Abstract—This paper presents a new approach to robust H_{∞}
control of a real multilink flexible manipulator via regional pole
assignment. We first show that the manipulator system can be
approximated by a linear continuous uncertain model with exoge-
nous disturbance input. The uncertainty occurring in an operating
space is assumed to be norm-bounded and enter into both the
system and control matrices. Then, a multiobjective simultaneous
realization problem is studied. The purpose of this problem is to
design a state feedback controller such that, for all admissible
parameter uncertainties, the closed-loop system simultaneously
satisfies both the prespecified H_{∞} norm constraint on the transfer
function from the disturbance input to the system output and the
prespecified circular pole constraint on the closed-loop system
matrix. A new algebraic parameterized approach is developed
to characterize the existence conditions as well as the analytical
expression of the desired controllers. Third, by comparing with
the traditional linear quadratic regulator (LQR) control method
in the sense of robustness and tracking precision, we provide
both the simulation and experimental results to demonstrate the
effectiveness and advantages of the proposed approach.

Index Terms—Flexible structures, H_{∞} control, multilink ma-
nipulators, regional pole assignment, robust control.

I. INTRODUCTION

Robotic manipulators are widely applied in industrial prac-
tice. Conventional rigid manipulators are often built to be
heavy and bulky for high structural stiffness. The advantage
of rigid manipulators lies in that they can be easily controlled. But
some drawbacks, such as high power consumption, low mo-
tion speed, actuators with high capacity, and low payload ratio,
amay appear. To remedy these drawbacks, the manipulator can be
made of lightweight materials. As opposed to the bulky struc-
ture, lightweight structures can improve the performance of ma-
nipulators with typically low payload-to-arm weight ratio and
enable the manipulators to achieve fast and dexterous motion. These
efficient energy manipulators are of special interest in
many application fields such as space robotic systems and ve-
ciles. However, the lightweight structure will bring new prob-
lems. First, the structural flexibility will lead to a high degree of
elastic vibration especially during the high-velocity maneuver
of the manipulators. Also, some nonlinear phenomenon such as
joint friction will play a more important role in the dynamics
of the lightweight manipulators. For example, the joint friction
results in a very complicated dynamics especially when the light-
weight manipulator is operating at low velocities. Furthermore,
the dynamic equations of motion are nonlinear and of large di-
mensions. These problems aggravate the difficulty of the mod-
ing, identification, and control of lightweight manipulators.

Multilink lightweight manipulators present even more com-
plex problems for control. It is not easy to obtain a high ac-
curay dynamic model or black-box model of multilink light-
weight manipulators for the purpose of control design. On the
other hand, the control system of lightweight manipulators be-
ongs to the class of mechanical systems, where the number of
controlled variables is strictly less than the number of mechani-
cal degrees of freedom, since the flexible links are subject to
deflection and vibration. Furthermore, the linear effects of flex-
ibility are not separated from typical nonlinear effects of multi-
body rigid dynamics. For a high-performance lightweight ma-
nipulator, the task is to track a smooth trajectory of motion. This
can be assigned at the joint level, as if the manipulator were
rigid. Provided that the link deformation is kept limited, satis-
factory results may be obtained also at the end-effector level.

Motion control of flexible manipulators has recently at-
tracted a great deal of interest from many researchers. With the
advances in modern control theories, many control schemes
have been successfully proposed to tackle the modeling and
control problems of flexible manipulators. For example, the
linear control approaches, such as linear quadratic regulator
(LQR) and acceleration feedback control methods, have been
used for the controller design in [14], [21]. The nonlinear
control methods, such as those using computed torque, inverse
dynamics, and feedback linearization, have been proposed in
[1], [3], and [15], respectively. More recently, the robust control
approaches, such as H_{∞} design, robust pole assignment, and
d-stability constraints, have received considerable attention
(see, e.g., [5], [16], and [20]). It is noticeable that most of
the papers mentioned above have only dealt with the control
problem of single link flexible manipulators. Thus, the primary
aim of this paper is to develop a new approach to designing
robust H_{∞} feedback controllers, and then show its real-time
application in the control of a multilink flexible manipulator.

Although the robust H_{∞} design is mainly related to robust
stability and frequency-domain performance specifications, it
deals little with the transient behavior which is also important
in the control of multilink flexible manipulators. As is well
known, the pole location is directly associated with the dy-
namical characteristics of linear time-invariant systems such as damping rates, natural, and damped natural frequencies, and therefore, the problem of pole assignment in linear system theory has been discussed by many authors and solved in various ways (see [12], [13], and references therein). On the other hand, locations of poles vary and cannot be fixed due to parameter uncertainties that originate from various sources, such as variation of operating points, identification errors of parameters, etc. Hence, placing all poles of the overall system in a desired region rather than choosing an exact assignment may be satisfactory in the control of multilink flexible manipulators. A well-known desired region for continuous systems is a disc \(D(-q, r) \) in the left-half complex plane with the center at \(-q + j0 (q > 0)\) and radius \(r (r < q)\). We say a linear time-invariant system is d-stable if the corresponding system poles are all located inside a disc.

In the past decade, a large amount of interest has been given to the problem of controller design for assigning all closed-loop poles within a desired circular region (see, e.g., [11] and [19]). Furthermore, the robust circular pole-assignment (i.e., robust d-stabilization) problem for systems with parameter perturbations has recently been well studied (see, e.g., [7], [8], [17], [22], and [23], where the \(H_\infty \) index has unfortunately not been included).

It should be pointed out that, very recently, in [5], the discrete-time robust d-stabilization theory developed in [7] and [8] has been successfully applied in the real-time control of a manipulator. However, in the event of feedback control for an inherently time-continuous system in terms of a discrete-time “equivalent,” the question of sampling is not trivial, since the very small sampling period which is naturally required will result in computational difficulties. Moreover, the parameters in the discrete-time model usually do not correspond to the physical meanings and this brings difficulties in parameter identification. Therefore, in this paper, we cope with the problem of designing robust d-stability controller for a real multilink flexible manipulator in a continuous-time setting. Different from the existing results, in addition to the robustness and transient behavior, we further enforce the disturbance rejection property onto the feedback system so that the better performance of the controlled manipulator can be achieved. The \(H_\infty \) norm of the transfer function from the disturbance input to the system output is guaranteed to be less than an expected upper bound. We illustrate the relevant advantage through both simulation and experiments by comparing with some traditional control methods.

The organization of this paper is as follows. In Section II, we first give a description of the physical plant, and use a continuous uncertain model with exogenous disturbance input to approximate the manipulator system. The robust \(H_\infty \) control problem is then formulated. Section III presents the design procedure of robust \(H_\infty \), state feedback controllers with d-stability constraints. In particular, we develop a new algebraic parameterized approach and establish both the existence conditions and the analytical expression of desired controllers. Simulation and experimental results are given in Section IV to demonstrate the effectiveness and advantages of the proposed approach. Finally, the conclusions are included in Section V.

The notation is standard. Throughout this paper, \(\mathbb{R}^n \) and \(\mathbb{R}^{n \times m} \) denote, respectively, the \(n \)-dimensional Euclidean space and the set of all \(n \times m \) real matrices. The superscript “\(^T\)” denotes matrix transposition and the notation \(X \geq Y \) (respectively, \(X > Y \)) where \(X \) and \(Y \) are symmetric matrices, means that \(X - Y \) is positive semidefinite (respectively, positive definite). \(I_n \) stands for the \(n \times n \) identity matrix.

II. Problem Description

A. Description of the Plant

The plant is a four-link flexible manipulator which was developed at the Control Engineering Laboratory, Department of Electrical Engineering and Information Sciences, Ruhr-University Bochum, Bochum, Germany [6]. Fig. 1 shows the schematic structure of this manipulator.

The whole robot control system consists of a host computer, the transputer network, the real-time measurement system (RTMS) and a planar four-link lightweight manipulator. The host computer serves as the man–machine interface of the plant. A special software called TROB [6] was developed by using C++. This software environment can be used for manipulating the robot experiments. The transputer network consists of seven transputers and two DSPs. It has been designed to allow the implementation of both the decentral and multiinput–multioutput (MIMO) controller.

The RTMS is a VPORT 50-based data acquisition system. The operating system of RTMS can coordinate any measurement into the transputer network. The program for operating the whole plant is object-oriented. The joints are driven by dc motors with harmonic drive gears [10]. Two large motors (HDSA20) are used for the first two joints with electromagnetic brake and two small motors (HDSH14) for the other two joints.

Fig. 1. Schematic structure of the multilink flexible manipulator.
TABLE I
TECHNICAL SPECIFICATIONS OF THE DC MOTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Joint 1</th>
<th>Joint 2</th>
<th>Joint 3</th>
<th>Joint 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>24 V</td>
<td>24 V</td>
<td>24 V</td>
<td>24 V</td>
</tr>
<tr>
<td>Rated power</td>
<td>94 W</td>
<td>94 W</td>
<td>18.5 W</td>
<td>18.5 W</td>
</tr>
<tr>
<td>Rated torque</td>
<td>30 Nm</td>
<td>30 Nm</td>
<td>5.9 Nm</td>
<td>5.9 Nm</td>
</tr>
<tr>
<td>Rated current</td>
<td>8.5 A</td>
<td>8.5 A</td>
<td>1.8 A</td>
<td>1.8 A</td>
</tr>
<tr>
<td>Torque gain</td>
<td>4.5 Nm/A</td>
<td>4.5 Nm/A</td>
<td>5.65 Nm/A</td>
<td>5.65 Nm/A</td>
</tr>
<tr>
<td>Gear reduction</td>
<td>100</td>
<td>100</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>Inertia (motor+gear)</td>
<td>1.06 kg m²</td>
<td>1.06 kg m²</td>
<td>0.081 kg m²</td>
<td>0.081 kg m²</td>
</tr>
</tbody>
</table>

TABLE II
STRUCTURAL SPECIFICATION OF THE MANIPULATOR

<table>
<thead>
<tr>
<th>Material of the links (1 - 4):</th>
<th>Aluminum alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the links (1 - 4):</td>
<td>0.6 m</td>
</tr>
<tr>
<td>Length of the flexible part of the links (1 - 4):</td>
<td>0.24 m</td>
</tr>
<tr>
<td>Width of the flexible part of the links (1 - 4):</td>
<td>0.017 m</td>
</tr>
<tr>
<td>Height of the flexible part of the links (1 - 4):</td>
<td>0.1 m</td>
</tr>
<tr>
<td>Density of the links (1 - 4):</td>
<td>2690 kg/m³</td>
</tr>
<tr>
<td>Flexural rigidity of the links (1 - 4):</td>
<td>1050 Nm²</td>
</tr>
<tr>
<td>Masses of the joint 1,2:</td>
<td>9.16 kg</td>
</tr>
<tr>
<td>Masses of the joint 3,4:</td>
<td>6.14 kg</td>
</tr>
<tr>
<td>Payload of the manipulator:</td>
<td>0 till 5 kg</td>
</tr>
</tbody>
</table>

without break system respectively. The technical specifications of the dc motors are shown in Table I.

The link segments are made of aluminum, and the elastic vibrations of the links are measured by strain gauges. Table II shows the structural specification of the manipulator.

The input signal is the control voltage which is the output of the controller. The output signals include the angle output of the joint, the elastic vibration of the link, the signals for the emergency brake, and the current in the armature of the dc motor.

More details concerning the technical description of the plant and related software are given in [6].

B. Dynamic Modeling

The physical modeling of manipulators can be classified into two categories: kinematic and dynamic modeling. Both the kinematic and dynamic modeling rely on an accurate knowledge of a number of constant parameters characterizing the mechanical structure, such as link lengths, masses, and inertial properties.

The kinematic modeling of a manipulator concerns the description of the motion of the manipulator with respect to a fixed reference frame by ignoring the forces and moments that cause this motion of its structure. The kinematic method is usually considered in terms of forward kinematics, inverse kinematics, and velocity kinematics. On the other hand, the dynamic modeling aims at the derivation of the motion equations of the manipulator as a function of the forces and moments acting on it. Many methods are available in the robotics literature (see, for example, [4]). Two kinds of equations are mainly used to derive the dynamic model, namely, the Lagrange’s equation and the Newton–Euler’s equation. Both equations lead to exactly the same final answers of the manipulator dynamics.

In this paper, we adopt the dynamic modeling for the multi-link lightweight manipulators, which is inherited from that of the rigid manipulators. The difficulty encountered in this modeling can be traced to the distributed nature of the system, for example, the structural deformation. The motion of such manipulators is described by partial differential equations rather than ordinary differential equations. The search for solutions is even further hampered by the fact that the solutions depend strongly on the boundary conditions. While the boundary conditions vary rapidly with time due to the varying configuration of the lightweight manipulator, this property makes it nearly impossible to find closed-form solutions.

On the basis of the above discussion, we will follow the standard Lagrange formulation for the rigid-link case, to derive the dynamic equations of motion of a planar \(n \)-link flexible manipulator. To constitute a set of generalized coordinates of the system, it is necessary to introduce not only the \(n \) joint angles \(\theta = [\theta_1, \ldots, \theta_n]^T \), but also the elastic modes \(\delta = [\delta_{i1}, \ldots, \delta_{ij}, \ldots, \delta_{in}]^T \) where \(i = 1, \ldots, n \) and \(j = 1, \ldots, m_i \). The following assumption is made on the flexible links.

Assumption 1: The number of significant modes \(m_i \) is sufficient to obtain a good approximation of the elastic deformation of the \(i \)th link.

Based on Assumption 1, the elastic deformation \(u_i(x, t) \) of the \(i \)th link at a distance \(x \) from the joint can be expressed as the sum of appropriate basis functions \(\phi_{ij}(x) \) multiplied by the modal coordinates \(\delta_{ij} \), that is

\[
u_i(x, t) = \sum_{j=1}^{m_i} \phi_{ij}(x) \delta_{ij}(t). \tag{1}\]

If the trajectories are assigned at the joint level, the end-effector position of link \(i \) can then be approximately described by using the pseudojoint angle as

\[
y_i(t) = \theta_i + u_i(x, t)/l_i. \tag{2}\]

Now we define the generalized coordinates of the system \(q \) as follows:

\[
q = [\theta_1 \cdots \theta_n \delta_{11} \cdots \delta_{1m_1} \cdots \delta_{n1} \cdots \delta_{nm_n}]^T \tag{3}\]

and then the dynamics of \(n \)-link flexible manipulators can be derived by using the Lagrangian approach, which leads to

\[
M(q)\ddot{q} + C(q, \dot{q})\dot{q} + K_dq = u \tag{4}\]

where \(M(q) \) is the positive-definite symmetric inertia matrix of the manipulator, \(C(q, \dot{q}) \) includes the coriolis and centrifugal moments, \(K_dq \) is the effect of structural deformation, and \(u \) is the generalized vector of joint moments defined by

\[
u = [u_1 \cdots u_n 0 \cdots 0]^T. \tag{5}\]

Defining a new state vector \(x = [q^T \dot{q}^T]^T \) and differentiating \(x \), we have

\[
x = \begin{bmatrix} \dot{q} & \ddot{q} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -M^{-1}K_d & -M^{-1}C \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} + \begin{bmatrix} 0 \\ M^{-1} \end{bmatrix} u. \tag{6}\]
and therefore the dynamic model of the multilink flexible manipulator can be described by

\[\dot{x}(t) = A(x)x(t) + B(x)u(t) \]

where the nonlinear system matrices \(A(x) \), \(B(x) \) are the function of the state vector \(x(t) \).

In this paper, we linearize the nonlinear system (7) at a operating point. Then, consider the linearized system with both parameter perturbations of system dynamics and additive disturbance term as follows:

\[\begin{align*}
\dot{x}(t) &= (A + \Delta A)x(t) + (B + \Delta B)u(t) + Dw(t) \\
y(t) &= Ex(t)
\end{align*} \]

where \(x(t) \in \mathbb{R}^{n_x} \), \(u(t) \in \mathbb{R}^{n_u} \), and \(w(t) \in \mathbb{R}^{n_w} \) are the system state, the control input and the disturbance input, respectively. \(y(t) \in \mathbb{R}^{n_y} \) represents the system output which is the vector of pseudo joint angles. \(A, B, D, E \) are constant matrices with appropriate dimensions that describe the nominal system, and \(\Delta A, \Delta B \) are real-valued matrix functions representing the time-invariant parameter uncertainty. For the given operating point of an operating space, the parameter uncertainties \(\Delta A, \Delta B \) can be constructed to approximate the major linearization errors of the system (6). These parameter uncertainties can then be considered here to be norm-bounded and of the form

\[\begin{bmatrix} \Delta A \\ \Delta B \end{bmatrix} = SF[N_1 N_2] \]

where \(S, N_1, N_2 \), and \((N_2^T N_2 > 0) \) are known real constant matrices with appropriate dimensions, and \(F \) is an uncertain constant matrix satisfying

\[F^T F \leq I. \]

The term \(w(t) \) can be used to describe the additive disturbance, for examples, the noise, the nonlinear terms in the dynamics of manipulators, the loads varying for different tasks, etc. To guarantee the admissible disturbance attenuation level in the sequel, the \(H_{\infty} \) requirements will be considered in this paper.

Remark 1: The parameter uncertainty structure as in (9) and (10) has been widely used in the problems of robust control and robust filtering of uncertain systems (see, e.g., [7], [8], [17], [23], and the references therein). Many practical systems possess parameter uncertainties which can be either exactly modeled or overbounded by (10). Moreover, unlike the existing results, we use the “disturbance term” in the model to account for the influence from the operating environment, and the \(H_{\infty} \) requirement is introduced to reduce the possible affection from the “disturbance input.”

C. Control Problem Formulation

Applying the state feedback control law

\[u(t) = Kx(t) \]

to the system (8), we can obtain the resulting closed-loop system as follows:

\[\begin{align*}
\dot{x}(t) &= (A_c + \Delta A_c)x(t) + Dw(t), \\
y(t) &= Ex(t)
\end{align*} \]

where \(A_c = A + BK, \Delta A_c = SF(N_1 + N_2 K) \). For the system (12), the closed-loop transfer function \(H(s) \) from disturbance input \(w(t) \) to output \(y(t) \) can be written as

\[H(s) = E[sI - (A_c + \Delta A_c)]^{-1}D. \]

Consider a circular region \(D(-q, r) \) in the left-half complex plane with the center at \(-q + i0 \) for continuous systems. Now, the major aim of the robust \(H_{\infty} \)-norm circular pole placement control (RHCPPC) problem is to design the state feedback gain \(K \) such that, for all admissible uncertainties satisfying (9), (10), the following performance criteria are simultaneously achieved

C1: The closed-loop poles are constrained to lie within the specified disc \(D(-q, r) \), i.e., \(\sigma(A_c + \Delta A_c) \subseteq D(-q, r) \), where \(-q \) is the center on the real axis and \(r \) is the radius of this disc.

C2: The \(H_{\infty} \) norm of the disturbance transfer matrix \(H(s) \) from \(w(t) \) to \(y(t) \) meets the constraint \(\|H(s)\|_{\infty} \leq \gamma \) where \(\|H(s)\|_{\infty} := \sup_{\omega \in \mathbb{R}} \sigma_{\text{max}}[H(j\omega)] \) and \(\sigma_{\text{max}}[\cdot] \) denotes the largest singular value of [\cdot]; and \(\gamma \) is a given positive constant.

Remark 2: If the requirements C1 and C2 are met, the controlled manipulator system will have good robust performance, that is, good transient behavior and good disturbance rejection property in the presence of uncertainties. In next section, we will establish both the existence and the analytical expression of the expected controllers.

III. ROBUST \(H_{\infty} \) CONTROL DESIGN

To begin with, we present two lemmas as follows which will be essentially needed in the design of the robust \(H_{\infty} \) controller.

Lemma 1 [22]: Let a positive scalar \(\varepsilon > 0 \) and a positive-definite matrix \(Q > 0 \) be such that \(\varepsilon S^T QS < I \). Define \(A_{eq} := A_c + qI \). Then we have

\[(A_{eq} + \Delta A_c)^TQ(A_{eq} + \Delta A_c) \leq A_c^T[Q + QS(\varepsilon^{-1}I + S^T QS)^{-1}S^T Q]A_{eq} \]
\[+ \varepsilon^{-1}(N_1 + N_2 K)^T(N_1 + N_2 K). \]

Lemma 2 [23]: Let \(X \in \mathbb{R}^{m \times n} \) and \(Y \in \mathbb{R}^{m \times p} \). There exists a matrix \(V \) which satisfies simultaneously \(Y = XV \) and \(V^T = I \) if and only if \(XV^T = YY^T \).

We now show that, the circular pole and \(H_{\infty} \) performance constraints for all admissible parameter uncertainty can be guaranteed by the existence of a positive-definite solution to a modified algebraic Riccati equation. The corresponding result is stated in the following theorem which plays a key role for solving the problem RHCPPC.

Theorem 1: Let a positive constant \(\gamma > 0 \) and a circular region \(D(-q, r) \) be given. Then the performance requirements C1 and C2 are satisfied if the following matrix inequality has a positive-definite solution \(Q > 0 \):

\[(A_c + \Delta A_c)^TQ(A_c + \Delta A_c) + (q^2 - r^2)Q \]
\[+ q [(A_c + \Delta A_c)^TQ + Q(A_c + \Delta A_c) + \gamma^{-2}QDD^TQ + EE^T] \leq 0. \]

Proof: See the Appendix.
Remark 3: Theorem 1 implies that the H_{∞} disturbance attenuation and the circular pole constraints are automatically enforced when a positive-definite solution to (15) is known to exist. Next, in Theorem 2, we will show that the uncertainties ΔA_c appearing in (15) can be removed with the help of Lemma 1.

Theorem 2: Let the desired disc $D(-q, r)$, the constant $\gamma > 0$ and the state feedback gain K be given. If there exist a positive scalar $\varepsilon > 0$ and a positive-definite matrix $Q > 0$ satisfying

$$\varepsilon s^T QS < I$$

(16)

$$\Omega A_C+\varepsilon^{-1}N_1 N_2 K^T (N_1 + N_2 K) + qE^T E$$

$$= (\gamma^2 - q^2)QDD^T Q$$

(17)

where $\Omega := Q + QS(\varepsilon^{-1} I - s^T QS)^{-1} s^T Q$, then the eigenvalues of the uncertain closed-loop system matrix $A_c + \Delta A_c$ are located within the desired disc $D(-q, r)$ and the H_{∞} norm of the disturbance transfer matrix $H(s)$ from $w(t)$ to $y(t)$ meets the constraint $\|H(s)\|_{H_{\infty}} \leq \gamma$.

Proof: See the Appendix.

Remark 4: Theorem 1 provides the sufficient conditions under which the expected robust H_{∞} circular pole constraints are achieved. It should be pointed out that, these sufficient conditions may be conservative which are produced primarily due to the utilization of (14). Fortunately, we can reduce the conservativeness in a matrix-norm sense by properly selecting the parameter ε (see [25] for details).

Now, we are in a position to discuss the design procedure of robust H_{∞} controllers. We shall derive the conditions under which there exists a state feedback controller gain K such that the robust circular pole and H_{∞} norm constraints can be achieved and the general expression of the desired feedback controller gain K.

Assume that (16) holds for a positive scalar $\varepsilon > 0$ and a positive-definite matrix $Q > 0$. After some algebraic manipulations, the (17) can be rearranged as follows:

$$[(A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2] K$$

$$+ K^T [(A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2]^T$$

$$+ K^T (B^T \Omega B + \varepsilon^{-1} N_2^T N_2) K$$

$$+ r^2 Q - q(\gamma^2 QDD^T Q + E^T E)$$

$$- (A + qI)^T QOB = 0.$$ (18)

Based on (18), our design problem can be converted into the following equivalent Q-matrix assignment problem.

• Find the necessary and sufficient conditions (“assignability conditions”) for a positive-definite matrix Q under which there exists a controller gain K satisfying (18).

• If the controller gain K exists (i.e., the matrix $Q > 0$ is “assignable”), give the characterization of all expected controller gains in terms of the positive-definite matrix Q and some other free parameters.

We now focus on the Q-matrix assignment problem. Since $N_2^T N_2 > 0$, the matrix $B^T \Omega B + \varepsilon^{-1} N_2^T N_2$ is invertible, and (18), or (17), can be also rewritten as

$$[K^T (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{1/2}$$

$$+ ((A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2)]$$

$$\cdot (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1/2}]$$

$$\cdot [K^T (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{1/2}$$

$$+ ((A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2)]$$

$$\cdot (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1/2}]^T$$

$$= r^2 Q + q(\gamma^2 QDD^T Q + E^T E) + (A + qI)^T QOB$$

$$\cdot (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1} [(A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2]^T.$$ (19)

Observe that the left-hand side of (19) is nonnegative and $K \in \mathbb{R}^{n_u \times n_r}$. It is not difficult to find that there exists a feedback gain matrix K such that (19) holds if and only if Q satisfies the following matrix inequality:

$$\Sigma := -r^2 Q + q(\gamma^2 QDD^T Q + E^T E) + (A + qI)^T QOB$$

$$\cdot (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1} [(A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2]^T$$

$$\geq 0$$

(20)

and Σ is of rank which is not more than $\min(n_u, n_r)$. This gives the assignability conditions.

Furthermore, let matrix $T \in \mathbb{R}^{n_u \times n_r}$ be the square root of Σ, i.e., $TT^T = \Sigma$ (by Lemma 2, the square root satisfying $TT^T = \Sigma$ is not unique, and we can just choose one). If (20) holds, then (19) can be again expressed as follows:

$$[K^T (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{1/2}$$

$$+ ((A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2)]$$

$$\cdot (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1/2}]$$

$$\cdot [K^T (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{1/2}$$

$$+ ((A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2)]$$

$$\cdot (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1/2}]^T = TT^T$$ (21)

or equivalently (by Lemma 2)

$$K^T (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{1/2} + ((A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2)$$

$$\cdot (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1/2} = TV$$ (22)

where $V \in \mathbb{R}^{n_u \times n_r}$ is an arbitrary orthogonal matrix. It follows immediately from (22) that the corresponding state feedback gain K can be obtained by

$$K = TV (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1/2}$$

$$- ((A + qI)^T QOB + \varepsilon^{-1} N_1^T N_2)$$

$$\cdot (B^T \Omega B + \varepsilon^{-1} N_2^T N_2)^{-1}]^T.$$ (23)

Note that (23) provides a set of the desired controller gains in terms of the parameters Q, ε, V, where the parameter Q enters (23) indirectly via T and Ω.

Authorized licensed use limited to: Brunel University. Downloaded on March 23, 2009 at 08:55 from IEEE Xplore. Restrictions apply.
Summing up, we conclude the above results in the following main theorem.

Theorem 3: Consider the uncertain linear continuous system (8). Given the desired circular pole region \(D(-q, r) \) and the \(H_\infty \) norm bound constraint \(\gamma > 0 \) on the disturbance rejection attenuation. Let the notion \(\Omega \) be defined as in Theorem 2, and \(\Sigma \) be defined by (20). If there exist positive scalar \(\varepsilon > 0 \) and a positive-definite matrix \(Q > 0 \) satisfying (16), (20), then with the state-feedback gain determined by (23), the expected performance requirements C1 and C2 can be achieved, i.e., for all admissible parameter uncertainties, the closed-loop poles are placed within the disc \(D(-q, r) \) and the \(H_\infty \) norm of the disturbance transfer matrix \(H(s) \) from \(w(t) \) to \(y(t) \) meets the constraint \(\|H(s)\|_\infty \leq \gamma \).

Remark 5: Theorem 3 presents sufficient conditions for designing state feedback controllers which satisfy both the robust d-stability constraint and the robust \(H_\infty \) constraint, in terms of a simple linear matrix inequality (16) and a Riccati-like matrix inequality (20). When the uncertainties are absent (i.e., \(M = N = 0 \)) and there are no constraints on the \(H_\infty \) norm of the disturbance transfer function (i.e., \(\gamma = \infty \), \(D = 0 \)), the condition in Theorem 1 will be both sufficient and necessary, and thus Theorem 3 actually parameterizes all state-feedback controllers which place the closed-loop poles within a specified disk for continuous-time systems. This means, Theorem 3 generalizes partial results of [11].

Remark 6: In practical applications, it is very desirable to directly solve the quadratic matrix inequality (QMI) (20) subject to the constraint (16), and then obtain the expected observer gain readily from (23). When working with the QMI, the local numerical searching algorithms suggested in [2], [9] are very effective for a relatively low-order model. A related discussion of the solving algorithms for QMIs can also be found in [18].

Remark 7: It can be seen from Theorem 3 that, unlike the algebraic Riccati equation method developed in [7], [8], [17], and [23], the present parameterized approach provides much explicit freedom in the design of state-feedback controllers because of the nonuniqueness in choosing the parameters \(Q, \varepsilon, V \). This design freedom can be used to achieve other performance requirements, such as reliability against sensor failures, implementation accuracies and gain reduction, etc., which still require further investigation. Note that in Theorem 3, the addressed feedback control problem is converted into the solvability problem for a positive-definite matrix \(Q > 0 \) to satisfy two matrix inequalities. Therefore, in principle, if other system performance requirements can also be expressed in terms of linear/quadratic matrix inequalities, they can then be enforced into the current developed framework.

Remark 8: The state feedback control design problem is considered for linear uncertain systems with both circular pole and \(H_\infty \)-norm constraints. A parameterization approach is developed, which enables us to obtain the set of state-feedback controllers in terms of some free parameters. It would be interesting to extend the present results to the output feedback case. Unfortunately, the parameterization method developed in this section cannot apply to the output feedback case in a straightforward way, which leaves us an important issue for future research.

IV. SIMULATION AND EXPERIMENTAL RESULTS

To study the performance of the proposed control algorithms, a simulation environment based on the software MATLAB/SIMULINK has been developed. For applying the developed robust \(H_\infty \) control approach, the dynamic model (8) parameter uncertainties is used. It is assumed that the desired trajectories are unknown, but bounded by

\[-30(\text{deg}) \leq \dot{q}_i \leq 30(\text{deg}), \quad \text{for } i = 1, 2, 3, 4.\]

We now consider the nonlinear dynamic model (7). Denote \(\hat{u} = [u_1 \cdots u_n]^T \), and it follows from (5) that \(\ddot{y} = [\hat{u}^T \ 0_{1 \times n}]^T \).

Accordingly, partition \(B(x) \) as \(B(x) = [B_{P1}(x) \ B_{P2}(x)] \).

Then, (7) can be rewritten as

\[\dot{x}(t) = A(x_t) x(t) + B_{P1}(x) \hat{u}(t).\]

As discussed in Section II, the nonlinear dynamic model (25) is linearized at the initial operating point, and the system parameters of (8), where \(B \) is replaced by \(B_{P1} \), can be derived as follows:

\[
A = \begin{bmatrix} 0_{3 \times 8} & I_{8 \times 8} \\ A_{21} & A_{22} \end{bmatrix}, \quad B_{P1} = \begin{bmatrix} 0_{8 \times 4} \\ B_2 \end{bmatrix}, \quad D = \begin{bmatrix} 0_{8 \times 4} \\ 0_{1 \times 2} \end{bmatrix},
\]

\[E = I_{16 \times 16}, \quad S = 0.1I_{16 \times 16}, \quad N_1 = 10 \begin{bmatrix} 0_{8 \times 8} & 0_{8 \times 8} \\ \hat{N}_{11} & \hat{N}_{12} \end{bmatrix}, \quad N_2 = 10 \begin{bmatrix} 0_{8 \times 4} \\ \hat{N}_2 \end{bmatrix},\]

where

\[
A_{21} = \begin{bmatrix} 0 & 0 & 0 & 1280 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1364 & 11 & 276 & 41 \\ 0 & 0 & 0 & -219 & 33 & 2627 & 4 \\ 0 & 0 & 0 & -153 & 65 & 16088 & 59006 \\ 0 & 0 & 0 & -6226 & 24 & 597 & 94 \\ 0 & 0 & 0 & 15 & -108 & -176 & -482 \\ 0 & 0 & 0 & 208 & -100 & -64963 & 5100 \\ 0 & 0 & 0 & 7 & -56 & 1050 & -79852 \end{bmatrix},
\]

\[
A_{22} = \begin{bmatrix} -152 & -77 & 0 & 0 & 0 & 0 & 0 \\ -77 & -277 & 3 & -1 & 0 & 0 & 0 \\ 0 & 111 & -45 & -20 & 0 & 0 & 0 \\ 0 & -33 & -20 & -61 & 0 & 0 & 0 \\ 593 & 631 & -2 & -2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 45 & 97 & 59 & 0 & 0 & 0 \\ 0 & 1 & 0 & 45 & 0 & 0 & 0 \end{bmatrix},
\]

\[
B_2 = \begin{bmatrix} 32923 & 16557 & -0.003 & -0.002 \\ 16557 & 59482 & -2.040 & 0.604 \\ -0.036 & -23791 & 36405 & 16376 \\ -0.023 & 7042 & 16376 & 45589 \\ -127403 & -135716 & 1.864 & 1.203 \\ 0.002 & -0.603 & -0.174 & -0.039 \\ 0.0319 & -9.595 & -78.257 & -47.917 \\ 0.001 & -0.293 & 0.002 & -36.200 \end{bmatrix}.
\]
As stated in the problem description, the matrices, \(N_1 \), \(N_2 \), and \(S \), which reflect the uncertainty intensity, are constructed to approximate the major linearization errors of the system (6), while the matrix \(D \) accounts for the disturbance input which results primarily from the actuator noises in implementation. The pole set of the open-loop system with no uncertainty is given as follows:

\[
\begin{bmatrix}
0 & 0 & 0 & -0.065 & 0.853 & 0.033 & 0.507 \\
0 & 0 & 0 & 23.029 & 56.282 & 76.303 & 235.236 \\
0 & 0 & 0 & 1.921 & 58.151 & 144.609 & 125.741 \\
0 & 0 & 0 & 37.889 & -53.988 & -21.080 & -30.640 \\
0 & 0 & 0 & -3.142 & -2.863 & -136.734 & 320.840 \\
0 & 0 & 0 & -7.360 & -77.784 & -211.548 & -138.259 \\
0 & 0 & 0 & -23.767 & 37.576 & -28.464 & 356.041
\end{bmatrix}
\]

\(\hat{N}_{12} =
\begin{bmatrix}
0 & 0.016 & -0.001 & 0 & 0 & 0 & 0 \\
0.016 & 3.363 & -0.173 & -0.172 & 0 & 0 & 0 \\
-0.019 & -7.699 & 0.193 & -0.019 & 0 & 0 & 0 \\
-0.001 & -7.505 & -0.019 & -0.363 & 0 & 0 & 0 \\
-0.027 & -10.661 & 0.279 & 0.020 & 0 & 0 & 0 \\
0.024 & -15.992 & 0.235 & 0.378 & 0 & 0 & 0 \\
0.005 & -12.334 & -0.009 & 0.534 & 0 & 0 & 0 \\
0.017 & 7.828 & -0.207 & 0.096 & 0 & 0 & 0
\end{bmatrix}
\]

\[\hat{N}_2 =
\begin{bmatrix}
0 & 0.001 & 0.001 & 0 & 0 & 0 & 0 \\
-0.004 & -0.723 & 0.140 & 0.138 & 0 & 0 & 0 \\
0.004 & 1.163 & -0.156 & 0.015 & 0 & 0 & 0 \\
0.001 & 1.614 & 0.015 & 0.293 & 0 & 0 & 0 \\
0.006 & 2.292 & -0.226 & -0.016 & 0 & 0 & 0 \\
-0.005 & -3.438 & 0.190 & -0.305 & 0 & 0 & 0 \\
-0.001 & -2.651 & 0.008 & -0.431 & 0 & 0 & 0 \\
-0.004 & -1.883 & 0.016 & -0.077 & 0 & 0 & 0
\end{bmatrix},\]

As stated in the problem description, the matrices, \(\hat{N}_1 \), \(\hat{N}_2 \), and \(S \), which reflect the uncertainty intensity, are constructed to approximate the major linearization errors of the system (6), while the matrix \(D \) accounts for the disturbance input which results primarily from the actuator noises in implementation. The pole set of the open-loop system with no uncertainty is given as follows:

\[
\{0, 0, 0, 0, -299.62, -11.71 + 280.15i, -11.71 - 280.15i, -32.65 + 253.81i, -32.65 - 253.81i, -99.34, -20.11 + 10.60i, -20.11 - 10.60i, -0.14 + 10.30i, -0.14 - 10.30i, -7.28, 0.44\}.
\]

We can see from the last pole that the open-loop uncertainty-free system is unstable. We also notice that the distribution of the open-loop poles is quite scattered. Therefore, we consider the circular region \(D(70.1, 70) \) in the left-half complex plane.

Our goal is to design the state feedback control law \(\tilde{u} = Kx \) such that all closed-loop poles are assigned inside the specified circular region \(D(-70.1, 70) \), and the \(H_\infty \) norm of the transfer function from the disturbance input to the system output satisfies \(||H(s)||_\infty < 0.9 \). The corresponding state feedback gain \(K \) can be obtained as

\[
K = [K_{11} \quad K_{12}]
\]

where we have \(K_{11} \) and \(K_{12} \), shown at the bottom of the page.

For the closed-loop system, the performance objectives are well achieved, that is, the closed-loop poles are constrained to lie within the specified disc \(D(-70.1, 70) \), and for all admissible parameter uncertainties, the maximum \(H_\infty \) norm of the disturbance transfer matrix \(H(s) \) from \(u(t) \) to \(y(t) \) satisfies \(||H(s)||_\infty = 0.5211 < 0.9 \).

To make a comparison, a traditional LQR controller is designed where the weighting matrices are selected to be \(Q = 0.01I \) and \(R = 0.1I \).

In the simulation, the desired trajectories are selected as in Table III. The simulation results are shown in Table IV and from which we observe the following:

- Trajectory A is bounded in a relative small operating space including the initial point. Both simulated multivariable controllers are stable. The robust \(H_\infty \) controller performs better in tracking precision over the traditional LQR controller when the control energy is maintained at the same level.
- Trajectory B is bounded in a relative larger operating space. In this operating space, the LQR control is unstable. It is verified that the robust \(H_\infty \) controller performs better with respect to stability.

\[
\begin{align*}
K_{11} &= \begin{bmatrix}
46.1 & -22.5 & 25.9 & -2.56 & -1.1 & 3.2 & -33.7 & 174.7 \\
-17.4 & 33.6 & -22.7 & 3.4 & 15.6 & -0.9 & 50.9 & -152.6 \\
-8.6 & 5.6 & 28.0 & 9.7 & 10.0 & 0.8 & 691.0 & -1070.6 \\
-3.0 & 2.1 & 6.7 & 18.8 & -2.2 & 1.6 & 1.8 & 1710.9
\end{bmatrix}
\\
K_{12} &= \begin{bmatrix}
5.4 & 3.5 & 3.4 & 0.3 & 1.6 & 0.6 & 1.6 & -0.7 \\
-1.3 & -3.2 & -1.3 & 0.2 & 0.1 & 0.0 & -0.6 & 1.1 \\
0.0 & 1.2 & 1.1 & 0.9 & 0.2 & 0.1 & 0.9 & 3.8 \\
0.6 & 0.8 & 0.9 & -0.1 & 0.2 & 0.1 & 0.8 & -4.3
\end{bmatrix}
\end{align*}
\]

\begin{table}
\centering
\caption{Desired Trajectories for Simulation}
\begin{tabular}{|c|c|c|c|c|}
\hline
Joint 1 (deg) & Joint 2 (deg) & Joint 3 (deg) & Joint 4 (deg) \\
\hline
Trajectory A & 15sin(0.2t) & 15sin(0.2t) & 20sin(0.4t) & 20sin(0.4t) \\
Trajectory B & 20sin(0.2t) & 20sin(0.2t) & 30sin(0.5t) & 30sin(0.5t) \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Simulation Results of Multivariable Control}
\begin{tabular}{|c|c|c|}
\hline
 & LQR control & Robust \(H_\infty \) control \\
\hline
Trajectory A & Figs. 2 and 3 & Figs. 4 and 5 \\
\hline
Trajectory B & Unstable & Figs. 6 and 7 \\
\hline
\end{tabular}
\end{table}
Fig. 2. Simulation results of LQR control. Tracking of trajectory A for joint 1 and joint 2.

Fig. 3. Simulation results of LQR control. Tracking of trajectory A for joint 3 and joint 4.

Fig. 4. Simulation results of robust H_{∞} control. Tracking of trajectory A for joint 1 and joint 2.

Fig. 5. Simulation results of robust H_{∞} control. Tracking of trajectory A for joint 3 and joint 4.

It is apparent that the simulation results found in Figs. 2–7 verify theoretical analysis.

The experimental results are shown in Figs. 8 and 9 for end-effector tracking of a trajectory with 2.5-kg payload, respectively. Both LQR and robust H_{∞} controller are used, respectively. The experimental results show that the robust H_{∞} control performs better in tracking precision over the traditional LQR control.

V. CONCLUSION

The problem of robust H_{∞} control for a multilink flexible manipulator has been addressed in this paper. A new approach to robust H_{∞} control of multilink flexible manipulators has been presented using regional pole assignment. A multiobjective simultaneous realization problem has been introduced to the controller design such that the controlled manipulator system, for all admissible parameter uncertainties in the operating space, simultaneously satisfies both the prespecified H_{∞} norm constraint on the transfer function from disturbance inputs to system outputs, and the prespecified circular pole constraint on the closed-loop system matrix. Simulation and experimental results have verified the theoretical analysis results and demonstrated the usefulness and applicability of the proposed approach.

APPENDIX

Proof of Theorem 1: Define $\Psi := (1/r)(A_c + \Delta A_c + qI)$.

It is clear that the specified circular pole constraint $\sigma(A_c + \Delta A_c) \subset D(0, 1)$ is equivalent to the Schur stability of matrix Ψ, i.e., the eigenvalues of Ψ are all located inside the unit circle $D(0, 1)$. We know from the discrete-time Lyapunov stability theory that Ψ is Schur matrix if and only if there exists a positive-definite matrix Q meeting $Q - \Psi^T Q \Psi > 0$.
Since (15) holds, we can assume that there exists a matrix
\(P \geq 0 \) (\(P \) may be dependent on the uncertain matrix \(F \)) such that

\[
\begin{align*}
(A_c + \Delta A_c)^T Q (A_c + \Delta A_c) + (q^2 - r^2) Q + q \left[(A_c + \Delta A_c)^T Q + Q (A_c + \Delta A_c) + \gamma^{-2} Q D D^T Q + E E^T + P \right] &= 0,
\end{align*}
\]

(26)

It is not difficult to rewrite (26) as follows:

\[
Q - \Psi^T Q \Psi = (q/r^2)(\gamma^{-2} Q D D^T Q + E E^T + P) > 0
\]

(27)

which indicates that the circular pole requirement \(C_1 \) will be met.

Next, we can also rearrange (26) as follows:

\[
(A_c + \Delta A_c)^T Q + Q (A_c + \Delta A_c) + \gamma^{-2} Q D D^T Q + E E^T + \Sigma = 0
\]

(28)

where

\[
\Sigma = q^{-1} \left[(A_c + \Delta A_c)^T Q (A_c + \Delta A_c) + (q^2 - r^2) Q \right] + P.
\]

(29)

Since \(\Sigma > 0 \), the proof of \(\| H(s) \|_\infty \leq \gamma \) can be completed by a standard manipulation of equation (28); for detail see [24, Lemma 1]. This completes the proof of Theorem 1.

Proof of Theorem 2: It follows from Lemma 1 that

\[
\begin{align*}
\Theta := A_{cq}^T \Omega A_{cq} + \epsilon^{-1} (N_1 + N_2 K)^T (N_1 + N_2 K) \\
- (A_{cq} + \Delta A_c)^T Q (A_{cq} + \Delta A_c) &\geq 0,
\end{align*}
\]

(30)

Then, by means of (30), we can rewrite (17) as follows:

\[
(A_{cq} + \Delta A_c)^T Q (A_{cq} + \Delta A_c) \\
= r^2 Q - q (\gamma^{-2} Q D D^T Q + E E^T + q^{-1} \Theta),
\]

(31)

Furthermore, by defining \(P := q^{-1} \Theta \geq 0 \) and noting that \(A_{cq} = A_c + qI \), we can continue to transform (31) as

\[
q (A_c + \Delta A_c)^T Q + q Q (A_c + \Delta A_c) + (A_c + \Delta A_c)^T Q (A_c + \Delta A_c) \\
+ (q^2 - r^2) Q + q (\gamma^{-2} Q D D^T Q + E E^T + P) = 0
\]

(32)
which has the same form as (26), then the proof of this theorem follows from Theorem 1 directly.

ACKNOWLEDGMENT
The authors are grateful to Prof. D. Prätzel-Wolters, University of Kaiserslautern, Germany, for useful suggestions.

REFERENCES

