Formal Verification Problems in a Bigdata World:
Towards a Mighty Synergy

Matteo Camilli
matteo.camilli@unimi.it
http://camilli.di.unimi.it
Outline

• Introduction, Motivations, Objectives
• Background
• Some details on:
 • MapReduce
 • Techniques, Frameworks and Tools
• Experiments
• Conclusion
• Planned work
Introduction

- background on formal methods
 - Modeling
 - Interpreting

- deploy techniques into software tools able to analyze large amount of data very reliably and efficiently
 - adapting an application for exploiting the scalability provided by cloud computing facilities.
Introduction

- background on formal methods
 - Modeling
 - Interpreting

- deploy techniques into software tools able to analyze large amount of data very reliably and efficiently

- adapting an application for exploiting the scalability provided by cloud computing facilities.
Background

• The behavior of a discrete-event dynamic system is formally given in terms of a labeled state transition system: $(S, \Lambda, \rightarrow)$

• Λ is a set of labels

• $\rightarrow \subseteq S \times \Lambda \times S$ s.t. $(s, \lambda, s') \in \rightarrow$ iff s' reachable from s (written as $s^\lambda \rightarrow s'$)
Background

- In general S may be infinite, or even uncountable. Some abstraction techniques are required in order to be able to enumerate the whole state space.

- Abstract State Space: (A, L, \Rightarrow)

- Where A is a coverage of S, and $\Rightarrow \subseteq A \times L \times A$ s.t. exists a morphism f which maps A labels into L labels.
• The relation \Rightarrow satisfies the condition EE:

1. If $a \Rightarrow a'$, then $\exists s \in a, s' \in a'$: $\lambda \Rightarrow s' \Rightarrow \lambda$ with $\lambda \in f^I(l)$

2. If $s \Rightarrow s'$, then $\forall a \in A$ s.t. $s \in a$, $\exists a' \in A$ s.t. $s' \in a'$ $\land a \Rightarrow a'$
Time Basic nets - Reachability analysis

• Three key points of the Time Reachability Graph building algorithm allow in many cases the termination.
 • Identification of inclusions between classes of states
 • Erasure of absolute times
 • Identification of anonymous timestamps

Time Basic nets - Reachability analysis

• Three key points of the Time Reachability Graph building algorithm allow in many cases the termination.
 • Identification of inclusions between classes of states
 • Erasure of absolute times

Execution of the Gas Burner example:
Total built abstract states: 22,978
Final abstract state space: 14,563

<table>
<thead>
<tr>
<th>architecture</th>
<th># CPUs</th>
<th>tool version</th>
<th>compute model</th>
<th>T</th>
<th>H</th>
<th>f</th>
<th>exec. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4Ghz Intel Core 2 Duo, 2GB RAM</td>
<td>1×2 cores</td>
<td>sequential</td>
<td>local (single machine)</td>
<td>-</td>
<td>-</td>
<td>(2)</td>
<td>~7.5 hrs</td>
</tr>
</tbody>
</table>

Sequential algorithm

Model m

\[m.\text{buildRoot}() \]

Remaining

State space

\[f = S_k.\text{getFeatures}() \]

for \(S_j \) in stateSpace.get(f)

\[S_k.\text{identifyRelationship}(S_j) \]

EQUALS, INCLUDED, INCLUDES, NONE
Sequential algorithm

Model m

m.buildRoot()

S_0

S_i

S_k

S_i.createSuccessors(m)

State space

Straightforward, but because of the state explosion problem sequential tools may become very slow or even crash.

for S_j in stateSpace.get(f)

S_k.identifyRelationship(S_j)

EQUALS, INCLUDED, INCLUDES, NONE
Map-Reduce

- Map-Reduce job =
 - **Map** function (inputs -> key-value pairs) +
 - **Reduce** function (key and list of values -> outputs)
- Map and Reduce tasks apply Map and Reduce function to many inputs in parallel.
Map-Reduce TB nets analysis tool

- **Map step =**
 - given an unexplored state, it applies the `createSuccessors` function. **Incoming transitions** are stored into destination states by a list of identifiers.

- **Shuffle step =**
 - Gathers together states potentially related: This is done by using as intermediate keys the evaluation of the `getFeatures` function.

- **Reduce step =**
 - given a set of states potentially related, it applies the `identifyRelationship` function foreach pair of states.

- **Building blocks =**
 - State = `<M,C>` pair. M marking, C constraint.
 - `identifyRelationship` computes the actual relationship between two states according to the following rule: \(a \subseteq a' \iff \sigma(M) = \sigma(M') \land C \Rightarrow C' \)
 - `getFeatures` returns just the topological part of \(M \equiv \sigma(M) \).
Hybrid Iterative Map-Reduce

- A single Map-Reduce job is not enough: Iterative Map-Reduce
- During the first and last iterations of the algorithm the set of states is quite small. Thus a MapReduce job over a large cluster of machines is useless and expensive in term of time and resources.
- The computation starts with a sequential algorithm and goes on until the state space size passes a configurable threshold. After that we distribute the computation over a big cluster.
Hybrid Iterative Map-Reduce

• A single Map-Reduce job is not enough: *Iterative Map-Reduce*

• During the first and last iterations of the algorithm the set of states is quite small. Thus a MapReduce job over a large cluster of machines is useless and expensive in terms of time and resources.

- The computation starts with a sequential algorithm and goes on until the state space size passes a configurable threshold. After that we distribute the computation over a big cluster.

Gas Burner example:

<table>
<thead>
<tr>
<th>#machines</th>
<th>machine type</th>
<th>#abstract states</th>
<th>threshold</th>
<th>time (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m2.2xlarge</td>
<td>1.456x10</td>
<td>200</td>
<td>175</td>
</tr>
<tr>
<td>4</td>
<td>m2.2xlarge</td>
<td>1.456x10</td>
<td>200</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>m2.2xlarge</td>
<td>1.456x10</td>
<td>200</td>
<td>39</td>
</tr>
</tbody>
</table>

• The execution with 8 machines is almost 80% faster than the sequential algorithm we distribute the computation over a big cluster.
MapReduce-based Distributed building of reachability GraphS
Use Cases

• P/T nets
 • State = $<M>$ marking, associates places with natural numbers.
 • $s = s' \iff M = M'$ thus we can use the optimized Reduce phase.

• In order to prove the effectiveness of using MaRDiGraS to improve legacy tools, we adapted an existing P/T nets tool: PIPE.

• To adapt the sequential algorithm of PIPE into a distributed one, we just needed 290 lines of code: a very small number also if compared with the dimension of the effectively used PIPE modules (~6500 lines of code).
Use Cases

Shared Memory example:
- \(1.831 \times 10^6\) reachable states
- The PIPE tool takes more than 20 hours to complete the computation.
- The adapted version takes 74 min to complete the same computation, using 16 machines.

Simple Load Balancing example:
- \(4.060 \times 10^8\) states
- \(3.051 \times 10^9\) transitions
- 120GB of data
- Execution time = 530 min. using 20 machines.
CTL model checking in the cloud

• We developed a software tool which exploits the MaRDiGraS computed graphs by applying iterative map-reduce algorithms based on fixpoint characterizations of the basic temporal operators of CTL (Computational Tree Logic).

• Given a state transition system $T = \langle S, s_0, R, L \rangle$, and a set of states that satisfy the ϕ formula ($[\phi]_T$)

 - $[\text{EX}\phi]_T = R^-([\phi]_T)$
 - $[\text{EG}\phi]_T = \nu_X([\phi]_T \cap R^-(X))$
 - $[\text{E}[\phi U \psi]]_T = \mu_X([\psi]_T \cup ([\phi]_T \cap R^-(X)))$
Computation Tree Logic

• CTL is a branching-time logic which models time as a tree-like structure where each moment can be followed by several different possible futures. In CTL each basic temporal operator (i.e., either X, F, G) must be immediately preceded by a path quantifier (i.e., either A or E). In particular, CTL formulas are inductively defined as follows:

$$
\phi ::= p \mid \neg \phi \mid \phi \lor \psi \mid A \psi \mid E \psi \text{ (state formulas)}
$$

$$
\psi ::= X \phi \mid F \phi \mid G \phi \mid \phi U \psi \text{ (path formulas)}
$$

• The interpretation of a CTL formula is defined over a Kripke structure (i.e, a state transition system).

Definition 1 (Kripke structure): A Kripke structure T is a quadruple $\langle S, S_0, R, L \rangle$, where:

1) S is a finite set of states.
2) S_0 is the set of initial states.
3) $R \subseteq S \times S$ is a a total transition relation, that is: $\forall s \in S \exists s' \in S$ such that $(s, s') \in R$
4) $L : S \rightarrow 2^{AP}$ labels each state with the set of atomic propositions that hold in that state.
It can be shown that any CTL formula can be written in terms of \neg, \lor, EX, EG, and EU.

\[R^-(W) := \{ s \in S : \exists s'(R(s, s') \land s' \in W) \} \]

\[[\text{EX}\phi]_T = R^-([[\phi]_T]) \]

\[[\text{EG}\phi]_T = \nu_X([[\phi]_T \cap R^-(X))] \]

\[[\text{E}[\phi U \psi]]_T = \mu_X([\psi]_T \cup ([[\phi]_T \cap R^-(X))]) \]
MapReduce EX evaluation

\[[EX\phi]_T = R^-(\phi)_T \]

Algorithm 2 MapReduce algorithm for evaluating EXφ

1: function MAP(k, s)
2: if \(s \in \phi_T \) then
3: for \(e \in R^-(s) \) do
4: emit(e, ⊥)
5: end for
6: end if
7: emit(k, s)
8: end function
9: function REDUCE(k, list := [s₁, s₂, ...])
10: if \(⊥ \in list \) then
11: s := s' ∈ list s.t. s' ≠ ⊥
12: emit(k, s)
13: end if
14: end function
MapReduce EG evaluation

\[[EG\phi]_T = \nu_X ([\phi]_T \cap R^-(X)) \]

Algorithm 3 MapReduce for evaluating $EG\phi$

1: function MAP(k, s)
2: if $s \in X$ then
3: for $e \in R^-(s)$ do
4: emit(e, \bot)
5: end for
6: end if
7: if $s \in [\phi]_T$ then
8: emit(k, s)
9: end if
10: end function
11: function REDUCE$(k, list := [s_1, s_2, \ldots])$
12: if $\bot \in list \land (s \neq \bot \in list)$ then
13: emit(k, s)
14: end if
15: end function
\[E[\phi U \psi]_T = \mu_X ([\psi]_T \cup ([\phi]_T \cap R^{-}(X))) \]

Algorithm 4 MapReduce algorithm for evaluating \(E[\phi U \psi] \)

1: \textbf{function} MAP\((k, s)\)
2: \hspace{1em} if \(s \in X \) then
3: \hspace{2em} for \(e \in R^{-}(s) \) do
4: \hspace{3em} emit\((e, \bot)\)
5: \hspace{2em} end for
6: \hspace{1em} end if
7: \hspace{1em} if \(s \in [\phi]_T \lor s \in [\psi]_T \) then
8: \hspace{2em} emit\((k, s)\)
9: \hspace{1em} end if
10: \textbf{end function}
11: \textbf{function} REDUCE\((k, \text{list} := [s_1, s_2, \ldots])\)
12: \hspace{1em} \text{list} := list \text{ s.t. } s \neq \bot
13: \hspace{1em} if \((\bot \in \text{list} \land s \neq \text{null}) \lor (s \in [\psi]_T)\) then
14: \hspace{2em} emit\((k, s)\)
15: \hspace{1em} end if
16: \textbf{end function}
CTL experiments

• Models:
 • Shared memory (~10^6 states, ~10^7 transitions)
 • Dekker (~10^7 states, ~10^8 transitions)
 • Simple load balancing (~10^8 states, ~10^9 transitions)

Table 1: Shared memory report

<table>
<thead>
<tr>
<th>property</th>
<th>cardinality</th>
<th># machines</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX φ</td>
<td>2.135 × 10^6</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>EX φ</td>
<td>2.135 × 10^6</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>EX φ</td>
<td>2.135 × 10^6</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>EX φ</td>
<td>2.135 × 10^6</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>EG ψ</td>
<td>0</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>EG ψ</td>
<td>0</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>EG ψ</td>
<td>0</td>
<td>4</td>
<td>58</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>1.831 × 10^6</td>
<td>1</td>
<td>1898</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>1.831 × 10^6</td>
<td>2</td>
<td>1124</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>1.831 × 10^6</td>
<td>4</td>
<td>839</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>1.831 × 10^6</td>
<td>8</td>
<td>564</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>1.831 × 10^6</td>
<td>16</td>
<td>509</td>
</tr>
</tbody>
</table>

Table 2: Dekker report

<table>
<thead>
<tr>
<th>property</th>
<th>cardinality</th>
<th># machines</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX φ</td>
<td>1.153 × 10^7</td>
<td>1</td>
<td>660</td>
</tr>
<tr>
<td>EX φ</td>
<td>1.153 × 10^7</td>
<td>2</td>
<td>532</td>
</tr>
<tr>
<td>EX φ</td>
<td>1.153 × 10^7</td>
<td>4</td>
<td>241</td>
</tr>
<tr>
<td>EX φ</td>
<td>1.153 × 10^7</td>
<td>8</td>
<td>144</td>
</tr>
<tr>
<td>EX φ</td>
<td>1.153 × 10^7</td>
<td>16</td>
<td>120</td>
</tr>
<tr>
<td>EG ψ</td>
<td>7.405 × 10^6</td>
<td>1</td>
<td>1567</td>
</tr>
<tr>
<td>EG ψ</td>
<td>7.405 × 10^6</td>
<td>2</td>
<td>1356</td>
</tr>
<tr>
<td>EG ψ</td>
<td>7.405 × 10^6</td>
<td>4</td>
<td>517</td>
</tr>
<tr>
<td>EG ψ</td>
<td>7.405 × 10^6</td>
<td>8</td>
<td>391</td>
</tr>
<tr>
<td>EG ψ</td>
<td>7.405 × 10^6</td>
<td>16</td>
<td>287</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>5.767 × 10^6</td>
<td>1</td>
<td>1357</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>5.767 × 10^6</td>
<td>2</td>
<td>1063</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>5.767 × 10^6</td>
<td>4</td>
<td>585</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>5.767 × 10^6</td>
<td>8</td>
<td>454</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>5.767 × 10^6</td>
<td>16</td>
<td>372</td>
</tr>
</tbody>
</table>

Table 3: Simple load balancing report

<table>
<thead>
<tr>
<th>property</th>
<th>cardinality</th>
<th># machines</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX φ</td>
<td>1.716 × 10^8</td>
<td>1</td>
<td>2908</td>
</tr>
<tr>
<td>EX φ</td>
<td>1.716 × 10^8</td>
<td>2</td>
<td>2401</td>
</tr>
<tr>
<td>EX φ</td>
<td>1.716 × 10^8</td>
<td>4</td>
<td>937</td>
</tr>
<tr>
<td>EX φ</td>
<td>1.716 × 10^8</td>
<td>8</td>
<td>693</td>
</tr>
<tr>
<td>EX φ</td>
<td>1.716 × 10^8</td>
<td>16</td>
<td>251</td>
</tr>
<tr>
<td>EG ψ</td>
<td>4.060 × 10^8</td>
<td>1</td>
<td>21678</td>
</tr>
<tr>
<td>EG ψ</td>
<td>4.060 × 10^8</td>
<td>2</td>
<td>17147</td>
</tr>
<tr>
<td>EG ψ</td>
<td>4.060 × 10^8</td>
<td>4</td>
<td>6525</td>
</tr>
<tr>
<td>EG ψ</td>
<td>4.060 × 10^8</td>
<td>8</td>
<td>2983</td>
</tr>
<tr>
<td>EG ψ</td>
<td>4.060 × 10^8</td>
<td>16</td>
<td>1226</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>7.524 × 10^7</td>
<td>1</td>
<td>1821</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>7.524 × 10^7</td>
<td>2</td>
<td>1714</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>7.524 × 10^7</td>
<td>4</td>
<td>602</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>7.524 × 10^7</td>
<td>8</td>
<td>377</td>
</tr>
<tr>
<td>E[ω U ρ]</td>
<td>7.524 × 10^7</td>
<td>16</td>
<td>203</td>
</tr>
</tbody>
</table>
CTL experiments

(a) Dekker model checking time
(b) Dekker Speedup
(c) Dekker efficiency

(d) Simple-lb model checking time
(e) Simple-lb Speedup
(f) Simple-lb efficiency
Conclusion

• **MaRDiGraS + CTL verification in the cloud** allow users to implement distributed reachability graph builders and verification tools for different formalisms without care about all non functional aspects.

 • They apply techniques typically used by the big data community and so far poorly explored for this kind of issues.

• We believe that this work could be a first step towards a synergy between two very different, but related communities: the formal verification community and the big data community.

• **Open Questions**

 • How it can be optimized when the remaining set gets very small?

 • How to choose the optimal threshold dynamically?

 • Are there classes of formalisms for which this approach cannot be used? And how can we adapt it to these classes?

 • ... ?
Planned Work

• Development of a technique for tackling topologically infinite TB net models
 • computation of minimal coverability sets (so far unexplored)
 • this provides a means to decide several important properties also for real time systems:
 • coverability: is it possible to reach a marking dominating a given marking?
 • boundedness: is the set of reachability markings finite?
 • place boundedness: is it possible to bound the number of tokens in a given place?
 • semi-liveness: is there a reachable marking in which a given transition is enabled?
References

