Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method

Fuqiong Zhao, Zhigang Tian*, Yong Zeng

Key Words - Remaining useful life, prediction, integrated prognostics, finite element modeling, Bayesian updating, vibration.

Abstract - Accurate health prognosis is critical for ensuring equipment reliability and reducing the overall life-cycle costs. The existing gear prognosis methods are primarily either model-based or data-driven. In this paper, an integrated prognostics method is developed for gear remaining life prediction, which utilizes both gear physical models and real-time condition monitoring data. The general prognosis framework for gears is proposed. The developed physical models include a gear finite element model for gear stress analysis, a gear dynamics model for dynamic load calculation, and a damage propagation model described using Paris’ law. A gear mesh stiffness computation method is developed based on the gear system potential energy, which results in more realistic curved crack propagation paths. Material uncertainty and model uncertainty are considered to account for the differences among different specific units that affect the damage propagation path. A Bayesian method is used to fuse the collected condition monitoring data to update the distributions of the uncertainty factors for the current specific unit.

* F. Zhao is with Department of Mechanical and Industrial Engineering, Concordia University. 1515 Ste-Catherine Street West EV-S2.314, Montreal, QC H3G 2W1, Canada (e-mail: fqzhao1983@hotmail.com).

Z. Tian is with Concordia Institute for Information Systems Engineering, Concordia University. 1515 Ste-Catherine Street West EV-7.637, Montreal, QC H3G 2W1, Canada (e-mail: tian@ciise.concordia.ca).

Y. Zeng is with Concordia Institute for Information Systems Engineering, Concordia University. 1515 Ste-Catherine Street West EV-7.633, Montreal, QC H3G 2W1, Canada (e-mail: yong.zeng@concordia.ca).
being monitored, and to achieve the updated remaining useful life prediction. An example is used to demonstrate the effectiveness of the proposed method.

Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>crack length</td>
</tr>
<tr>
<td>m, C</td>
<td>material parameters in Paris’ law</td>
</tr>
<tr>
<td>N</td>
<td>loading cycles</td>
</tr>
<tr>
<td>ΔK</td>
<td>stress intensity factor range</td>
</tr>
<tr>
<td>K_I</td>
<td>mode I stress intensity factor</td>
</tr>
<tr>
<td>K_{II}</td>
<td>mode II stress intensity factor</td>
</tr>
<tr>
<td>L</td>
<td>edge length of singular element</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>u</td>
<td>nodal displacement in x direction</td>
</tr>
<tr>
<td>v</td>
<td>nodal displacement in y direction</td>
</tr>
<tr>
<td>θ</td>
<td>crack extension angle</td>
</tr>
<tr>
<td>R</td>
<td>ratio of mode I and mode II stress intensity factors</td>
</tr>
<tr>
<td>F</td>
<td>dynamic tooth load</td>
</tr>
<tr>
<td>F_a</td>
<td>horizontal force component</td>
</tr>
<tr>
<td>F_b</td>
<td>vertical force component</td>
</tr>
<tr>
<td>k_t</td>
<td>total mesh stiffness</td>
</tr>
<tr>
<td>c_t</td>
<td>mesh damping coefficient</td>
</tr>
<tr>
<td>k_h</td>
<td>Hertzian mesh stiffness</td>
</tr>
<tr>
<td>k_b</td>
<td>bending mesh stiffness</td>
</tr>
<tr>
<td>k_s</td>
<td>shear mesh stiffness</td>
</tr>
<tr>
<td>k_a</td>
<td>axial compressive mesh stiffness</td>
</tr>
<tr>
<td>Δa</td>
<td>crack length increment</td>
</tr>
</tbody>
</table>
W pinion tooth width

α_1 force decomposition angle

α_2 half of base tooth angle

G shear modulus

I_x area moment of inertia of the section

A_x area of section

ε model uncertainty

e measurement error

τ standard deviation of measurement error

a_c critical crack length

ΔN incremental number of loading cycles

$\lambda \Delta N$ inspection interval

H training set

R test set

$f_{prior}(m)$ prior distribution of m

$l(a|m)$ likelihood function in Bayesian inference

$f_{post}(m|a)$ posterior distribution of m

\mathcal{P} set of degradation paths

Acronyms

CBM condition based maintenance

PHM prognostics and health management

RUL remaining useful life

SIF stress intensity factor

FE finite element
1. Introduction

Accurate health prognosis is critical for ensuring equipment reliability, and reducing the overall life-cycle costs, by taking full advantage of the useful life of the equipment. Prognostics is a critical part in the framework of condition based maintenance (CBM), and prognostics and health management (PHM) [1]-[2]. Condition monitoring data, such as vibration, acoustic emission, imaging, and oil analysis data can be collected and utilized for equipment health monitoring and prediction. The gearbox is a basic component in machine systems; it is used to transmit power, and to change the velocity. Gears may suffer from various degradation and failure modes, such as crack, surface wear, and corrosion, while a crack at the gear tooth root is one of the most common failure modes [3], which is initiated due to repetitive stress. We focus on cracks at the gear tooth root in this study.

Existing gear prognosis methods can be roughly classified into model-based (or physics-based) methods, and data-driven methods [1]-[2]. The model-based methods predict the equipment health condition using component physical models, such as finite element (FE) models, and damage propagation models based on damage mechanics. Such methods generally do not use condition monitoring data in an integrated way [2]. Some model-based methods also require data to estimate the current damage status of the monitored component or system, but the condition monitoring data do not affect the physical model parameters, such as materials parameters. Li and Lee [4] proposed a gear prognosis approach based on FE modeling where the condition monitoring data are used to estimate the current crack length. Noticing the periodicity of the meshing stiffness, an embedded model was proposed to estimate the Fourier coefficients of the meshing stiffness expansion. The software DANST was used to calculate the dynamic load on a cracked tooth at different crack lengths. The damage propagation model based on Paris’ law was used to predict crack propagation. Kacprzynski et al. [5] presented a gear prognosis tool using 3D gear FE modeling, and considered various uncertainty factors in damage propagation, while the condition monitoring information is used to estimate the current crack length with uncertainty. Tian et al. [3] used a gear dynamic simulation model and advanced signal processing tools for gear damage assessment. Marble et al. [6] developed a method for health condition prediction of propulsion system bearings based on a bearing spall propagation physical model, and a FE model. For complex equipments, there are significant challenges in building authentic
physics-based models for describing the equipment dynamic response and damage propagation processes.

Data-driven methods do not rely on physical models, and only utilize the collected condition monitoring data for health prediction. The data-driven methods achieve health prognosis by modeling the relationship between equipment age, condition monitoring data, and equipment degradation and failure time, and training based on historical data is critical. Jardine et al. developed Proportional Hazards Model based methods for equipment prognosis and CBM [1], [7]. ANN based methods have been developed by Gebraeel et al. [8]-[9], Lee et al. [10], Tian et al. [11], etc. Tian and Zuo [12] presented a gear health condition prediction approach using recurrent neural networks. Bayesian updating methods have been investigated in equipment prognostics for utilizing the real-time condition monitoring data [13]-[14]. Data driven methods cannot take advantage of the degradation mechanism information in the physical models, and they are generally not very effective if sufficient data are not available.

Integrated prognostics methods (or hybrid methods) have also been reported mainly in the field of health monitoring and prognosis for structures [27]. Integrated methods aim at fusing physical models and condition monitoring data, where condition monitoring data are used not just to estimate the current damage size, but mainly to update physical model parameters such as materials parameters C and m in Paris’ Law. The particle filter based framework was developed by Orchard and Vachtsevanos [28]-[29] for the failure prognosis of planetary carrier plates. Bayesian inference has been used to update model parameters based on condition monitoring data in several studies including [15], [30].

In this paper, an integrated gear prognosis method is developed by utilizing both gear physical models and real-time condition monitoring data in an integrated way. The physical models include the FE model for gear stress analysis, the gear dynamics model for dynamic load calculation, and the damage propagation model described using Paris’ law. Different units of the same type can have different failure times, and the internal reason behind it is that there are uncertainties such as materials uncertainty, and model uncertainty. Thus, the objective of the integrated prognosis is to identify the distributions of the material and model uncertainties for the current specific unit being monitored by fusing the condition monitoring data. Such ideas have been investigated in the damage propagation of structures [15], but the issue has not been studied for gears, which are rotating mechanical components where a crack at the tooth root is the key
failure mode which could lead to catastrophic damage to the entire gearbox. To address this problem, we need to particularly develop the general integrated prognosis framework for gears, the FE model, and the method for fusing the condition monitoring data to update the model and to achieve the updated remaining useful life (RUL) prediction. These are key contributions of this paper.

For crack propagation computation in the gear physical models, the gear mesh stiffness is required. Tian et.al [25] developed a method based on the potential energy stored in the meshing gear system, considering Hertzian energy, bending energy, axial compressive energy, and shear energy. However, the crack path was assumed to follow a straight line at a fixed angle with respect to the central line of the tooth. In this work, we remove the assumption of straight crack path, and develop a potential energy based method to calculate the mesh stiffness, which results in a more realistic curved crack propagation path. This is another key contribution of this work.

The remainder of this paper is organized as follows. The gear physical models are presented in Section 2. The proposed integrated gear prognosis method is discussed in details in Section 3. Section 4 presents examples to demonstrate the procedure and effectiveness of the proposed prognosis approach. Conclusions are given in Section 5.

2. Physical models of gears with crack

Two types of physical models are used in this work for gear prognostics: a FE model, and a damage propagation model. The FE model is used to analyze the stress, particularly at the gear tooth root. The damage propagation model, which is described using Paris’ law, is for describing the crack propagation over time.

2.1 FE modeling for gear

The FE model is widely used for stress and strain analysis for solid structure and machine components when the domains of variables and loading conditions are too complex to obtain an analytical solution. The FE models are built in various ways in the literature, and related software packages provide an easy way for numerical simulations. The software FRANC2D was
used for investigation of the gear crack propagation problem in many publications because of its unique feature, the capability of remeshing the area near crack tip when the tooth body geometry is altered due to crack increments [4]-[5]. Kacprzynski et al. [5] built a 3D FE model to analyze the crack propagation in gears.

In this study, we consider a spur gear, which is a type of symmetric gear, and for which the load on the gear face width is uniformly distributed. A 2D FE model is thus selected for less computation work. The software FRANC2D is used for building the gear FE model, and for stress analysis. An initial crack is inserted at the position with the maximum bending stress, perpendicular to the profile. Then the crack will be propagated in the direction determined by the stress intensity factor (SIF). The applied loads on the tooth at different crack lengths are obtained by solving the dynamics equations of a gear system. Since the gear in this study has a fairly larger dimension on tooth width (z-direction) than those on tooth height (y-direction) and circular thickness (x-direction), it is appropriate to suggest plane strain condition under which the normal strain ε_z, and the shear strains γ_{xz}, γ_{yz}, are assumed to be zero.

2.2 The damage propagation model

The damage propagation model used in this study is for describing crack propagation in a gear tooth over time. Most of the existing models are based on empirical Paris’ law [16], which identifies the relationship between crack growth rate and stress state. Apart from the range of SIF, the Collipriest model [17] took three other factors into account: the effect of load ratio, instability near toughness property, and stress intensity threshold factor. To deal with the hardness of tooth layers, the Inoue model [18] treated all the parameters as functions of the hardness distribution. Experimental results of fatigue crack tests have shown that the crack propagation has three distinct regions. Paris’ law applies to the stable region where the log-log plots of da/dN versus ΔK is linear.

In this paper, the basic Paris’ law is selected as damage propagation model given by

$$\frac{da}{dN} = C(\Delta K)^m,$$

(1)

where da/dN is crack growth rate, C and m are generally experimentally estimated by fitting fatigue test data. Due to variations in the manufacturing and testing process as well as human
factors, uncertainties exist in these parameters. These uncertainties are major causes of quite different failure times for different units of the same type of gear, even if they are used in the same environment. However, the material parameter of a specific gear unit may have a very narrow distribution, or even a deterministic value. Once the distributions of the parameters for the specific unit are determined, much more accurate predictions can be obtained for the failure time. For the unit being monitored, the condition monitoring data are the unit-specific information that can be utilized to determine and update the parameter distributions for the specific unit. In this study, Bayesian inference will be used to update material parameter distributions every time crack length estimation is available through condition monitoring data.

3. The Proposed Integrated Prognostics Method for Gears

An integrated prognostics method is proposed in this paper, the framework of which is shown in Fig. 1. There are basically two parts separated by a dashed line in the figure: the model-based part on the left hand side, and the data-driven part on the right hand side. In the model-based part, the dynamic model of the gear system is used to determine the dynamic load. The crack at the gear root will affect mesh stiffness greatly, and thus the dynamic load on that cracked tooth. It is necessary to account for the load change due to crack increase because the loading condition affects the SIF to a large degree. To calculate such load on cracked tooth, a set of gear dynamic motion equations are solved. The calculated dynamic load is used in the gear FE model, and the output is the SIF at the crack tip. SIF as a function of crack length and loading is used in the crack propagation model, which is described by Paris’ law. With the current crack length, the failure time and the RUL distribution can be predicted by propagating the uncertainties in the materials parameters through the degradation model. In the data-driven part, a crack evaluation model is used to estimate the crack length (with uncertainty) based on condition monitoring data. The current measured crack length can be used to update the distributions of the uncertainty factors, i.e., the material parameters C and m, and the model uncertainty, and thus to achieve a more accurate RUL prediction based on the refined parameters and condition estimations for the specific unit. The Bayesian inference will be used in this work for this purpose. Details of the different parts of the approach will be discussed in the following
3.1 Gear stress analysis using the FE model

The FE model described in Section 2.1 is used to calculate the SIF at the crack tip, which is a key variable used in quantifying the gear crack propagation. The stress analysis is done in the context of linear elastic fracture mechanics. The method to calculate the SIF is termed as a displacement correlation method, which employs a singular element to model stress singularity near the crack tip. The said singular element is a type of finite element modified by moving the node on the element edge from mid-point to quarter-point. It enables such elements to exhibit a $1/\sqrt{r}$ singularity along the element edge, and greatly improves the accuracy and reduces the need for a high degree of mesh refinement at the crack tip. The 6-node singular element around the crack tip is shown in Fig. 2.
The displacement correlation method can be used to calculate the SIF using nodal displacements, as in

\[K_I = \frac{E}{2(1+\nu)(\kappa+1)} \sqrt{\frac{2\pi}{L}} [4(v_b - v_d) + v_e - v_c] \] \hspace{1cm} (2)

\[K_{II} = \frac{E}{2(1+\nu)(\kappa+1)} \sqrt{\frac{2\pi}{L}} [4(u_b - u_d) + u_e - u_c] \] \hspace{1cm} (3)

where

\[\kappa = \begin{cases} 3 - 4\nu \quad \text{(plane strain)} \\ \frac{3 - \nu}{1 + \nu} \quad \text{(plane stress)} \end{cases} \] \hspace{1cm} (4)

The published results show that, in crack propagation, \(K_I \) is dominating over \(K_{II} \) [20]. Hence, in Paris’ law for the crack propagation shown in (1), only the range of \(K_I \) is used.

3.2 Gear dynamics model

Most of the studies on the gear crack propagation problem considered constant static load on the meshing teeth. They investigated how the crack propagates under a fixed force on the tooth. Their main work was to use the fracture model to analyze the stress and strain near the crack tip.
to determine the crack growth rate as well as the growth direction. Then the crack propagation model was used to estimate the life cycles until failure. Therefore, the entire crack path and the service life of the gear can be obtained. However, the appearance of a crack would reduce the stiffness of the tooth so that the load on the tooth will be affected by this reduction. The purpose of the gear dynamics model in this paper is similar to that in [4], which is to calculate the dynamic load on a cracked tooth at different crack lengths. At each crack length, the maximum dynamic load is selected to be applied on the cracked tooth to drive the crack extension.

3.2.1 Dynamic load

As mentioned above, the dynamic load on a cracked tooth will change due to the mesh stiffness change affected by crack occurrence. To calculate the dynamic load values at different crack lengths, a gear dynamic model with 6 degrees-of-freedom is used in this paper. This mathematical model with torsional and lateral vibration was reported by Bartelmus [21]. We assume that all gears are perfectly mounted rigid bodies with ideal geometries. Inter-tooth friction is ignored here for simplicity. The governing motion equations are

\[m_1 \ddot{y}_1 = F_k + F_c - F_u - F_{uc} \] (5)
\[m_2 \ddot{y}_2 = F_k + F_c - F_l - F_{lc} \] (6)
\[I_1 \ddot{\theta}_1 = M_{pk} + M_{pc} - R_{b1}(F_k + F_c) \] (7)
\[I_2 \ddot{\theta}_2 = R_{b2}(F_k + F_c) - M_{gk} + M_{gc} \] (8)
\[I_m \ddot{\theta}_m = M_1 - M_{pk} + M_{pc} \] (9)
\[I_b \ddot{\theta}_b = -M_2 - M_{pk} + M_{pc} \] (10)
\[F_k = k_1(R_{b1}\dot{\theta}_1 - R_{b2}\dot{\theta}_2 - y_1 + y_2) \] (11)
\[F_c = c_1(R_{b1}\dot{\theta}_1 - R_{b2}\dot{\theta}_2 - y_1 + y_2) \] (12)
\[F_u = k_1 y_1 \] (13)
\[F_{uc} = c_1 \dot{y}_1 \] (14)
\[F_l = k_2 y_2 \] (15)
\[F_{lc} = c_2 \dot{y}_2 \] (16)
\[M_{pk} = k_p(\theta_m - \theta_1) \] (17)
The assumptions and the parameter values for this system are adopted from [3], except for values of input motor torque and output load torque, because a large load is needed to drive the crack to propagate quickly in a failure test. The system is solved using MATLAB’s ODE15s function.

Let \(\delta \) represent the backlash. The dynamic tooth load \(F \) is calculated based on the formulas given by Lin et al. [22]. Here, the lateral displacements are added.

Case (i) \(R_{b1}\theta_1 - R_{b2}\theta_2 - y_1 + y_2 > 0 \), which is the normal operating case:

\[
F = k_t(R_{b1}\theta_1 - R_{b2}\theta_2 - y_1 + y_2) + c_t(R_{b1}\dot{\theta}_1 - R_{b2}\dot{\theta}_2 - \dot{y}_1 + \dot{y}_2)
\]

Case (ii) \(R_{b1}\theta_1 - R_{b2}\theta_2 - y_1 + y_2 \leq 0 \), and \(|R_{b1}\theta_1 - R_{b2}\theta_2 - y_1 + y_2| \leq \delta \), where the gear pair will separate:

\[
F = 0
\]

Case (iii) \(R_{b1}\theta_1 - R_{b2}\theta_2 - y_1 + y_2 < 0 \), and \(|R_{b1}\theta_1 - R_{b2}\theta_2 - y_1 + y_2| > \delta \), where the gears will collide backside:

\[
F = k_t(R_{b2}\theta_2 - R_{b1}\theta_1 - y_2 + y_1) + c_t(R_{b2}\dot{\theta}_2 - R_{b1}\dot{\theta}_1 - \dot{y}_2 + \dot{y}_1).
\]

The dynamic load on a tooth at the contact point is the sum of the stiffness inter-tooth force \(k_t(R_{b1}\theta_1 - R_{b2}\theta_2 - y_1 + y_2) \) and the damping inter-tooth force \(c_t(R_{b1}\dot{\theta}_1 - R_{b2}\dot{\theta}_2 - \dot{y}_1 + \dot{y}_2) \).

Because both the torsional and lateral vibration are considered in this dynamic model, the effect of lateral vibration on relative gear tooth displacements as well as on velocities should be taken into account. In this study, the dynamic load \(F \) in case (iii) is considered to be zero for simplicity.

A crack in the pinion root is inserted at the second tooth. Because mesh stiffness is affected directly by a crack, and it is the critical parameter to determine the dynamic load, the mesh stiffness for the cracked tooth in the pinion during its meshing is calculated first.

3.2.2 Total mesh stiffness calculation
Yang and Lin [24] proposed a method which used the potential energy stored in the meshing gear system to calculate the mesh stiffness between the meshing teeth. The total energy includes Hertzian energy, bending energy, and axial compressive energy. Tian et al. [25] improved this energy method by adding shear energy as well, which affects the total mesh stiffness greatly. Meanwhile, the calculation of mesh stiffness using the potential energy method for the gear with one crack was given. The crack path was assumed to be straight at a fixed angle with respect to the central line of the tooth until the crack reaches to the central line, and then it changes the direction, forming a symmetric shape about the central line [3], [26]. However, according to the experimental results, the crack propagates in a curved line instead of a straight line due to the stress concentration at the tooth roots. The crack propagation direction should be determined by the stress status near the crack tip. To be more precise, under the principle of linear elastic mechanics theory, the two-dimensional crack extension angle is computed by the ratio of the mode I to the mode II SIFs, \(r = K_I/K_{II} \), and the angle is

\[
\theta = 2 \arctan \left(\frac{r \pm \sqrt{r^2 + 8}}{4} \right). \tag{24}
\]

In this paper, based on the method proposed in [25]-[26], we remove the assumption of a straight crack path and develop a potential energy method to calculate the mesh stiffness of the meshing gear pair, of which one tooth can have a curved crack propagation path. This curved crack propagation path is formed by connecting a series of straight crack increments. Different from the straight crack assumption, we vary the intersection angle, \(\beta \), between the vertical line passing crack tip and the line connecting tooth root to crack tip. The meshing gear system in this study has a contact ratio between 1 and 2. Thus, the single tooth contact and double tooth contact will alternate continuously as the pinion rotates. For these two types of contact duration, the total effective mesh stiffness can be expressed respectively, for single tooth contact, and double tooth contact, as [25]

\[
k_t = \frac{1}{1/k_{h_{1}} + 1/k_{b_{1}} + 1/k_{a_{1}} + 1/k_{b_{2}} + 1/k_{a_{2}} + 1/k_{s_{1}} + 1/k_{s_{2}}} \tag{25}
\]

\[
k_t = \sum_{j=1}^{2} \frac{1}{1/k_{h_{j}} + 1/k_{b_{1,j}} + 1/k_{s_{1,j}} + 1/k_{a_{1,j}} + 1/k_{b_{2,j}} + 1/k_{s_{2,j}} + 1/k_{a_{2,j}}} \tag{26}
\]
Besides, \(j = 1 \) represents the first pair of meshing teeth, and \(j = 2 \) represents the second pair. One crack is inserted at the pinion tooth root with initial length of \(a_0 \). The procedure to calculate the tooth stiffness with a curved crack path is given as follows.

As shown in Fig. 3, the crack increment at each crack extension step is set to \(\Delta a \). The crack tip is denoted by \(T_i \), where the index \(i \) represents the crack propagation step. The crack length grows by \(\Delta a \) in the direction determined by (24). Because the associated formulas to compute cracked tooth stiffness are related to four different cases, depending on the teeth meshing contact point and the crack tip position as well, in Fig. 3, the index of \(i = 1, 2, 3, 4 \) only symbolizes the four mentioned typical cases, and it does not mean that there are only these four crack tips. According to [25], the Hertzian and axial compressive stiffness are not affected by crack occurrence, while the bending stiffness and shear stiffness will change after the crack is introduced.

The base circle of pinion centers at \(O \) with the radius of \(R_{b1} \). The contact point \(C \) is travelling along the tooth profile \(SM \), and the angle of \(\alpha_1 \) is determined by the tangential line passing \(C \). Because the force \(F \) is applied at the contact point \(C \), perpendicular to the tangential line, the angle \(\alpha_1 \) also serves as the force decomposition angle to the horizontal direction \(F_b = F \cos \alpha_1 \) and vertical direction \(F_a = F \sin \alpha_1 \). Additionally, the points \(G_i \) represent the intersection points between the vertical line passing the crack tip and the tooth profile. And \(Z_i \) are the pedals on base circle of the tangential line passing \(G_i \). Accordingly, \(g_i \) is the distance from \(G_i \) to the tooth root \(S \), and \(\alpha_{gi} \) is the angle between \(G_iZ_i \) and \(OZ_i \). If the crack tip passes the central line, \(G_i' \) and \(G_i \) are symmetric about central line \(OP \), and the associated \(\alpha_{gi} \) is defined as the angle between \(G_i'Z_i \) and \(OZ_i \). Lastly, \(\alpha_2 \) represents half of the base tooth angle.
Based on the results in [25], the Hertzian stiffness, mathematically independent of the contact position, is given by

$$k_h = \frac{\pi EW}{4(1 - \nu^2)}$$ \hspace{1cm} (27)

And the axial compressive stiffness is

$$\frac{1}{k_a} = \int_{-\alpha_1}^{\alpha_2} \frac{(\alpha_2 - \alpha)\cos\alpha\sin^2\alpha}{2EW[\sin\alpha + (\alpha_2 - \alpha)\cos\alpha]} \, d\alpha .$$ \hspace{1cm} (28)

The bending energy stored in a meshing gear tooth, based on beam theory, can be obtained by

$$U_b = \int_0^d \frac{M^2}{2EI_x} \, dx = \int_0^d \frac{[F_b(d - x) - F_a h]^2}{2EI_x} \, dx .$$ \hspace{1cm} (29)
and the shear energy is given by

\[U_s = \int_0^d \frac{1.2F_b^2}{2GA_x} \, dx \]

(30)

\[G = \frac{E}{2(1 + v)}. \]

(31)

In the above formulas given in [24], \(I_x \) and \(A_x \) represent the area moment of inertia of the section, and the area of the section, where the distance from the tooth root is \(x \). Essentially, the calculations of \(I_x \) and \(A_x \) at different crack tip positions at different contact points determine the existence of the four mentioned circumstances to calculate the tooth stiffness of a cracked tooth. These four cases for the stiffness calculation of a cracked tooth are addressed below. Let the distance between tooth root \(S \) and \(G_iT_i \) be \(u_i \). As said before, the purpose of the index of \(i = 1, 2, 3, 4 \) is to indicate the four cases, not meaning there are the only four crack tip locations.

Case 1. Crack tip = \(T_1 \) (i.e., \(h_{c1} \geq h_r \)),

In this case,

\[I_x = \begin{cases}
\frac{1}{12}(h_{c1} + h_x)^3W, & \text{if } x \leq g_1, \\
\frac{1}{12}(2h_x)^3W, & \text{if } x > g_1,
\end{cases} \]

(32)

\[A_x = \begin{cases}
(h_{c1} + h_x)W, & \text{if } x \leq g_1, \\
2h_xW, & \text{if } x > g_1.
\end{cases} \]

(33)

Case 1.1. Contact point is above \(G_1 \) (i.e., \(\alpha_1 > \alpha_{g1} \)).

The bending mesh stiffness of the cracked tooth is

\[\frac{1}{k_b} = \int_{-\alpha_{g1}}^{\alpha_2} \frac{12[1 + \cos \alpha_1[(\alpha_2 - \alpha)\sin \alpha - \cos \alpha)]^2(\alpha_2 - \alpha)\cos \alpha}{EW[\sin \alpha_2 - \frac{u_i}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]^3} \, d\alpha
+ \int_{-\alpha_1}^{-\alpha_{g1}} \frac{3[1 + \cos \alpha_1[(\alpha_2 - \alpha)\sin \alpha - \cos \alpha)]^2(\alpha_2 - \alpha)\cos \alpha}{2EW[\sin \alpha + (\alpha_2 - \alpha)\cos \alpha]^3} \, d\alpha. \]

(34)

The shear stiffness is
\[\frac{1}{k_s} = \int_{-\alpha_1}^{\alpha_2} \frac{2.4(1 + \nu)(\alpha_2 - \alpha)\cos \cos^2 \alpha_1 \sin \alpha}{EW[\sin \alpha_2 - \frac{u_1}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]} \, d\alpha \\
+ \int_{-\alpha_1}^{-\alpha_1} \frac{1.2(1 + \nu)(\alpha_2 - \alpha)\cos \cos^2 \alpha_1 \sin \alpha}{EW[\sin \alpha + (\alpha_2 - \alpha)\cos \alpha]} \, d\alpha. \tag{35} \]

Case 1.2. Contact point is below \(G_1 \) (i.e., \(\alpha_1 \leq \alpha_{g1} \)).

The bending stiffness and shear stiffness are given by

\[\frac{1}{k_b} = \int_{-\alpha_1}^{\alpha_2} \frac{12[1 + \cos \alpha_1[(\alpha_2 - \alpha)\sin \alpha - \cos \alpha]]^2(\alpha_2 - \alpha)\cos \alpha}{EW[\sin \alpha_2 - \frac{u_1}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]^3} \, d\alpha \tag{36} \]

\[\frac{1}{k_s} = \int_{-\alpha_1}^{\alpha_2} \frac{2.4(1 + \nu)(\alpha_2 - \alpha)\cos \cos^2 \alpha_1 \sin \alpha}{EW[\sin \alpha_2 - \frac{u_1}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]} \, d\alpha. \tag{37} \]

Case 2. Crack tip = \(T_2 \) (i.e., \(h_{c2} < h_r \))

In this case,

\[l_x = \frac{1}{12} (h_{c1} + h_x)^3 W, \quad \text{and} \quad A_x = (h_{c2} + h_x)W, \tag{38} \]

based on which, the bending stiffness, and shear stiffness are respectively obtained by

\[\frac{1}{k_b} = \int_{-\alpha_1}^{\alpha_2} \frac{12[1 + \cos \alpha_1[(\alpha_2 - \alpha)\sin \alpha - \cos \alpha]]^2(\alpha_2 - \alpha)\cos \alpha}{EW[\sin \alpha_2 - \frac{u_2}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]^3} \, d\alpha \]

\[\frac{1}{k_s} = \int_{-\alpha_1}^{\alpha_2} \frac{2.4(1 + \nu)(\alpha_2 - \alpha)\cos \cos^2 \alpha_1 \sin \alpha}{EW[\sin \alpha_2 - \frac{u_2}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]} \, d\alpha. \tag{39} \]

Case 3. Crack tip = \(T_3 \) (i.e., \(h_{c3} < h_r \))

In this case,

\[l_x = \frac{1}{12} (h_x - h_{c3})^3 W, \quad \text{and} \quad A_x = (h_x - h_{c3})W, \tag{40} \]

so the bending, and shear stiffness are
Case 4. Crack tip = T_4 (i.e., $h_{c4} \geq h_r$)

In this case,

$$I_x = \frac{1}{12}(h_x - h_{c4})^3W, \text{ and } A_x = (h_x - h_{c4})W. \quad (43)$$

Case 4.1. Contact point is above $G_{4}^{'}$ (i.e., $\alpha_1 > \alpha_{g4}$).

$$1 \frac{k_b}{k_b} = \int_{-\alpha_{g4}}^{\alpha_1} \frac{12[1 + \cos \alpha_1[(\alpha_2 - \alpha)\sin \alpha - \cos \alpha]]^2(\alpha_2 - \alpha)\cos \alpha}{EW[-\frac{u_4}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]^3}\,d\alpha \quad (44)$$

$$1 \frac{k_s}{k_s} = \int_{-\alpha_{g4}}^{\alpha_1} \frac{2.4(1 + \nu)(\alpha_2 - \alpha)\cos \alpha \cos^2 \alpha_1}{EW[-\frac{u_4}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]}\,d\alpha. \quad (45)$$

Case 4.2. Contact point is below $G_{4}^{'}$ (i.e., $\alpha_1 \leq \alpha_{g4}$).

$$1 \frac{k_b}{k_b} = \int_{-\alpha_1}^{\alpha_2} \frac{12[1 + \cos \alpha_1[(\alpha_2 - \alpha)\sin \alpha - \cos \alpha]]^2(\alpha_2 - \alpha)\cos \alpha}{EW[-\frac{u_4}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]^3}\,d\alpha \quad (46)$$

$$1 \frac{k_s}{k_s} = \int_{-\alpha_1}^{\alpha_2} \frac{2.4(1 + \nu)(\alpha_2 - \alpha)\cos \alpha \cos^2 \alpha_1}{EW[-\frac{u_4}{R_{b1}} + \sin \alpha + (\alpha_2 - \alpha)\cos \alpha]}\,d\alpha. \quad (47)$$

So far, we have obtained the formulas to calculate the bending stiffness, and shear stiffness of a cracked tooth at any crack tip position, and any contact point. No matter what the crack shape is, as long as the crack tip position is identified, i.e., u_4 is known, these two types of stiffness could be derived by the above formulas. With the Hertzian stiffness in (27), and axial compressive stiffness in (28), the total effective mesh stiffness is ready to use in the set of dynamic equations.

3.3 Uncertainty quantification in gear prognostics

The objective of integrated gear health prognostics is to predict the RUL at a given time by fusing the physical models with the condition monitoring data. Uncertainties exist in both the
model-based part and the data-driven part of the proposed integrated prognostics approach, and the uncertainties are propagated to the predicted failure time and the RUL. These uncertainties are the key causes of the predicted RUL distribution. The RUL uncertainty quantification is critical when using a degradation model to obtain accurate prediction results. In this section, first we define three main uncertainty sources to be accounted for, and then we use Paris’ law to predict the RUL at a given instant considering those uncertainties. Moreover, each time new observation data are available, the prediction will be updated by adjusting the statistical properties of those uncertainties using Bayesian inference.

3.3.1 Modeling of uncertainty sources

In this study, three main uncertainty sources are considered when using a degradation model for prediction: material parameter uncertainty, model uncertainty, and measurement uncertainty.

When Paris’ law is applied to predict the remaining cycles until critical failure length, material parameters m and C are essential factors. The values of these two parameters are acquired by experiments in a controlled environment. However, uncertainties due to variation in manufacturing, testing processes, human factors, and other unexpected errors still have great potential contributions to the variations in the values of m and C. In most of the research work, m and $\log C$ are assumed to follow normal distributions.

The degradation model in this paper adopts a basic Paris’ law as the crack propagation model without considering other possible parameters which may have impact on crack propagation, such as crack closure retard, fracture toughness, load ratio, etc. Therefore, an error term is introduced to represent the difference between the results obtained by Paris’ law and the real observations, termed model uncertainty, and denoted by ϵ. Considering this model uncertainty, the modified Paris’ law is written as

$$\frac{da}{dN} = C(\Delta K)^m \epsilon.$$ \hfill (48)

In addition, measurement error e is also considered due to the errors resulting from sensor as well as crack estimation methods. In practical applications, the current crack length is generally estimated indirectly based on the sensor data using damage estimation techniques, and thus there is uncertainty associated with the current crack length estimation. Here we assume the
measurement error $e = a^{real} - a_{mea}$ has the distribution

$$e \sim N(0, \tau^2).$$ \hfill (49)

The measured crack length a_{mea} follows a normal distribution centered at a^{real} with τ as the standard deviation, so

$$a_{mea} \sim N(a^{real}, \tau^2).$$ \hfill (50)

3.3.2 RUL prediction

At a certain inspection time t, suppose that the measured crack length is a_t, and the current loading cycle is N_t. The crack will propagate according to Paris’ law. When the critical crack length a_C is reached, the gear is considered failed. Paris’ law can be written as in (51), where ΔK denotes the range of SIF, which can be obtained using FE analysis, as a function of crack length and loading,

$$\frac{dN}{da} = \frac{1}{C(\Delta K(a))^{mE}}. \hfill (51)$$

Let the crack increment be $\Delta a = a_{i+1} - a_i$, $i = t, t + 1, \cdots$; then the number of remaining useful cycles experienced by the tooth from the current length a_t until it reaches critical length a_C can be calculated by discretizing Paris’ law as

$$\Delta N_{i+1} = N_{i+1} - N_i = \Delta a \left[C \left(\frac{\Delta K(a_{i+1}) + \Delta K(a_i)}{2} \right)^m \epsilon \right]^{-1}. \hfill (52)$$

The summation $\sum(\Delta N_i)$, $i = t, t + 1, \cdots$ until critical length a_C is the total remaining cycles, or RUL. The entire failure time could be obtained by $N_t + \sum(\Delta N_i)$, $i = t, t + 1, \cdots$. Considering the uncertainties in materials properties and the crack propagation model itself, there is uncertainty in the predicted RUL, as discussed before. Monte-Carlo simulation is employed to quantify the uncertainty in the predicted RUL.

3.3.3 Prediction updating using Bayesian methods

Different from a model-based method which uses physical models for life prediction without
considering condition monitoring data or even the data is involved, the purpose is only to estimate the severity of the fault, the proposed integrated approach in this paper also uses condition monitoring data to adjust the model parameters. The condition monitoring data contains specific information for a specific gear under a specific environment. So each time a new crack length is estimated, we have the chance to adjust the physical model parameters for the current gear being monitored, and to make the RUL prediction more accurate. From one aspect, the prediction will start at a new inspection time with more accurate model parameters. From the other aspect, the uncertainty in model parameters will be reduced. In this paper, Bayesian inference is used to update the distributions of the model parameters at every inspection cycle. Consider for example a simplified case where we only update the distribution of parameter \(m \), while assuming that the other material parameter \(C \) is constant. The prior distribution for \(m \) is \(f_{\text{prior}}(m) \), and the likelihood to detect the current measured crack length is \(l(a|m) \). Thus, the formula to use Bayesian rule to obtain a posterior distribution \(f_{\text{post}}(m|a) \) is

\[
 f_{\text{post}}(m|a) = \frac{l(a|m)f_{\text{prior}}(m)}{\int l(a|m)f_{\text{prior}}(m) \, dm}. \tag{53}
\]

At a given value of \(m \), Paris’ law is used to propagate the crack from current measured crack length to the length measured at the next inspection cycle. Because of the measurement error \(\epsilon \), and model error \(\epsilon \), there exists a sort of likelihood to observe a crack length at the next inspection cycle, i.e., to obtain the estimated crack length. Because the updating is from one inspection cycle to the next one, we assume the crack length at the current inspection cycle is \(a_{\text{curr_cycle}} \), the incremental number of cycles is \(\Delta N \), and after \(\lambda \Delta N \) cycles, i.e., the inspection interval, it reaches to the length of \(a_{\text{next_cycle}} \). Use the discretized Paris’ law in (54) to realize this extension from current inspection cycle to the next one.

\[
\begin{cases}
 a((i + 1)\Delta N) = a(i\Delta N) + (\Delta N)C[\Delta K(a(i\Delta N))]^m \epsilon, & i = 0, 1, 2, \ldots, \lambda - 1 \\
 a(0) = a_{\text{curr_cycle}}
\end{cases}
\tag{54}
\]

So \(a_{\text{next_cycle}} = a(\lambda \Delta N) \). Hence, considering the measurement error, the measured crack length at next inspection cycle should follow the distribution of

\[
a_{\text{mea_next_cycle}} \sim \mathcal{N}(a_{\text{next_cycle}}, \tau^2). \tag{55}
\]

Thus, the PDF of the normal distribution in (55) is exactly the likelihood function \(l(a|m) \), which is used in Bayesian reference in (53). Here, the effect of model error \(\epsilon \) on the crack length
estimation mainly relies on its mean because of central limit theory. Hence, without much loss of accuracy, the likelihood function is considered to be only determined by measurement error. Let the PDF of the measured crack length at next inspection cycle be \(g(a) \). The likelihood to observe the measured crack length of \(a_{\text{mea, next, cycle}}^* \) is simply calculated by \(g(a_{\text{mea, next, cycle}}^*) \).

3.3.4 Prior distribution of \(m \)

Factors such as geometry, material, and errors in the manufacturing process can result in different values of parameter \(m \) in different gears. Therefore, a statistical distribution of \(m \) for gear population exists, denoted here by \(N_1 \). However, for a specific gear being monitored, the value of \(m \) should have a very narrow distribution, denoted by \(N_2 \), or even be deterministic. This value may not be available accurately because of possible errors in experiments. Condition monitoring data of this specific gear can reflect the specific properties of this gear, which can be used to update the distribution of \(m \) from a prior in a way described in Section 3.3.3 to get more accurate RUL prediction. This section will address how to get a prior distribution of \(m \) for Bayesian inference.

First, suppose a set of degradation paths of different failed gears, \(\mathcal{P} \), is available, which are collected from historical data. For each degradation path corresponding to gear \(i \in \mathcal{P} \), we need to estimate its material parameter \(m \) so as to obtain the prior distribution of \(m \) based on the historical data. For path \(i \), suppose at inspection times \(\text{INS} P_j, j = 1, \cdots, M \), the recorded crack lengths are \(a_{j, \text{act}}^l, j = 1, \cdots, M \). Now we generate a simulated crack propagation history, using (54), considering both model uncertainty and measurement error. At the same inspection times \(\text{INS} P_j, j = 1, \cdots, M \), the simulated crack lengths are \(a_{j, \text{app}}^l(m), j = 1, \cdots, M \), respectively. Thus, the difference at the inspection time between the actual path and simulated path is \(e_j^l(m) = a_{j, \text{act}}^l - a_{j, \text{app}}^l(m) \). We can find the optimal material parameter value, \(m_{\text{op}}^l \), for this gear by minimizing the difference at the inspection times between the actual path and the simulated path.

More specifically, the Mean-Least-Square (MLS) criteria is used, and the optimal material parameter value for path \(i \in \mathcal{P}, m_{\text{op}}^l \), satisfies
\[
\sum_{j=1}^{M} (e_j^i(m_{op}))^2 \leq \sum_{j=1}^{M} (e_j^i(m))^2, \quad \forall m
\] (56)

Last, by fitting the optimal material parameter values for all failed gears using the normal distribution, we can obtain the mean \(\mu^m_{\text{prior}}\) and the standard deviation \(\sigma^m_{\text{prior}}\) for the prior distribution of \(m\). Thus, the PDF of the prior distribution of \(m\) is

\[
f_{\text{prior}}(m) \sim N\left(\mu^m_{\text{prior}}, (\sigma^m_{\text{prior}})^2\right).
\] (57)

After obtaining \(f_{\text{prior}}(m)\), the approach stated in Section 3.3.3 can be implemented to update the distribution of parameter \(m\) for the gear being monitored using Bayesian inference once condition monitoring data are available.

4. Example

In this section, a numerical example of gear life prediction using the proposed integrated prognostics approach is presented. Simulated degradation paths are generated by considering the various uncertainty factors. The degradation path contains the information on inspection time and the associated crack length. The generated degradation paths are divided into two sets: the training set is used to obtain the prior distribution for parameter \(m\), and the test set is used to test the prediction performance of the proposed prognostics approach. The training set can be considered to be the available gear degradation histories.

4.1 Introduction

In this example, a 2D FE model of a single cracked tooth is built in the FRANC2D software program. The singular mesh near the crack tip will be generated automatically; and based on the stress analysis, the crack will be propagated, and the associated SIFs at each crack length will be recorded accordingly. The material and geometry properties of this specific spur gear used in this example are listed in Table I. Suppose the critical crack length is \(a_c = 5.2\text{mm}\), which is 80% of the full length. Beyond this failure threshold, the crack will propagate very fast, and the tooth breakoff is imminent. The FE model is shown in Fig. 4.

The gear dynamic system mentioned in Section 3.2 is used to calculate the dynamic load on this cracked tooth. To drive the crack to propagate, a large torque is selected. The input torque is
selected as 320Nm, and the output load torque is 640Nm. Besides the torques, other values for the parameters in the dynamic system can be found in [3]. The rotation speed of gearbox is 30Hz. The mesh stiffness of the first two teeth on the pinion for the healthy tooth is shown in Fig. 5. The crack is introduced at the root of the second tooth on the pinion, and the crack growth will end when it reaches the critical length of 5.2mm. To illustrate the effect of crack on mesh stiffness, the mesh stiffness at the crack length of 3.5mm is shown in Fig. 6. In these two figures, the blue solid line represents the total mesh stiffness, and the mauve dash line represents the mesh stiffness of the gear pair having the cracked tooth. From these figures, we can see that the mesh stiffness is greatly reduced due to the crack.

With the mesh stiffness at different crack lengths available, MATLAB’s ODE15s function is then used to solve the dynamic equations (5)–(20). Dynamic loads at every contact points, i.e., at every rotation angle, can then be calculated using (22)-(23). For demonstration, Fig. 7 shows the dynamic load and static load on the cracked tooth with the crack length of 3.5mm when it meshes. The maximum dynamic load appears at the rotation angle of 13.89 degrees, higher than the static load. The results show that, for the entire crack path, the position of maximum dynamic load will move forward a little bit as the crack length increases, but the movement is less than 1 degree so that the load is considered being applied at a fixed position, which corresponds to the rotation angle of around 14 degrees.

Table I

| Material properties, and main geometry parameters |
|----------------------------------|---------|---------|-----------------|---------|--------|--------|
| Young’s modulus (Pa) | Poisson’s ratio | Module (mm) | Diametral pitch (in^{-1}) | Base circle radius (mm) | Outer circle (mm) | Pressure angle (degree) | Teeth No. |
| 2.068e11 | 0.3 | 3.2 | 8 | 28.34 | 33.3 | 20 | 19 |
Fig. 4. 2D FE model for spur gear tooth.

Fig. 5. Mesh stiffness of healthy pinion.
Fig. 6. Mesh stiffness of gears with cracked pinion.
The procedure to obtain the history of the SIF as the crack grows to the critical length under varying dynamic load is summarized next.

1. Select the initial crack tip T_j, $j = 0$, such that the angle of $\beta_0 = 45$ degrees, and the initial crack length $\alpha_0 = 0.1$ mm.

2. Calculate u_f, which is the distance between tooth root S and T_jG_j. The total mesh stiffness k_t is then obtained by the formulas proposed in Section 3.2.2 depending on where the crack tip is, and how many degrees the rotation angle is.

3. Gear dynamic equations are solved by plugging k_t in MATLAB, and the dynamic load is computed using (22)-(23).

4. Apply the maximum load at the contact point on the FE model of the cracked pinion tooth, which corresponds to the rotation angle of around 14 degrees in FRANC2D. The modes I and II SIFs, as well as the crack propagation angle, are calculated.

5. Propagate the crack in that calculated direction with an increment of $\Delta\alpha = 0.1$ mm.

6. $j = j + 1$, return to step 2 until the crack length reaches the critical value.
Following the procedure above, the history of two modes of SIFs is calculated, and shown in Fig. 8. The mode I stress intensity factor K_I is dominant just as stated in other published literatures. So in Paris’ law, only ΔK_I is used to calculate the crack propagation rate. The third order polynomial is used to fit the discrete values of K_I obtained by FRANC2D, thus $K_I(a)$ has its continuous form, and the value of K_I at each crack length is available. Additionally, because the minimum load during the cracked tooth mesh period is zero, the range of the stress intensity factor is the one obtained under the maximum load. Fig. 9 plots the maximum dynamic load at different crack lengths. Taking the maximum dynamic load as the load to apply to the cracked tooth produces a larger SIF compared to the static load; and under this circumstance, the crack bears a faster propagation rate, which will lead to a relatively shorter RUL.

![Fig. 8. Stress intensity factor as a function of crack length.](image_url)
To validate the proposed integrated approach, a set of crack degradation paths \mathcal{P} is generated using Paris’ law in (58).

$$a((i+1)\Delta N) = a(i\Delta N) + (\Delta N)C[\Delta K(a(i\Delta N))]^m \varepsilon, \quad i = 0, 1, 2, \ldots, \lambda - 1$$

$$a_{\text{mea}}(\lambda\Delta N) = a(\lambda\Delta N) + e$$

$$a(0) = 0.1$$

The history of a_{mea} is the generated crack growth path, which provides the measured crack length at every inspection time. In each degradation path i, parameter m^i is a random sample from its population distribution N_1, and this value is fixed until the critical crack length is reached. Model error ε is sampled from its normal distribution at each propagation step. And at the inspection time, the measured crack length is generated by adding a random value of measurement error e. All these paths, as well as the values of parameter m^i in these paths, termed here as real m^i, are recorded. The paths in \mathcal{P} are divided into two sets: training set H, and test set R. The training set is used to obtain a prior distribution for parameter m, and the test set is used to validate the proposed approach.

To generate the degradation paths, we assume the following values and distributions for the
parameters involved: $C = 9.12e - 11$, $\tau = 0.2$, $m \sim N(1.4354, 0.2^2)$, $\epsilon \sim N(2.5, 0.5^2)$.

Note that here the uncertainty regarding m is related to the distribution of the gear population, not of the specific gear being monitored. In this example, 10 degradation paths are generated according to (58) until the critical crack length $a_c = 5.2$mm, as shown in Fig. 10. Select $#(H) = 7$, $#(R) = 3$. Three test paths #4, #6, and #9 are bolded in Fig. 10. Then, for each path $i \in H$, the optimal $m^{i}_{op}, i = 1, 2, 3, 5, 7, 8, 10$ satisfying (56) can be found using optimization. After these seven values of m^i are obtained, termed here as trained m^i, a normal distribution is used to fit them to obtain a prior for m.

Fig. 10. Ten degradation paths generated using prescribed parameters.

4.2 Results
Table II shows the ten real values of m for generating these ten paths, and the seven trained values for the seven paths in training set. Then a normal distribution is used to fit them. Finally, the prior distribution for m is

$$f_{prior}(m) \sim N(1.454, 0.1004^2).$$

To validate the proposed prognostics approach, we take paths #4, #6, and #9 for testing. At each inspection cycle for updating, the posterior distribution of m will be the prior distribution for the next updating time. In path #4, in total 9×10^6 cycles are consumed to reach the critical length. The updating history for path #4 is shown in Table III.

In path #6, the failure time is 3.4×10^6 cycles, and in path #9, in total 1.1×10^6 cycles are consumed. The updating histories for distributions of parameter m in path #6, and path #9 are shown in Table IV, and Table V, respectively.

Table II

<table>
<thead>
<tr>
<th>Path #</th>
<th>Real m</th>
<th>Trained m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2836</td>
<td>1.284</td>
</tr>
<tr>
<td>2</td>
<td>1.5302</td>
<td>1.5328</td>
</tr>
<tr>
<td>3</td>
<td>1.4569</td>
<td>1.4589</td>
</tr>
<tr>
<td>4</td>
<td>1.2495</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1.5724</td>
<td>1.5729</td>
</tr>
<tr>
<td>6</td>
<td>1.407</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>1.4823</td>
<td>1.4807</td>
</tr>
<tr>
<td>8</td>
<td>1.4844</td>
<td>1.4904</td>
</tr>
<tr>
<td>9</td>
<td>1.5897</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1.3585</td>
<td>1.3583</td>
</tr>
</tbody>
</table>

Table III

Test for path #4 to validate proposed approach (real $m=1.2495$)

<table>
<thead>
<tr>
<th>Inspection cycle</th>
<th>Crack length (mm)</th>
<th>Mean of m</th>
<th>Std of m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>1.454</td>
<td>0.1004</td>
</tr>
</tbody>
</table>
Table IV
Test for path #6 to validate proposed approach (real m=1.407)

<table>
<thead>
<tr>
<th>Inspection cycle</th>
<th>Crack length (mm)</th>
<th>Mean of (m)</th>
<th>Std of (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>1.454</td>
<td>0.1004</td>
</tr>
<tr>
<td>(0.7 \times 10^6)</td>
<td>0.9349</td>
<td>1.3956</td>
<td>0.037</td>
</tr>
<tr>
<td>(1.4 \times 10^6)</td>
<td>2.0607</td>
<td>1.4194</td>
<td>0.0253</td>
</tr>
<tr>
<td>(2.1 \times 10^6)</td>
<td>2.68</td>
<td>1.3931</td>
<td>0.0186</td>
</tr>
<tr>
<td>(2.8 \times 10^6)</td>
<td>3.7607</td>
<td>1.3967</td>
<td>0.0156</td>
</tr>
</tbody>
</table>

Table V
Test for path #9 to validate proposed approach (real m=1.5897)

<table>
<thead>
<tr>
<th>Inspection cycle</th>
<th>Crack length (mm)</th>
<th>Mean of (m)</th>
<th>Std of (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>1.454</td>
<td>0.1004</td>
</tr>
<tr>
<td>(0.25 \times 10^6)</td>
<td>0.9629</td>
<td>1.5409</td>
<td>0.0458</td>
</tr>
<tr>
<td>(0.5 \times 10^6)</td>
<td>1.9648</td>
<td>1.5675</td>
<td>0.0298</td>
</tr>
<tr>
<td>(0.75 \times 10^6)</td>
<td>3.3989</td>
<td>1.6053</td>
<td>0.0201</td>
</tr>
<tr>
<td>(1 \times 10^6)</td>
<td>4.8369</td>
<td>1.5849</td>
<td>0.0111</td>
</tr>
</tbody>
</table>

Table III, IV, and V show that the Bayesian updates adjusted the mean value of \(m \) from the initial value 1.454 to its real values gradually, as the condition monitoring data on the crack length are available. Because the RUL is very sensitive to the value of \(m \), the distribution adjustment for \(m \) is critical for maintenance optimization. Moreover, the standard deviation of \(m \) is reduced, which means that the uncertainty in \(m \) is reduced through Bayesian updating given the measured crack length. To demonstrate, Fig.11 shows the updated distribution of \(m \) for path #4. The failure time prediction results for path #4, #6, and #9 are shown in Figs. 12, 14, and 15.
respectively, from which we can see, with the updates for distribution of m at certain inspection time, the prediction of the failure time distribution becomes narrower, and the mean is approaching the real failure time. The updated RUL at each inspection time for path #4 is also computed as shown in Fig. 13, and the vertical lines represent the real RUL at those inspection cycles.

5. Conclusions

Accurate health prognosis is critical for ensuring equipment reliability and reducing the overall life-cycle costs, by taking full advantage of the useful life of the equipment. In this paper, we develop an integrated prognostics method for gear remaining life prediction, which utilizes both gear physical models, and real-time condition monitoring data. In the developed integrated prognostics method, we have specifically developed the general prognosis framework for gears, a gear FE model for gear stress analysis, a gear dynamics model for dynamic load calculation, and a damage propagation model described using Paris’ law. A gear mesh stiffness computation method is developed based on the gear system potential energy, which results in more realistic curved crack propagation paths. Material uncertainty and model uncertainty factors are considered to account for the differences among different specific units that affect the damage propagation path. A Bayesian method is used to fuse the collected condition monitoring data to update the distributions of the uncertainty factors for the current specific unit being monitored, and to achieve the updated RUL prediction.

An example based on simulated degradation data is used to demonstrate the effectiveness of the proposed approach. The results demonstrate that the proposed integrated prognostics method can effectively adjust the model parameters based on the observed degradation data, and thus lead to more accurate RUL predictions; and the prediction uncertainty can be reduced with the availability of condition monitoring data.
Fig. 11. Updated distributions of m for path #4.
Fig. 12. Updated failure time distribution for path #4.
Fig. 13. Updated RUL for path #4 (The thin vertical lines represent the real RUL at the inspection cycle).
Fig. 14. Updated failure time distribution for path #6.
Fig. 15. Updated failure time distribution for path #9.

Acknowledgments

This research is supported by Le Fonds québécois de la recherche sur la nature et les technologies (FQRNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC).
References

[10]. J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, and H. Liao, “Intelligent prognostics tools and e-

Biographies

Fuqiong Zhao is currently a Ph.D. candidate in the Department of Mechanical and Industrial Engineering at Concordia University, Canada. She received her M.S. degree in 2009, and B.S. degree in 2006, both from the School of Mathematics and System Sciences, Shandong University, China. Her research is focused on integrated prognostics, uncertainty quantification, finite element modeling, and condition monitoring.

Zhigang Tian is currently an Associate Professor in the Concordia Institute for Information Systems Engineering at Concordia University, Canada. He received his Ph.D. degree in 2007 in Mechanical Engineering at the University of Alberta, Canada; and his M.S. degree in 2003, and B.S. degree in 2000, both in Mechanical Engineering at Dalian University of Technology, China. His research interests focus on reliability analysis and optimization, condition monitoring, prognostics, maintenance optimization, and renewable energy systems. He is a member of IIE and INFORMS.

Yong Zeng is a Professor in the Concordia Institute for Information Systems Engineering at Concordia University, Montreal, Canada. He is the Canada Research Chair in Design Science (2004–2014). He received his B.Eng. degree in structural engineering from the Institute of Logistical Engineering; and M.Sc., and Ph.D. degrees in computational mechanics from Dalian University of Technology in 1986, 1989, and 1992, respectively. He received his second Ph.D. degree in design engineering from the University of Calgary in 2001. His research is focused on the modeling and computer support of creative design activities.