On the Generalized Berge Sorting Conjecture

Antoine Deza Feng Xie

December 20, 2007

Abstract

In 1966, Claude Berge proposed the following sorting problem. Given a string of \(n \) alternating white and black pegs, rearrange the pegs into a string consisting of \(\lceil \frac{n}{2} \rceil \) white pegs followed immediately by \(\lfloor \frac{n}{2} \rfloor \) black pegs (or vice versa) using only moves which take 2 adjacent pegs to 2 vacant adjacent holes. Berge’s original question was generalized by considering the same sorting problem using only Berge \(k \)-moves, i.e., moves which take \(k \) adjacent pegs to \(k \) vacant adjacent holes. The generalized Berge sorting conjecture states that for any \(k \) and large enough \(n \), the alternating string can be sorted in \(\lceil \frac{n}{2} \rceil \) Berge \(k \)-moves. The conjecture holds for \(k = 2 \) and \(n \geq 5 \), and for \(k = 3, n \geq 5 \), and \(n \not\equiv 0 \pmod{4} \). We further substantiate this conjecture by showing that it holds for \(k = 3, n \geq 20 \), and \(n \equiv 0 \pmod{4} \). The introduced inductive solution generalized previous approaches and could provide insights to tackle the generalized Berge sorting conjecture.

1 Introduction

In a column that appeared in the Revue Française de Recherche Opérationnelle in 1966, entitled *Problèmes plaisans et délectables* in homage to the 17th century work of Bachet [2], Claude Berge [3] proposed the following sorting problem:

For \(n \geq 5 \), given a string of \(n \) alternating white and black pegs on a one-dimensional board consisting of an unlimited number of empty holes, we are required to rearrange the pegs into a string consisting of \(\lceil \frac{n}{2} \rceil \) white pegs followed immediately by \(\lfloor \frac{n}{2} \rfloor \) black pegs (or vice versa) using only moves which take 2 adjacent pegs to 2 vacant adjacent holes. Berge noted that the minimum number of moves required is 3 for \(n = 5 \) and 6, and 4 for \(n = 7 \). See Figure 1 for a sorting of 5 pegs in 3 moves.

![Figure 1: Sorting 5 pegs in 3 moves](image-url)
This problem was most likely examined and solved within the last 40 years. For example, Shin-ichi Minato [5] found a solution in $\left[\frac{n}{2}\right]$ moves when he was high-school student in 1981. However the first published answer to Berge's question might have been given by Avis and Deza [1]. The Berge sorting question appeared in the 12th Prolog Programming Contest [7] held in Seattle in 2006. In the statement of the problem, it is noted that this result is surprising given that initially half of the white pegs and half of the black pegs are incorrectly positioned. The following generalization displays an equally surprising pattern. Consider the same sorting problem using only Berge k-moves, i.e., moves which take k adjacent pegs to k vacant adjacent holes. After generating minimal solutions for a large number of k and n which turned out to be all equal to $\left[\frac{n}{2}\right]$ except for the few first small values of n, Deza and Hua [4] conjectured that, for n large enough, the minimum number of Berge k-moves to sort the alternating n-string is independent of k and equal to $\left[\frac{n}{2}\right]$. As the case $k = 1$ is trivial and the case $k = 2$ corresponds to the original Berge's question, the first case to investigate is $k = 3$. A solution in $\left[\frac{n}{2}\right]$ Berge 3-moves was given in [4] for $n \geq 5$, and $n \equiv 0 \pmod{4}$. We close the case $k = 3$ by exhibiting a solution in $\left[\frac{n}{2}\right]$ moves for $n \geq 20$ and $n \equiv 0 \pmod{4}$. The introduced inductive solution generalized previous approaches and could provide insights towards a solution for the generalized Berge sorting conjecture.

2 Notations and Previous Results

2.1 Notation

We follow and adapt the notation used in [1, 3, 4]. The starting game board consists of n alternating white and black pegs sitting in the positions 1 through n. A single Berge k-move will be denoted as $\{j, i\}$, in which case, the pegs in the positions $i, i+1, \ldots, i+k-1$ are moved to the vacant holes $j, j+1, \ldots, j+k-1$. Successive moves are concatenated as $\{j, i\} \cup \{l, k\}$, which means perform $\{j, i\}$ followed by $\{l, k\}$. Often, a move fills an empty hole created as an effect of the previous move, and the resulting notation $\{j, k\} \cup \{k, i\}$ is abbreviated as $\{j, k, i\}$. This can be extended to more than two such moves as well. Let $h(n, k)$ denotes the minimum number of required k-moves, i.e., the length of a shortest solution, and $O_{n,k}$ denotes an optimal solution for n pegs, i.e., a solution using $h(n, k)$ Berge k-moves. For example, we have $h(5, 2) = 3$ and the optimal solution given in Figure 1 is $O_{5,2} = \{6, 2, 5, 1\}$. Up to symmetry, we can assume that the first move is to the right. Let $O_{n,k}$ be the set of all optimal solutions starting with a move to the right. For example, there are 7 such optimal solutions in 10 Berge 3-moves to sort the alternating 20-string; that is, we have $h(20, 3) = 10$ and $O_{20,3} = \{21, 2, 7, 12, 17\} \cup \{24, 13, 22, 6, 1\} \cup \{17, 8, 24\}, \{21, 2, 13, 6, 17\} \cup \{24, 7, 22, 12, 1\} \cup \{17, 8, 24\}, \{21, 2, 13, 8, 17\} \cup \{24, 6, 22, 12, 1\} \cup \{17, 7, 24\}, \{21, 6, 13, 2, 17\} \cup \{24, 7, 22, 12, 1\} \cup \{17, 8, 24\}, \{21, 8, 13, 2, 17\} \cup \{24, 6, 22, 12, 1\} \cup \{17, 7, 24\}, \{21, 12, 7, 2, 17\} \cup \{24, 13, 22, 6, 1\} \cup \{17, 8, 24\}, \{21, 16, 3, 10\} \cup \{24, 17, 22, 5, 1\} \cup \{10, 15, 6, 24\}$. See Figure 2 for an illustration of the optimal solution $O_{20,3} = \{21, 2, 7, 12, 17\} \cup \{24, 13, 22, 6, 1\} \cup \{17, 8, 24\}$.

Generalized Berge Sorting Conjecture

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Figure 2: Sorting the alternating 20-string in 10 Berge 3-moves

2.2 Previous results

We recall the main results concerning the generalized Berge sorting conjecture.

Proposition 1. [1, 4]

(i) For $n \geq 3$, we have $h_{n,1} = \lceil \frac{n}{2} \rceil$ for $n \neq 3 \pmod{4}$ and $h_{n,1} = \lfloor \frac{n}{2} \rfloor$ for $n \equiv 3 \pmod{4}$.

(ii) For $n \geq 5$, we have $h_{n,2} = \lceil \frac{n}{2} \rceil$.

(iii) For $n \geq 5$, we have $h_{n,3} = \lceil \frac{n}{2} \rceil$ for $n \neq 0 \pmod{4}$.

(iv) For $4 \leq k \leq 14$ and $2k + 11 \leq n \leq 50$, we have $h_{n,k} = \lceil \frac{n}{2} \rceil$.

(v) For $n > k > 1$, we have $h_{n,k} \geq \lceil \frac{n}{2} \rceil$.

Conjecture 2. [4] For $k \geq 2$ and $n \geq 2k + 11$, a string of n alternating white and black pegs can be sorted in $\lceil \frac{n}{2} \rceil$ Berge k-moves. In other words, $h(n,k) = \lceil \frac{n}{2} \rceil$ for $k \geq 2$ and $n \geq 2k+11$.

3 Sorting the n-string in $\lceil \frac{n}{2} \rceil$ Berge 3-moves for $n \equiv 0 \pmod{4}$

3.1 Inductive strategies

The solutions given in [4] are inductive and based on the following 3 step strategy.

IGNORE-AND-MAKEUP STRATEGY

Initialization: Find an optimal solution for the first values of n.

Induction from $n - p$ to n: Ignore a given number p of positions and use the moves corresponding to the solution $O_{n-p,3}$ to sort the alternating n-string, and
Generalized Berge Sorting Conjecture

Makeup: Reintroduced the ignored p positions and complete the sorting by $\left\lceil \frac{n}{2} \right\rceil - \left\lceil \frac{n-p}{2} \right\rceil$ additional moves.

For example, an optimal solution in $\left\lceil \frac{n}{2} \right\rceil$ Berge 3-moves can be obtained for $n \equiv 2 \pmod{4}$ by the following version of the *ignore-and-makeup* strategy:

Initialization: $O_{0,3} = \{ 7 \ 2 \ 6 \ 1 \}$,

Induction from $n - 4$ to $n = 4i + 2 \geq 10$: Ignore the 4 positions 1, 2, $2i + 3$, $2i + 4$ and use the moves corresponding to the solution $O_{n-4,3}$, and

Makeup: Reintroduced the ignored positions and complete the sorting by the 2 additional moves $\{ 3 \ 2i + 4 \ 1 \}$.

The *ignore-and-makeup* strategy seems to fail for $n \equiv 0 \pmod{4}$ and to be hard to extend to any k. We introduce the *ignore-and-knit* strategy which solves the case $n \equiv 0 \pmod{4}$ and sounds more suitable to tackle the generalized Berge sorting conjecture. The *ignore-and-knit* strategy is also inductive but a bit more complicated as a move of the solution for $O_{n-p,3}$ is replaced by new *knitted* moves, and other makeup moves are added in the middle, instead of being added at the end as in the *ignore-and-makeup* strategy.

We introduced 3 features that characterize the optimal solutions obtained by the *ignore-and-knit* strategy: *stage*, *pivot* and *anchor*. The moves of an optimal solutions obtained by the *ignore-and-knit* strategy are divided into 3 *stages*: stage (1) only alternating triples $\bullet \bullet \bullet$ or
Antoine Deza and Feng Xie

- - - are moved, stage (2) only sorted bicolour triples - - - - - or - - - - - are moved, and stage (3) only unicolour triples - - - or - - - - - are moved. Another characteristic is that some pegs are never moved throughout the solution, and the corresponding positions are called pivots. The 3 positions emptied after the last move of stage (1) form the anchor. The anchor is surrounded by 2 pivots and remains empty throughout stage (2) before being filled by the first move of stage (3). To simplify the notation, let \(\beta \) be the position of the rightmost white peg after the last move; that is, without loss of generality, when \(\left\lfloor \frac{n}{2} \right\rfloor \) white pegs are followed immediately by \(\left\lfloor \frac{n}{2} \right\rfloor \) black pegs. As the optimal solutions obtained by the ignore-and-knit strategy for \(n \equiv 0 \pmod{4} \) are shifted to the right by 3 positions, we have \(\beta = \frac{n}{2} + 3 \). See Figure 3 for an illustration of the 3 stages of the solution \(O_{28,3} \), where \(\beta = 17 \), and the associated anchor corresponds to the positions \(\beta - 5, \beta - 4 \) and \(\beta - 3 \) and the positions \(\beta - 12, \beta - 6, \beta - 2, \beta + 3 \) and \(\beta + 11 \) are pivots.

3.2 Sorting the -string in \(\left\lfloor \frac{n}{2} \right\rfloor \) Berge 3-moves for \(n \equiv 0 \pmod{4} \)

3.2.1 Sorting the -string in \(\left\lfloor \frac{n}{2} \right\rfloor \) Berge 3-moves for \(n \equiv 4 \pmod{8} \)

The ignore-and-knit strategy for \(n \equiv 4 \pmod{8} \) and the solutions obtained are as follows:

Initialization: \(O_{20,3} = \{ 21 2 7 12 17 \} \cup \{ 24 13 22 6 1 \} \cup \{ 17 8 24 \} \), \(O_{28,3} = \{ 29 2 7 16 23 12 \} \cup \{ 32 17 30 25 21 6 1 \} \cup \{ 12 23 8 32 \} \), and \(O_{36,3} = \{ 37 2 7 20 31 14 25 \} \cup \{ 40 12 16 21 38 33 29 6 1 \} \cup \{ 25 14 31 8 40 \} \).

Induction and Knitting from \(n - 8 \) to \(n \geq 44 \):

If \(n \equiv 12 \pmod{16} \), ignore the 8 positions \(\beta - 6, \beta - 5, \beta - 4, \beta - 3, \beta + 4, \beta + 5, \beta + 9, \beta + 10 \). Use the moves of stage (1) of the solution \(O_{n-8,3} \) followed by the additional move \(\{ \beta + 6, \beta - 5 \} \) to obtain stage (1) of the solution \(O_{n,3} \). Use the moves of stage (2) of the solution \(O_{n-8,3} \), except the penultimate move which is replaced by the 3 additional moves \(\{ \beta + 12, \beta + 8, \beta + 4, 6 \} \) to obtain stage (2) of the solution \(O_{n,3} \). Perform the additional move \(\{ \beta - 5, \beta + 6 \} \) before using the moves of stage (3) of the solution \(O_{n-8,3} \) to obtain stage (3) of the solution \(O_{n,3} \).

If \(n \equiv 4 \pmod{16} \), ignore the 8 positions \(\beta - 9, \beta - 8, \beta - 4, \beta - 3, \beta + 4, \beta + 5, \beta + 6, \beta + 7 \). Use the moves of stage (1) of the solution \(O_{n-8,3} \) followed by the additional move \(\{ \beta - 7, \beta + 4 \} \) to obtain stage (1) of the solution \(O_{n,3} \). Use the moves of stage (2) of the solution \(O_{n-8,3} \), except the first move which is replaced by the 3 additional moves \(\{ n + 4, \beta - 9, \beta - 5, \beta - 17 \} \) to obtain stage (2) of the solution \(O_{n,3} \). Perform the additional move \(\{ \beta + 4, \beta - 7 \} \) before using the moves of stage (3) of the solution \(O_{n-8,3} \) to obtain stage (3) of the solution \(O_{n,3} \).

Some features of the solution \(O_{n,3} \) for \(n \equiv 4(\pmod{8}) \) and \(n \geq 20 \) are presented in Proposition 3. The additional move appended at the end of stage (1) creates the anchor which remains empty till the additional move inserted at the beginning of stage (3), and the 3 additional moves of stage (2) fit in the sequence of used moves of stage (1) and (2) of \(O_{n-8,3} \). Note also that the ignored positions include or are followed or preceded by pivots. These observations and the features presented in Proposition 3 can be checked by induction. See Figures 4 and 5 for
an illustration of the features of the solutions $O_{n,3}$ for $n \equiv 4 \pmod{8}$ where the j-th move of stage i is numbered (i,j). The 8 ignored positions for $n = 44$ are coloured grey in Figure 5. See Table 1 for an illustration of the induction from $O_{36,3}$ to $O_{44,3}$ for the ignore-and-knit strategy for $n \equiv 4 \pmod{8}$. The additional moves (1.7), (2.7), (2.8), (2.9) and (3.1) are bolded in Figure 5 and Table 1. The optimal solutions $O_{n,3}$ for $n \equiv 4 \pmod{8}$ and $n \leq 84$ are available online at [6].

![Diagram](https://via.placeholder.com/150)

Figure 4: Sorting the alternating 36-string by 18 Berge 3-moves

Proposition 3. The solution $O_{n,3}$ for $n \equiv 4 \pmod{8}$ and $n \geq 20$ obtained by the ignore-and-knit strategy satisfies the following properties:

(i) The solutions $O_{n,3}$ consist of $\left[\frac{n}{3} \right]$ Berge 3-moves and shift the string three positions to the right overall with the white pegs placed to the left of the black pegs.

(ii) If $n \equiv 4 \pmod{16}$, the positions $\beta - 2, \beta - 10, \beta + 3$ and $\beta + 7$ are pivots, and the positions $\beta + 4, \beta + 5$ and $\beta + 6$ form the anchor. If $n \equiv 12 \pmod{16}$, the positions $\beta - 6, \beta - 2, \beta + 3$ and $\beta + 11$ are pivots, and the positions $\beta - 5, \beta - 4$ and $\beta - 3$ form the anchor.

(iii) The first move of stage (2) places a triple $\bullet \bullet \bullet$ at the end of the string on the 9 positions starting from $\beta + \frac{n+1}{2}$. The last move \{ 6, 1 \} of stage (2) places a triple $\circ \circ \circ$ on the positions 6, 7 and 8.
3.2.2 Sorting the n-string in \([\frac{n}{2}]\) Berge 3-moves for \(n \equiv 0 \pmod{8}\)

The ignore-and-knit strategy for \(n \equiv 0 \pmod{8}\) and the solutions obtained are as follows:

Initialization: \(O_{24,3} = \{25 6 13 18\} \cup \{-2 4 8 24 14 22\} \cup \{18 3 12 -1 25\}\), \(O_{32,3} = \{33 2 7 12 17 24\} \cup \{36 6 31 13 29 19 1\} \cup \{24 11 35 18 28 4\}\), \(O_{40,3} = \{41 2 7 16 21 28 35 12\} \cup \{44 17 27 23 42 37 33 6 1\} \cup \{12 35 8 29 19 44\}\), and \(O_{48,3} = \{49 2 7 20 25 32 43 14 37\} \cup \{52 12 16 22 31 27 49 45 41 6 1\} \cup \{37 14 43 8 33 23 52\}\).

Induction and Knitting from \(n - 8\) to \(n \geq 56\):

If \(n \equiv 8 \pmod{16}\), ignore the 8 positions \(\beta - 12, \beta - 11, \beta - 10, \beta - 9, \beta + 10, \beta + 11, \beta + 15\) and \(\beta + 16\). Use the moves of stage (1) of the solution \(O_{n-8,3}\) followed by the additional move \(\{\beta + 12, \beta - 11\}\) to obtain stage (1) of the solution \(O_{n,3}\). Use the moves of stage (2) of the solution \(O_{n-8,3}\), except the penultimate move which is replaced by the 3 additional moves \(\{\beta + 18, \beta + 14, \beta + 10\}\) to obtain stage (2) of the solution \(O_{n,3}\).
Generalized Berge Sorting Conjecture

<table>
<thead>
<tr>
<th></th>
<th>the 18 moves of $O_{36,3}$</th>
<th>the 22 moves of $O_{44,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.1)</td>
<td>{37 2}</td>
<td>{45 2}</td>
</tr>
<tr>
<td>(1.2)</td>
<td>{2 7}</td>
<td>{2 7}</td>
</tr>
<tr>
<td>(1.3)</td>
<td>{7 β - 1}</td>
<td>{7 β - 1}</td>
</tr>
<tr>
<td>(1.4)</td>
<td>{β - 1 β + 10}</td>
<td>{β - 1 β + 14}</td>
</tr>
<tr>
<td>(1.5)</td>
<td>{β + 10 β - 7}</td>
<td>{β + 14 β - 11}</td>
</tr>
<tr>
<td>(1.6)</td>
<td>{β - 7 β + 4}</td>
<td>{β - 11 β + 6}</td>
</tr>
<tr>
<td></td>
<td>{β + 6 β - 5}</td>
<td>(1.7)</td>
</tr>
<tr>
<td>(2.1)</td>
<td>{40 β - 9}</td>
<td>{48 β - 13}</td>
</tr>
<tr>
<td>(2.2)</td>
<td>{β - 9 β - 5}</td>
<td>{β - 13 β - 9}</td>
</tr>
<tr>
<td>(2.3)</td>
<td>{β - 5 β}</td>
<td>{β - 9 β}</td>
</tr>
<tr>
<td>(2.4)</td>
<td>{β 38}</td>
<td>{β 46}</td>
</tr>
<tr>
<td>(2.5)</td>
<td>{38 β + 12}</td>
<td>{46 β + 16}</td>
</tr>
<tr>
<td>(2.6)</td>
<td>{β + 12 β + 8}</td>
<td>{β + 16 β + 12}</td>
</tr>
<tr>
<td></td>
<td>{β + 12 β + 8}</td>
<td>(2.7)</td>
</tr>
<tr>
<td>(2.7)</td>
<td>{β + 8 6}</td>
<td>{β + 8 β + 4}</td>
</tr>
<tr>
<td></td>
<td>{β + 4 6}</td>
<td>(2.9)</td>
</tr>
<tr>
<td>(2.8)</td>
<td>{6 1}</td>
<td>{6 1}</td>
</tr>
<tr>
<td></td>
<td>{β - 5 β + 6}</td>
<td>(3.1)</td>
</tr>
<tr>
<td>(3.1)</td>
<td>{β + 4 β - 7}</td>
<td>{β + 6 β - 11}</td>
</tr>
<tr>
<td>(3.2)</td>
<td>{β - 7 β + 10}</td>
<td>{β - 11 β + 14}</td>
</tr>
<tr>
<td>(3.3)</td>
<td>{β + 10 8}</td>
<td>{β + 14 8}</td>
</tr>
<tr>
<td>(3.4)</td>
<td>{8 40}</td>
<td>{8 48}</td>
</tr>
</tbody>
</table>

Table 1: Induction from $O_{36,3}$ to $O_{44,3}$ for the *ignore-and-knit* strategy

Perform the additional move \{β - 11 β + 12\} before using the moves of stage (3) of the solution $O_{n-8,3}$ to obtain stage (3) of the solution $O_{n,3}$.

If $n \equiv 0 \pmod{16}$, ignore the 8 positions $β - 15, β - 14, β - 10, β - 9, β + 10, β + 11, β + 12$ and $β + 13$. Use the moves of stage (1) of the solution $O_{n-8,3}$ followed by the additional move \{β - 13 β + 10\} to obtain stage (1) of the solution $O_{n,3}$. Use the moves of stage (2) of the solution $O_{n-8,3}$, except the first move which is replaced by the 3 additional moves \{n + 4 β - 15 β - 11 β - 23\} to obtain stage (2) of the solution $O_{n,3}$. Perform the additional move \{β + 10 β - 13\} before using the moves of stage (3) of the solution $O_{n-8,3}$ to obtain the stage (3) of the solution $O_{n,3}$.

The solutions $O_{n,3}$ for $n \equiv 4 \pmod{8}$ and $n \equiv 0 \pmod{8}$ have similar features, see [6] for the optimal solutions $O_{n,3}$ for $n \equiv 0 \pmod{8}$ and $n \leq 88$. In particular we have:

Proposition 4. The solution $O_{n,3}$ for $n \equiv 0 \pmod{8}$ and $n \geq 24$ obtained by the *ignore-and-knit* strategy satisfies the following properties:

(i) The solutions $O_{n,3}$ consist of $\left\lceil \frac{r}{2} \right\rceil$ Berge 3-moves and shift the string three positions to the right overall with the white pegs placed to the left of the black pegs.
Antoine Deza and Feng Xie

(ii) If \(n \equiv 8 \pmod{16} \), the positions \(\beta - 12, \beta - 8, \beta + 9 \) and \(\beta + 17 \) are pivots, and the positions \(\beta - 11, \beta - 10 \) and \(\beta - 9 \) form the anchor. If \(n \equiv 0 \pmod{16} \), the positions \(\beta - 16, \beta - 8, \beta + 9 \) and \(\beta + 13 \) are pivots, and the positions \(\beta + 10, \beta + 11 \) and \(\beta + 12 \) form the anchor.

(iii) The first move of stage (2) places a triple \(\bullet \circ \circ \) at the end of the string on the 3 positions starting from \(\beta + \frac{n+2}{2} \). The last move \{ 6 1 \} of stage (2) places a triple \(\circ \circ \circ \) on the positions 6, 7 and 8.

The solutions \(O_{n,3} \) in \(\left[\frac{n}{2} \right] \) Berge 3-moves obtained by the ignore-and-knit strategy for \(n \equiv 0 \pmod{4} \), and items (iii) and (v) of Proposition 1, yield that \(h_{n,3} = \left[\frac{n}{2} \right] \) for \(n \geq 17 \); combined with the values of \(h_{n,3} \) for \(5 \leq n \leq 16 \), see [6], we have:

Theorem 5. For \(n \geq 5 \), \(n \neq 12 \) and \(n \neq 16 \), a string of \(n \) alternating white and black pegs can be sorted in \(\left[\frac{n}{2} \right] \) Berge 3-moves. In other words, \(h(n, 3) = \left[\frac{n}{2} \right] \) for \(n \geq 5 \) except \(h(12, 3) = 7 \) and \(h(16, 3) = 9 \).

![Figure 6: Sorting the alternating 34-string by 17 Berge 5-moves](image-url)
4 Towards Tackling the Generalized Berge Sorting Conjecture

Many optimal solutions generated for larger k by computational search exhibit the features of the *ignore-and-knit* strategy. In particular, an anchor consisting of k consecutive positions which is emptied after stage (1) where only alternating k-tuples are moved, and remains empty till the first move of the last stage where only unicolour k-tuples are moved. The anchor is also surrounded by 2 pivots. See Figure 6 for an illustration of the optimal solution $O_{34,5}$ sorting the alternating 34-string in 17 Berge 5-moves. While the complexity of knitting additional moves certainly increases with k, we believe that the *ignore-and-knit* strategy could yield insights toward solving the generalized Berge sorting conjecture.

Acknowledgments The authors would like to thank William Hua for use of his code which helped to investigate small Berge sorting problems. Research supported by an NSERC Discovery grant, a MITACS grant and the Canada Research Chair program.

References

Antoine Deza, Feng Xie
Advanced Optimization Laboratory, Department of Computing and Software,
McMaster University, Hamilton, Ontario, Canada.
Email: deza, xief@mcmaster.ca.