotional behaviors

- Fast primary emotions
 - Innate, quick and dirty reactions
 - Include at least fear, surprise, and anger

- Cognitively generated emotions
 - Explicit reasoning is typically involved in their generation.
 - “Don’t worry; be happy”
 - Reason about emotions (e.g., using the Ortony Clore Collins model)

- Emotional experience
 - The ability to be cognitively aware of its emotional state. It consists of cognitive awareness, physiological awareness, and subjective feelings.

- Body-mind interactions
 - Emotions influence memory and memory retrieval, cognition and decision making.
 - Cognitive thoughts, which include concerns, goals, and motivations, can generate emotions.

[Picard 1997]
The OCC (Ortony, Clore, Collins) Model

<table>
<thead>
<tr>
<th>Consequences of events</th>
<th>Consequences for others</th>
<th>Consequences for self</th>
<th>Actions of agents</th>
<th>Aspects of Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desirable for other</td>
<td>Undesirable for other</td>
<td>Focusing on self agent</td>
<td>Attraction</td>
</tr>
<tr>
<td></td>
<td>“pleased”</td>
<td>“happy-for”</td>
<td>“approve”</td>
<td>“liking”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[+]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[*]</td>
<td>[*]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“hope”</td>
<td>“satisfaction”</td>
<td>“admiration”</td>
<td>“love”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“relief”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“joy”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“gratitude”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[-]</td>
<td>“resentment”</td>
<td>“pity”</td>
<td>“disapproving”</td>
<td>“disliking”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“fear”</td>
<td>“fears-confirmed”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“disappointment”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“distress”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“remorse”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“anger”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[+][+]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[+][+]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[+][+]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Ortony 1988]
The Affective Reasoner by Clark Eliott demonstrates how modeling personalities of agents and their social relationships can interact with the generation of emotions.

Model of personality
- How events, acts, and objects are interpreted with respect to an individual agent’s goals, standards, and preferences.
- How an agent will act or feel in response to an emotional state.

Model of social relationships and their influences on emotions
- Friendship. An agent will tend to have similarity valenced emotions in response to the emotions of another agent.
- Animosity. An agent will tend to have oppositely valenced emotions in response to the emotions of another agent.
- Empathy. An agent will temporarily substitute the presumed goals, standards, and preferences of another agent for its own. It will then synthesize emotions based on these presumed goals, standards and preferences, in an effort to feel what it thinks the other agent would feel.

[Picard 1997]
User: “Ruth is unhappy”
Agent: “I am sorry to hear that. You must feel sorry for her.”

(days later)

Agent: “How is Ruth?”
User: “Ruth is jealous of her rival.”
Agent: “How much is Ruth feeling this resentment?”
User: “Very much.”
Agent: “Perhaps you are worried about Ruth?”

[Picard 1997]
Emotion types used in the Affective Reasoner

<table>
<thead>
<tr>
<th>Group</th>
<th>Specification</th>
<th>Name and emotion type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-being</td>
<td>appraisal of a situation as an event</td>
<td>joy: pleased about an event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>distress: displeased about an event</td>
</tr>
<tr>
<td>Fortunes-of-others</td>
<td>presumed value of situation as an event affecting another</td>
<td>happy-for: pleased about an event desirable for another</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gloating: pleased about an event undesirable for another</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resentment: displeased about an event desirable for another</td>
</tr>
<tr>
<td></td>
<td></td>
<td>jealousy: resentment over a desirable mutually exclusive goal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>envy: resentment over a desired non-exclusive goal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sorry-for: displeased about an event undesirable for another</td>
</tr>
<tr>
<td>Prospect-based</td>
<td>appraisal of a situation as a prospective event</td>
<td>hope: pleased about a prospective desirable event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fear: displeased about a prospective undesirable event</td>
</tr>
<tr>
<td>Confirmation</td>
<td>appraisal of a situation as confirming or disconfirming an expectation</td>
<td>satisfaction: pleased about a confirmed desirable event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>relief: pleased about a disconfirmed undesirable event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fears-confirmed: displeased about a confirmed undesirable event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disappointment: displeased about a disconfirmed desirable event</td>
</tr>
<tr>
<td>Attribution</td>
<td>appraisal of a situation as containing an attractive or unattractive object</td>
<td>pride: approving of one’s own act</td>
</tr>
<tr>
<td></td>
<td></td>
<td>admiration: approving of another’s act</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shame: disapproving of one’s own act</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reproach: disapproving of another’s act</td>
</tr>
<tr>
<td>Attraction</td>
<td>appraisal of a situation as containing</td>
<td>liking: finding an object appealing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disliking: finding an object unappealing</td>
</tr>
<tr>
<td>Well-being /</td>
<td>compound emotions</td>
<td>gratitude: admiration + joy</td>
</tr>
<tr>
<td>attribution</td>
<td></td>
<td>anger: reproach + distress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gratification: pride + joy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>remorse: shame + distress</td>
</tr>
<tr>
<td>Attraction /</td>
<td>compound emotion extensions</td>
<td>love: admiration + liking</td>
</tr>
<tr>
<td>attribution</td>
<td></td>
<td>hate: reproach + disliking</td>
</tr>
</tbody>
</table>

[Picard 1997]
If you come to know that animal or object or situation X causes fear, you will have two ways of behaving toward X. The first way is innate; you do not control it. Moreover, it is not specific to X; a large number of creatures, objects, and circumstances can cause the response. The second way is based on your own experience and is specific to X. Knowing about X allows you to think ahead and predict the probability of its being present in a given environment, so that you can avoid X, preemptively, rather than just have to react to its presence in an emergency. …

Primary emotions depend on limbic system circuitry, the amygdala and anterior cingulate being the primary players. After an appropriate stimulus activates the amygdala, a number of responses ensue: internal responses, muscular responses, visceral responses, and responses to neurotransmitter nuclei and hypothalamus.

Secondary emotions utilize the machinery of primary emotions. The stimulus may still be processed directly via the amygdala but is now also analyzed in the thought process, and may activate frontal cortices (VM). VM acts via the amygdala.

[H: Hypothalamus, VMF: ventromedial prefrontal cortex]

[Damasio 1994]
Affective Computing

Cognitive processing

High level
- Inference and decision making

Low level
- Pattern recognition and synthesis
 - Representations / signals
 - Representations / signals

Emotional states

[Picard 1997]
Applications of affective computing

- Affective mirror
- Beyond emoticons
- Text to speech
- Helping autistic people
- Consumer feedback
- Points for courage
- Emotions in learning
- “No pain, no gain”
- Classroom barometer
- Emotions on the virtual stage
- Music: listening to what you like
- “Fast forward to the interesting part”
- Agents that learn your preferences
- Learning when to interrupt
- Small talk
- Animated agent faces
- The audience performance
- Film/video
- Sensitive toys

[Picard 1997]
PAD (Pleasure-Arousal-Dominance) model

- Exuberant (+P, +A, +D)
- Bored (-P, -A, -D)
- Docile (+P, -A, -D)
- Dependent (+P, +A, -D)
- Hostile (-P, +A, +D)
- Anxious (-P, +A, -D)
- Dependent (+P, +A, -D)

[Mehrabian 1996]
Dynamical system model for primary and secondary emotion

Valence

\(x_t \) : valence of emotions
\(y_t \) : valence of mood
\(z_t \) : boredom

dominance:

\[d(t) \]

\[PAD(x_t, y_t, z_t) = \left(\frac{1}{2} (x_t + y_t), |x_t| + z_t, d(t) \right) \]

Awareness likelihood

[Becker 2007]
Understanding of another person’s wrong belief requires explicit representation of the wrongness of this person’s belief in relation to one’s own knowledge. ... [Wimmer 1983]

[Theory of mind: an ability to] impute[] mental states to themselves and others. A system of inferences of this kind is properly viewed of as a theory because such states are not directly observable, and the system can be used to make predictions about the behavior of others. As to the mental states ... for example, purpose, or intention, as well as knowledge, belief, thinking, doubt, guessing, pretending, liking, and so forth. ... [Premack 1978]
Theory of mind

(a) Scene 1
Maxi
protagonist

(b) Scene 2
Mother
protagonist

(c) Scene 3
Maxi
protagonist

(Wimmer 1983)
Theory of mind

Perceptual processes

Expression raiser
“This is a banana.”

Manipulator
“I pretend
“This banana is a telephone.”

Central cognitive systems
telephone

This is a telephone
Theory of mind

The computational architecture of theory of mind

Visual, auditory and tactile cues

Intention Detector
Interprets motion stimuli (stimuli with self-propulsion and direction) in terms of the mental states of goal and desire.

Visual cues

Eye Direction Detector
Detects the presence of eye-like stimuli, detects the direction of eyes, and interprets gaze as seeing (attribution of perceptual states).

Shared Attention Mechanism
Allows to build triadic representations: relations between an agent, the self, and a third object.

Theory of Mind Mechanism
Represents the full range of mental states and allows one to make sense of an agent's current behavior and predict an agent's future action.

[Baron-Cohen 1995]
FearNot!

[Aylett et al 2005]
Reactive layer

Goals

Intention generation

Intentions

Intention selection

Focus and Coping

Coping

Energy

Integrity

Affiliation

Certainty

Competence

Modulating parameters

Personality thresholds

Deliberative layer

Autobiographic memory

Sensors

Perception

Emotional state

Thresholds

Properties

Relations

Knowledge base

Reactive layer

Appraisal

Action tendencies

Appraisal

PSI

Lim 2012
References

