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Abstract: Cyber-physical systems (CPS) help create new services and applications by revolutionising our world in different

fields through their tight interactions and automated decisions. This is especially true with the ongoing increase in the

number of physical things (sensors, actuators, smartphones, tablets, and so on) along with the explosive increase in

the usage of online networking services and applications. Future fifth generation (5G) cellular networks will facilitate

the enabling of CPS communications over current network infrastructure through different technologies such as device-

to-device (D2D) communications. In this study, the authors discuss about the main challenges that cellular providers

will face as the massive number of CPS devices attempt to access the cellular spectrum. A case study is presented on

how to ease the spectrum access of these devices through D2D spatial spectrum sensing. Furthermore, the authors

discuss about protecting these D2D links from eavesdropping, since security is becoming a critical aspect in the

cyber-physical space, especially with the large amount of traffic that is constantly flowing through the network.

1 Introduction

With the world expecting over 50 billion sensors to be connected to
the Internet by 2020 [1], whose wide deployments are made easier
by the technological advancements in micro-electromechanical
systems, along with the efficient low-cost designs of hardware
architectures and components, the amount of data to be sensed,
collected, and transmitted is expected to be growing at an
unprecedented rate. In fact, this tsunami wave of new information,
also known as big data, is foreseen to revolutionise our world
through advancements in a wide variety of applications in
health-care, military applications, city management, disaster event
applications, environmental management, vehicular networks,
industrial automation, and so on. This information revolution will
create along with it new applications and services, as well as new
opportunities for both consumers and businesses, where consumers
would benefit from superior quality of services; while businesses
would be able to boost their revenues by identifying customer
needs and closing the gap between them and the consumers
through uncovering hidden patterns, unknown correlations, and
other useful information in the big data [2]. The ease of sensed
data storage, processing, and analysis is facilitated by different
techniques that are gaining a lot of attention by academia and
industry such as cloud computing techniques, machine learning
tools, data mining, artificial intelligence, and fog computing.

The massive number of physical objects such as embedded
devices, smartphones, smart tablets, sensors, radio-frequency
identification, and actuators along with the explosive increase in
wireless data traffic driven by the popularity of video streaming,
media sharing, and other networking services and applications
have shaped the notion of cyber-physical systems (CPS). CPS
mainly consists of interconnected physical objects and a cyber
twin, where a cyber twin is considered as a simulation model such
as a computer program, which can represent the physical things
[3]. What interconnects the different CPS together is the Internet
of Things, which helps facilitate their information transfer.

Acquiring the data from CPS is one of the easiest task, especially
that recent advancements have allowed the pervasive presence of

low-cost smart sensors. Data can be collected in different ways
and from a variety of sources, such as physical sensors, virtual
sensors which collect data from several sources using web services
technology, or a combination of physical and virtual sensors, or
global sensors which collect data from middleware infrastructures,
or even remote sensors which collect remote sensed data for earth
sciences applications [4, 5]. Data can also be collected from
mobile users’ smartphones rather than sensors, which is known
under the terms of participatory sensing (PS) and mobile
crowd-sensing (MCS). The main difference between PS and MCS
is that the latter uses mobile social networking services along with
mobile users’ collected data to provide superior solutions to
complicated queries [6]. An example of MCS is shown in Fig. 1,
where users using their smartphones transmit warning messages
(safe areas, areas to avoid etc.) among each other in case of a
public safety event such as an earthquake or a flooding; in
addition, governmental agencies’ services transmit additional
information such as number of injured and dead people, safest
routes to flee, and so on. It is worth noting that both PS and MCS
depend heavily on social mobility and users’ behaviours and
dynamics.

Data processing is an important aspect of CPS, but not as
important as analysis and useful information extraction, which will
be discussed afterwards. The large volume of data is first broken
into workflows, so they can be easily distributed across multiple
data centres, where different virtual machines can be run on them.
This enables the parallel execution of tasks and queries for better
data management, as well as the sharing of the computing and
storage resources through rental by users in a pay-as-you-go
fashion [7].

Data analysis and useful information extraction, also known as data
mining, is what allows the automated decision making, an interesting
feature of CPS. By extracting knowledge from large volume of data,
we ease the process of finding solutions to complex problems, we
enhance system performance, and we allow the creation of new
applications and services [8]. To be able to realise all these benefits,
one or a combination of different approaches can be taken to
facilitate data mining, such as features selection, dimensionality
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reduction, knowledge discovery in databases, computer vision,
information visualisation, classification/clustering, and real-time
analysis, among others.

Security of CPS is also an interesting aspect that we specifically
study in this paper. The security threats of CPS are made easier
first with the large volume of data that is constantly flowing
through the network, and second with the lack of qualified security
experts. All this makes the monitoring of sensitive information a
challenging task for analysts. Different approaches can be taken in
this regard such as implementing advanced security controls
(authentication), monitoring of real-time data streams,
implementing advanced anomaly detection techniques by using
neuromorphic computing for instance, real-time surveillance
through computer vision and visualisation techniques, and so on [9].

On the other hand, interests and technical discussions about
emerging technologies for the fifth generation (5G) cellular
network have evolved into a full-fledged conversation capturing
attention from researchers across the world [10]. It is envisioned
that 5G technologies will be able to expand and support diverse
usage scenarios and applications. To be specific, the usage
scenarios include enhanced mobile broadband, ultra-reliable and
low latency communications (URLLC), and massive machine-type
communications (mMTC) [11]. For URLLC, the use case has
stringent requirements for capabilities such as throughput, latency,
and availability. Some examples include wireless control of
industrial manufacturing or production processes, remote medical
surgery, distribution automation in a smart grid, transportation
safety, and so on. For mMTC, the use case is characterised by a
very large number of connected devices typically transmitting a
relatively low volume of non-delay-sensitive data. Devices are
required to be low cost, and have a very long battery life requiring
energy-efficient communication and computing. For the
communication side, it is shown that local/short-range
communication could significantly improve both the energy
efficiency and spectral efficiency of a wireless system when circuit
energy consumption is considered [12–14]. For the computing
side, the recent developed concept of neuromorphic computing/
reservoir computing can be a great candidate to significantly
reduce the energy consumption [15, 16].

It is clear that the URLLC and mMTC aspects of 5G are clearly
related to CPS and 5G cellular network may provide an ideal
platform for CPS communications. On the other hand, enabling
CPS communication in 5G cellular networks is far from being
straightforward. For example, supporting coexistence between
cellular users (CUs) and CPS links requires many new
functionalities and control overhead which significantly
complicates the network design. In this paper, we are going to
shred some lights on this problem. To be specific, we summarise
the contributions of this paper as follows:

† First, we provide a discussion on the benefits of running CPS
communications over current cellular networks, followed by the

main challenges and open issues that face cellular providers when
it comes to supporting a large number of devices.
† Second, we discuss about some of the solutions proposed in
literature. Then, through a case study we discuss about how spatial
spectrum sensing in device-to-device (D2D) communications can
help support the massive number of devices attempting to access
the licensed cellular spectrum.
† Third, we present a low-complexity lightweight approach to
secure the in-proximity CPS communications. Finally, we present
some results to study the impact of spatial sensing region on the
secure successful transmissions.

The rest of this paper is organised as follows. In Section 2, we
discuss about how the integration of CPS can be realised over
current cellular networks, the different challenges, open issues, and
potential solutions that will enable CPS to shape future 5G
networks. Then, in Section 3, we present a case study on D2D
spatial spectrum sensing and cyber-security for in-proximity CPS
communications, along with a brief discussion on some of the
results obtained. Finally, conclusions are drawn in Section 4.

2 Enabling CPS communications in cellular
networks

As discussed in the introduction, the pervasive global spread of
physical devices (smartphones, tablets, sensors etc.) along with the
increasing use of online social networking services and applications
have led the way to a cyber-physical space with tight interaction
and coordination among its physical components. This has
overloaded the traditional network and made it impractical to
support thousands of these devices that attempt to access the
spectrum and communicate [17]. Even though cellular networks can
provide several benefits to CPS such as ubiquitous coverage, global
connectivity, reliability, and security, however, a set of challenges
would face cellular providers before any of these benefits can
be realised. First, current cellular networks follow a stratified
structure where mobile devices follow the control from the base
station (BS) (called eNodeB in Long-Term Evolution /Long-Term
Evolution-Advanced networks) for spectrum access and
communication. In this way, it is not designed to handle large
volume of traffic, as CPS devices will rapidly cause congestion in
the network from excess signalling overhead, leading to a failure of
many of these communications. Second, the number of radio
resources is already scarce and limited for traditional human
communications; how about the anticipated massive number of
devices? This means packet scheduling problems will occur and the
network capacity and spectral efficiency will significantly degrade
[18]. Third, there is a concern of excessive interference generated
from the massive number of devices, add to that the multipath
fading, which all lead to a performance degradation due to wireless
channels becoming unreliable. So it is evident that we are facing
several challenges when it comes to enabling CPS communications
over current cellular networks; however many of these challenges
can be addressed by the specifications and technologies of future
5G networks, as was discussed in [19].

Many of these devices are expected to be in close proximity to
each other. To provide a potential solution to the above
challenges, D2D communication can allow CPS devices in close
proximity to communicate directly with each other. For faster data
collection, research efforts need to focus on preconfiguring the
network faster using dynamic on-the-fly D2D connectivity and
without the need for controllers or infrastructure deployment.
Relay-assisted D2D communications can help extend the limited
communication range between CPS subnetworks [20], which in
turn allows for a more efficient data collection. In our prior work
[21], we analysed the spectral efficiency of the whole network if
we offload machine-type communications (MTC) traffic on D2D
links, where D2D relays are equipped with radio-frequency energy
harvesting to compensate for the need to use their own limited
energy reserves to forward data for MTC devices. We showed that

Fig. 1 Example of a MCS in a disaster-related event

IET Cyber-Phys. Syst., Theory Appl., 2017, Vol. 2, Iss. 1, pp. 49–54

50 This is an open access article published by the IET under the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0/)



by doing so, we can not only increase MTC spectral efficiency, but
also achieve a balance and fairness in weighted spectral efficiency
among D2D and CUs that are sharing the spectrum when there are
enough number of available channels in the network and the D2D
offloading factor is not set too high.

To support massive machine-type devices (MTDs) is one of the
main driving force of 5G networks. In most of the current MTC
systems, MTDs communicate directly with the eNodeB in one
cell. This single-hop paradigm may not be able to support massive
MTD where hundreds or thousands of MTDs attempt to set up
communications. Furthermore, MTDs located at the boundary of a
cell suffer from a high outage probability due to the interference
from other MTDs. A costly solution is to deploy more eNodeBs
and split the cell into multiple small cells. Instead of investing a
huge amount of money on deploying extra eNodeBs or relays,
cooperative communication has been demonstrated as an efficient
and effective way to extend the coverage region and improve the
throughput of cellular networks [22–24].

Conventionally, if an eNodeB fails to decode the packet, the MTD
will retransmit the packet in the following available slot. However, it
is with a high probability that the retransmission will fail again due to
the correlated interference [25]. In paper [26], we designed and
analysed a location-based cooperative strategy to improve the
performance of massive MTC networks. One of the main idea of
this paper is to select an inactive MTD acting as a relay for outage
MTDs. Unlike the work in [27, 28] where the authors assumed the
packet was known at the relay (BS) in prior, our paper considered
the case where the relay has no prior information about the packet.
To be specific, an inactive MTD is selected as a relay if it has
successfully decoded the packet and if it is located within a
circular area around the eNodeB. Otherwise, if there is no inactive
MTD that can decode the packet, the source MTD will retransmit
the packet. Both the simulation and numerical results demonstrate
that spatiotemporal correlation of interference significantly affects
the performance analysis of cooperative massive MTC networks
and our designed cooperative strategy can significantly reduce the
outage probability compared with conventional retransmission.

3 Spatial sensing and cyber-security for
in-proximity CPS communications: a case study

With the tight and close interactions among the increasing number of
physical objects such as smart phones, tablets, smart sensors, and
others, D2D technology allows these in-proximity devices to
communicate directly with each other bypassing the BS. This
would allow the pervasive presence of massive number of devices,
thereby creating a cyber-physical space where communications can
run over current cellular networks, as was discussed in Section
2. In this case study, we address two major issues for enabling

D2D communications for CPS: (i) efficient resource spectrum
utilisation and cellular transmissions’ protection through spatial
spectrum sensing and (ii) D2D links’ protection from
eavesdropping. In what follows, we discuss and analyse these two
issues in more details.

Realising CPS communications over D2D links can help achieve
multiple benefits for future 5G networks. First, to relieve spectrum
congestion from signalling overhead caused by massive number of
physical objects attempting to communicate over licensed cellular
bands, D2D technology solution allows the objects to share the
cellular spectrum similar to cognitive radio networks (CRNs), but
with some differences [29, 30]. First, while spectrum holes in
CRNs are in the temporal domain, those in the cellular spectrum
are in the spatial domain. This means that there is a spatial region
around a D2D user where no cellular transmitter should be present
to protect the cellular’s transmissions [31]. By exploiting these
spatial spectrum holes, both spectrum efficiency and power
efficiency can be significantly increased. Second, CUs and D2D
users are considered wireless users operating in two different
modes: cellular mode and potential D2D mode; and therefore do
not act as primary users and secondary users like in CRNs [31].
Finally, D2D users can rely on the BSs for assistance in spectrum
sharing. It should be noted that when D2D users share the
spectrum with CUs, the spectrum access is referred to as underlay
in-band. Other D2D deployment scenarios exist such as overlay
in-band D2D, and out-of-band D2D which have been thoroughly
analysed and compared in [32]; however our main focus will be
on the underlay model since it can achieve a higher throughput
because it utilises the spectrum more efficiently compared with the
overlay access [32].

In the realm of CPS, there is a large amount of data that is being
sensed, collected, and transmitted, which place security threats under
the spotlight of attention. This is especially true for the more
vulnerable direct connections between proximity devices, which in
turn degrade system’s performance. There are different reasons
why in-proximity D2D connections are more vulnerable to
security flaws: D2D devices have (i) limited computational
capabilities to employ data confidentiality, privacy preservation,
and authentication; (ii) the semi- or fully-autonomous security
management (mutual authentication, key arrangement etc.) [33];
and (iii) the high computational overhead cost of cryptographic
solutions [34]. There have been some development of
low-complex and lightweight ciphers such as PRESENT [35];
however such solutions can be time consuming and costly in terms
of high power consumption as well as the complexity of key
management [36, 37]; that is why research efforts should be
pushed toward simpler solutions than cryptography.

To mitigate the potential D2D security threats such as
eavesdropping, data fabrication, and privacy violation threats, we
turn towards a lightweight low-complexity approach by exploiting
the physical characteristics of the wireless channels, by defining a
D2D spatial transmission region that can guarantee a minimum
secrecy rate. By doing so, we are able to derive the detection
probability that D2D link is secure.

Mode selection: A potential D2D user is a user with D2D traffic
which can either use the cellular or the D2D mode for
communications based on one or a combination of different
selection criteria. This means that a potential D2D user can switch
between D2D and conventional cellular communications. For this
case study, we use distance-based selection threshold m [32]. Let
LC and LD be random variables representing the link lengths of a
typical CU and D2D user, respectively. More specific, a user is in
D2D mode if the transceiver distance LD is smaller than m. We
assume that the D2D receiver is uniformly distributed within a
circle centred at user i located at location xi with a radius of D, as
B xi, D
( )

[32], with probability density function

fD(r) =
2r

D2
, 0 ≤ r ≤ D. (1)

Fig. 2 illustrates a hybrid network of D2D links, cellular links, and a
Fig. 2 Example of a hybrid network with D2D and cellular links with

eavesdroppers overhearing the D2D communication
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set of eavesdroppers that attempt to overhear the D2D transmissions.
Furthermore, the figure shows a spatial sensing region around D2D
users. We consider an uplink cellular network, where D2D users and
CUs share the licensed spectrum. The use of stochastic geometry
allows us to provide an accurate model of interferers’ spatial
locations by averaging over all their potential topological
realisations [38]. The locations of the macro BSs are
modelled by a homogeneous Poisson point process (HPPP), FB of
intensity lB. Let A(k, RB) denotes the coverage region of a
macrocell, approximated by a disk with radius RB = plB

( )−1/2

centred at a generic BS k [39]. User equipments (EUs) are
uniformly distributed in the coverage region of the corresponding
BS and form an HPPP, FU of intensity lU. The eavesdroppers
form an HPPP FE of intensity lE.

We denote by ‖ i− j‖ as the distance between any two nodes i and
j. We use a power-law path-loss model where the power of the signal
transmitted by UEs decays at a rate of l(i, j) =‖ i− j‖−a, and a . 2
is the path-loss exponent of both cellular and D2D transmitters. To
model the small-scale fading over each channel, we use Rayleigh
fading with mean one, with hij denoting the channel coefficient
between nodes i and j.

For reliable communication, we assume that all users use a
truncated channel inversion power control [40, 41], which ensures
the average received signal power at the intended receiver (i.e.
D2D receivers and BSs) is at least equal to its sensitivity. Thus,
UEs will use power control Pi = rLai , for i = {C, D}; and r ≪ 1
is a constant that scales down the actual transmit power [32].

We differentiate between two different types of nodes ti with
i = {D, C}, for D2D user and CU, respectively. Let q [ [0, 1] be
the probability that a user is a potential D2D user [32].

† D2D user: The UEs in D2D mode form a thinning PPP FD from
FU, with intensity lD = qlUP LD , m

( )

.
† CU: The UEs in cellular mode include both CUs and potential
D2D users operating in cellular mode. Therefore, these users form
a thinning PPP FC from FU, with intensity lC = (1− q)lU
+qlUP LC ≥ m

( )

. Note that FU = FC <FD, and FD >FC = ∅.

3.1 Spatial spectrum sensing

A sensing region As is defined as a circular region centred at a D2D
user xi with sensing radius Rs. Without loss of generality, the D2D
transmitter is assumed located at the origin. A D2D transmitter
opportunistically accesses the spectrum by performing energy
detection on the test statistics G, where G = 1/N

∑N−1
n=0 |y[n]|2; and

y[n] is defined under two different hypotheses: (i) H0 when there
are no active CUs inside As; and (ii) H1 when there is at least one
active CU inside As. It is given as [42]

H0:y[n] =
∑

i[fC,a>AC
s

���������������

PC,ihi ‖xi ‖−a

√

si[n]+ z[n], (2)

H1:y[n] =
∑

i[f̃C,af̃C,a>As=∅

���������������

PC,ihi ‖xi ‖−a

√

si[n]+ z[n], (3)

where n = 0, 1, . . . , N − 1 is the sample index with N being the
total number of samples; si[n] is the nth sample of the received
signal from cellular transmitter i by a typical D2D user; z[n] is
the Gaussian noise sample (z[n] ≏ N (0, s2

n)); and fC,a is a
realisation of FC,a denoting the set of active cellular transmitters’
locations; and AC

s is the complementary set of As. Let e denotes
the underlying sensing threshold. The probabilities of false alarm

Pf and spatial detection Pd are given in [31] as

Pf =
∫

1

0

Q e− x− s2
n

��������������

x+ s2
n

( )2
/N

√

⎛

⎜

⎝

⎞

⎟

⎠

������

r

2px3

√

e−r(x−y)2/2y2x dx,

Pd =
∑

1

i=1

G(1+ id) sin (pid)p2i−1(lBdE[P
d
c ])

i

(−1)i+1(1− e−lBpR
2
s )i! sin (pd)i

×
∫

1

0

Q e− x− s2
n

��������������

x+ s2
n

( )2
/N

√

⎛

⎜

⎝

⎞

⎟

⎠

dx

x1+id
− e−lBpR

2
sPf

1− e−lBpR
2
s

, (4)

where r = 2E[Pc]
3R4−a

s (2a− 2)/(a− 2)3R4
BE[P

2
c ], y = 2E[Pc]

R2−a
s /(a− 2)R2

B, d = 2/a, Q(x) = (1/
����

2p
√

)
�

1

x
e−u2/2 du. In (4),

E[Pc] is UE’s average transmit power, RB is the cell radius, and Rs

is the sensing radius of spatial spectrum sensing.

3.2 D2D links’ secrecy analysis

In this section, we obtain the probability of detecting that D2D link is
secure by assuming that each D2D link is exposed to all the
eavesdroppers. We also obtain the secure transmission region
defined as the region within which eavesdroppers cannot intercept
the communication with high probability.

The aggregate interference of an eavesdropper located at a
distance ‖z‖ away from the typical D2D link is the interference
generated from active cellular transmitters and other active D2D
transmitters, and is given by

IE =
∑

k[FC,a

PC,khk,zl(k, z)+
∑

k[FD,a\0
PD,khk,zl(k, z), (5)

where FD,a is approximated as an HPPP to model the locations
of active D2D transmitters with intensity [31] lD,a = �blD;

with �b = Pd + Pf − Pd

( )

e−plBR
2
s

( )

b1 + 1− Pd − Pf − Pd

( )(

e−plBR
2
s )b0; b1 is the spectrum access probability if the spectrum

hole is correctly detected or when a false alarm occurs, while b0 is
the probability when misdetection occurs. The Laplace transform
of IE is given by [43]

LIE
(s) = exp

−lC,aE Pd
C

[ ]

− lD,aE Pd
D

[ ]

sincd
psd

( )

. (6)

Let maxe[FE
ge,0 denotes the eavesdropper with the most detrimental

effect on D2D signal. In interference-limited networks, the average
probability that a D2D link is secure is equal to the average
probability that the rate of the most detrimental eavesdropper falls
below a certain threshold z. It is expressed as [43]

Ps(z) = P log 1+ max
e[FE

ge,0

( )

, z

( )

= exp
−lEsincd

lC,aE[P
d
C]+ lD,aE[P

d
D]

( )

E[P−d
E ] 2z − 1

( )d

( )

, (7)

where PE is the average transmit power of an eavesdropper. A D2D
transmission is said to be secure if Ps(z) ≥ ys, where ys denotes the
minimum required secrecy probability. Then, we can obtain an upper
bound for the secrecy rate threshold for secure communication in
high signal-to-interference-plus-noise ratio (SINR) regime as

z ≤ d−1 log2
−lEsincd

lCE[P
d
C]+ lD,aE[P

d
D]

( )

E[P−d
E ] log ys

( )

. (8)
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The secure transmission region, At(ms, ys) , R
2, around a typical

D2D user is random and defined as the range within which
eavesdroppers cannot intercept the communication with high
probability. In other words, At(mr, ys) is the region where the set
of all eavesdroppers are located outside a closed ball
B o, 2z/a ‖xo ‖
( )

centred around the typical D2D user located at
‖xo ‖ with radius 2z/a ‖xo ‖ [44]. Therefore, we can use the upper
bound on z defined in (8) to define At(mr, ys) as

At(mr, ys) = x [ R
2: ‖e− xo ‖. mr = 2z/a ‖xo ‖

{ }

. (9)

Then

mr ≤
∫D

0

2z/arfD(r) dr = 2z/a
2D

3
. (10)

3.3 Achievable secrecy transmission capacity

In the case when the packets are not successfully decoded, we
assume no re-transmissions. Let uD be the SINR threshold for
successful transmission. We can then define the mathematical
expectation of the achievable secrecy transmission capacity, i.e.
the density of secure successful transmissions at a rate log (1+ uD)

as [43]

Y = lD,a log (1+ uD)P gi,0 ≥ uD
( )

= lD,a log (1+ uD)
1− e−m2

r (a2+a3)

a2 + a3
( )

D2
, (11)

where a2 = plC,au
d
D/sincd

( )

E Pd
C

[ ]

P−d
D ; a3 = plD,au

d
D/sincd.

3.4 Performance evaluation

In this section, we present numerical results to study the achievable
transmission capacity of secrecy-based D2D cellular networks with
spatial spectrum sensing. Unless otherwise stated, we set the
following system parameters: RB = 788 m (which corresponds to
an inter-BS distance of 1500 m), z = 0.5, D = 100 m, a = 4,

lB = 1/ pR2
B

( )

= 5.126× 10−7, uD = 20 dB, ys = 0.5, N = 5000,

and r = 10−11.
Fig. 3 shows the average achievable secrecy transmission capacity

against lU for different values of q. In Fig. 3, lU changes from lB to
10× lB. As more users are operating in the D2D mode (i.e. when q
increases), the achievable transmission capacity becomes higher due
to the receiver becoming closer in distance to the transmitter and
eavesdroppers becoming far away. Moreover, as the intensity of
users increases, the secrecy transmission capacity increases since
the interference of a larger legitimate user population can be
exploited in a beneficial way to protect D2D links from
eavesdropping, from a physical layer security perspective.

Fig. 4 shows the average achievable secrecy transmission capacity
against the sensing radius Rs for different values of q. We see that as
Rs increases, the spatial sensing becomes more conservative and less
aggressive. This means, the probability of detecting spatial spectrum
holes decreases, leading to fewer active D2D transmissions. This in
turn increases the distances between the D2D transmitters and
receivers, thereby making the D2D links more susceptible to
eavesdropping. That is why we see a decreasing behaviour in the
secrecy transmission capacity as the sensing radius increases.

4 Conclusions

In this paper, we have discussed about the major challenges facing
network providers when it comes to enabling CPS
communications in cellular networks. We have provided a
thorough discussion on D2D technology as a potential solution
and driving force to support thousands of devices that attempt to
access the cellular spectrum. More specific, we have provided a
detailed discussion and analysis on spatial spectrum sensing and
its effects on the density of successful secure transmissions. We
showed that more aggressive sensing can better protect D2D links
against eavesdropping since more D2D users become active,
which reduce the distances between them.
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