Review Article

Role of GIRK Channels in Addictive Substance Effects

Nagisa Sugaya,1,2 Toru Kobayashi,3 and Kazutaka Ikeda1

1Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
2Department of Epidemiology and Public Health, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
3Department of Project Programs, Center for Bioresource-based Researches, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, Niigata 951-8585, Japan
Address correspondence to Kazutaka Ikeda, ikeda-kz@igakukan.or.jp

Received 8 September 2013; Revised 22 October 2013; Accepted 28 October 2013

Abstract G-protein-activated inwardly rectifying potassium (GIRK) channels are widely expressed in the central nervous system, including brain regions related to reward, and play an important role in mediating the signal transduction pathways of various addictive substances. Studies of GIRK knockout mice have suggested the involvement of GIRK channels in the mechanisms that underlie the effects of addictive substances. Human studies have shown that differences in the genetic sequence of one of the four GIRK channel subunits, GIRK2, are associated with analgesic requirements in patients who undergo major open abdominal surgery. Animal and human studies also showed the possible therapeutic effects of GIRK channel inhibitors in the treatment of methamphetamine dependence and alcoholism. These findings suggest that GIRK channels may be a key molecular target in the reward system for the treatment of addiction.

Keywords GIRK channel; reward system; addictive substance; therapeutic target

1. Introduction

Addictive substances comprise various natural and synthetic substances, including amphetamines, cocaine, opioids, cannabinoids, hallucinogens, alcohol, hypnotics/antxiolytics, inhalants, nicotine, and caffeine. Addictive substances produce immediate good feelings (euphoria) or relieve distress and are more likely to be taken repeatedly. Their reinforcing effects lead to substance abuse and dependence. Although addictive substances have diverse molecular targets in the brain, they commonly increase extracellular dopamine levels in the mesocorticobrubic system. The substances cause adaptations at the neurocircuity, cellular, and molecular levels in the mesocorticobrubic system and other brain regions that control reward and motivation. G-protein-activated inwardly rectifying potassium (GIRK) channels are widely expressed in the central nervous system, including brain regions related to reward, and play an important role in regulating neuronal excitability and synaptic transmission. Animal models have shown that GIRK channel dysfunction changes some of the responses to several substances and their rewarding effects. This review focuses on GIRK channels in the effects of addictive substances and as a promising target in the treatment of substance dependence.

2. Neural circuits and cellular and molecular mechanisms in the reward system

The reward system includes a collection of brain structures that are activated by the perception and expectation of satisfying craving, and the reward system produces pleasurable sensations in individuals. Neural circuits in the reward system play an important role in the onset and aggravation of substance dependence, which is associated with compulsive addictive behavior, tolerance, and withdrawal. Understanding the biological mechanisms of the reward system may have important social and clinical implications in the treatment of substance dependence.

The major neuronal pathways of the reward system include components of the mesocorticobrubic dopamine system that originates in the ventral tegmental area (VTA) of the midbrain and projects to the limbic forebrain, especially the nucleus accumbens (NAc) [20,24,56,64,100]. The NAc serves as a dopamine-gated mediator of information that passes from the limbic system to the cortex [13]. Although addictive substances act at distinct targets in different brain regions, addictive substances commonly increase extracellular dopamine levels in the NAc [82]. By contrast, during the withdrawal syndrome associated with opioids, cannabinoids, ethanol, psychostimulants, and nicotine, dopamine levels decrease in the NAc. Thus, the VTA-NAc pathway is thought to play a crucial role in the rewarding effects of addictive substances. Interestingly, the mesolimbic dopamine system is similar between humans and other animals [8]. Furthermore, several brain regions that interact with the VTA-NAc pathway have been shown...
to be important for reward neurocircuitry. These regions include the amygdala, hippocampus, prefrontal cortex, locus coeruleus (LC), and raphe nucleus. The relationships with the VTA-NAc pathway include glutamatergic projections from the prefrontal cortex to the NAc and VTA, projections from α-aminobutyric acid (GABA) neurons in the NAc to prefrontal cortex, the modulation of GABA actions by opioid interneurons in the VTA, opioid actions on norepinephrine neurons in the LC that project to the VTA and frontal cortex, and serotonergic projections from the raphe nucleus to the NAc and VTA [12,72]. The chronic use of addictive substances changes dopamine transmission in the VTA-NAc pathway and other neurotransmitters in brain regions related to reward [71,90,99].

Neurocircuitry alterations induced by chronically used addictive substances are based on molecular and cellular mechanisms that underlie their rewarding effects. The release of dopamine in the NAc stimulates various populations of medium spiny neurons, whose response to the neurotransmitter depends on the types of dopamine receptors they express. Dopamine stimulation induced by various addictive substances activates dopamine receptors (D1−D5 subtypes). D1 and D1-like receptors (i.e., D5 receptors) activate heterotrimeric Gs proteins, which activate adenylyl cyclase and lead to the synthesis of the second messenger cyclic adenosine monophosphate (cAMP) [7]. D2 and D2-like receptors (i.e., D3 and D4 receptors) activate heterotrimeric Gi/o proteins, which inhibit adenylyl cyclase activity and lead to a reduction of cAMP levels [2,95]. The level of intracellular cAMP regulates the activity of cAMP-dependent protein kinase A (PKA). PKA can phosphorylate metabolic enzymes, other protein kinases, ion channels, and transcription factors and affect the functions of cytoplasmic, membrane, and nuclear proteins. Protein kinase cascades induce transcription factors, such as cAMP response element binding protein (CREB) and Fos, leading to changes in gene expression. Moreover, G-protein βγ subunits released from Go proteins can modulate the functions of Ca2+, Na+, and K+ channels, leading to alterations in neuronal excitability [16]. Therefore, G-protein-signaling pathways affect cytoplasmic events and neuronal excitability. Indeed, a considerable evidence indicates that several addictive substances commonly induce cAMP, CREB, and ΔFosB in neurons in the NAc, reflecting adaptations characterized by upregulation of the cAMP pathway [6,65,73,74,94].

Gi/o proteins may play a critical role in the effects of addictive substances. Addictive substances, including amphetamines, cocaine, opioids, cannabinoids, hallucinogens, phencyclidine (PCP), alcohol, hypnotics/anxiolytics, inhalants, nicotine, and caffeine, act on diverse target molecules in the brain, such as monoamine transporters, μ-opioid receptors, cannabinoid CB1 receptors, serotonin 5-hydroxytryptamine-2A (5-HT2A) receptors, N-methyl-D-aspartate (NMDA) receptors, γ-aminobutyric acid-A (GABA_A) receptors, GIRQ channels, nicotinic acetylcholine receptors, and adenosine receptors. Among addictive substances, opioids, cannabinoids, and γ-hydroxybutyrate (GHB) directly activate opioid receptors, cannabinoid CB1 receptor, and GABA_A receptors, respectively (Figure 1). Hallucinogens, such as lysergic acid diethylamide (LSD), mescaline, and psilocybin, act as partial agonists at serotonin 5-HT2A receptors [1], and caffeine acts as an antagonist at adenosine A1 and A2A receptors [35]. Amphetamines and cocaine indirectly activate dopamine, norepinephrine, and serotonin receptors by increasing the extracellular levels of dopamine, norepinephrine, and serotonin [93]. Target receptors for the actions of these substances include various Gi/o protein-coupled receptors (PCRs). Gi/o protein-coupled signaling pathways may play a crucial role in the pharmacological effects of addictive substances. Therefore, a better understanding of reward mechanisms may provide novel insights into the treatment of substance abuse and dependence.

3. Physiological regulation of GIRK channels and relationships with actions of addictive substances

GIRQ channels are members of a major subfamily of inwardly rectifying K+ (Kir) channels (Kir1-Kir7) 25. Four GIRQ channel subunits (GIRQ1 [Kir3.1], GIRQ2 [Kir3.2], GIRQ3 [Kir3.3], and GIRQ4 [Kir3.4]) have been identified in mammals [49,50,54]. The GIRQ1, GIRQ2, and GIRQ3 subunits are expressed in various brain regions, such as the olfactory bulb, cerebral cortex, amygdala, hippocampus, thalamus, VTA, LC, dorsal raphe nucleus, and cerebellum [37,38], suggesting the involvement of GIRQ channels in the rewarding effects of addictive substances. By contrast, GIRQ4 subunits are expressed mainly in the heart [49] and in only a few regions of the brain, such as deep cortical pyramidal neurons, the endopiriform nucleus and claustrum of the insular cortex, the globus pallidus, the ventromedial hypothalamic nucleus, parafascicular and paraventricular thalamic nuclei, and a few brainstem nuclei [37,69,97]. In the brain, GIRQ1 and GIRQ2 subunits can assemble with other GIRQ subunits to form functional heterotetramers, whereas GIRQ2 can form functional homotetramers [101]. As shown in Figure 1, GIRQ channels are gated by the direct action of G-protein βγ subunits [15,25,32,51,57,84,98] released from Gi/o proteins in response to the activation of various Gi/o PCRs, such as α2 adrenergic, GABA_A, 5-HT1A, galanin, somatostatin [76], D2, D3, and D4 [96], μ-, δ-, and κ-opioid [29], nociceptin/orphanin FQ [28], cannabinoid CB1 [63], neuropeptide Y1 [11], adenosine A1, and metabotropic glutamate (mGluR2, −3, −4, −6, and −7) [87] receptors. Recent spectroscopic studies have suggested the existence of a macromolecular complex that
Figure 1: Schematic signal transduction pathways of addictive substances. Ethanol has been found to instantaneously open GIRK channels, whereas cocaine and PCP inhibit GIRK channels. Opioids, cannabinoids, and PCP bind to opioid receptors, cannabinoid receptors, and NMDA-type glutamate receptors, respectively. Amphetamine and cocaine have an indirect effect on receptors, increasing the synaptic levels of neurotransmitters. Receptors as targets for the actions of addictive substances include various $G_{i/o}$ PCRs, including μ, κ, and δ opioid receptors, among others. GIRK channels are gated by the direct action of G-protein $\beta\gamma$ subunits released from $G_{i/o}$ proteins in response to the activation of various $G_{i/o}$ PCRs. These receptors modulate the levels of second messengers like cAMP and Ca$^{2+}$, which in turn regulate the activity of protein kinase transducers. Such protein kinases affect the function of proteins located in the nucleus. Protein kinase transduction pathways also affect the activity of transcription factors. Changes in the activity of transcription factors may result in long-term functional changes, including changes in the gene expression of proteins involved in signal transduction and/or neurotransmission, resulting in altered neuronal responses. PCP, phencyclidine; $G_{i/o}$ PCRs, $G_{i/o}$-protein-coupled receptors; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; PKC, protein kinase C; CaMK, calmodulin-dependent protein kinase; MAPK, mitogen-activated protein kinase; CREB, cAMP-response element binding protein. Red arrow: activation. Blue arrow: inhibition.

contains GIRK channels, $G_{i/o}$ PCRs, G-proteins, and regulatory proteins (i.e., a regulator of G-protein signaling (RGS) protein and sorting nexin 27 [SNX27]) [58]. Go proteins have also been shown to be important regulators of the specificity of signaling from G-protein-coupled receptors (GPCRs) to GIRK and basal GIRK channel activity [14, 23, 33, 53, 59, 81, 85, 86]. Furthermore, the channels are modulated by PKA, protein kinase C (PKC), phospholipase C (PLC), and tyrosine kinase (Trk) in G-protein signaling pathways [21]. GIRK channel opening hyperpolarizes the cell membrane and decreases neuronal excitability. Altogether, GIRK channels may act as an important convergence effector in neurons, and the modulation of GIRK channels may affect various brain functions.
Among addictive substances, ethanol directly activates (i.e., opens) GIRK channels at pharmacologically relevant concentrations [5,39,55], whereas cocaine and PCP directly inhibit GIRK channels at severe toxic concentrations [40, 41] (Figure 1). Addictive substances dynamically increase the levels of neurotransmitters, activate various GPCRs, activate G-protein-mediated signaling, and alter gene expression [47] (Figure 1). Accumulating evidence suggests that GIRK channels are modulated by cellular changes that are induced by several addictive substances. Methamphetamine and cocaine induce the expression of SNX27 [36], which regulates the surface expression of GIRK2 and GIRK3 subunits. GIRK channels composed of GIRK2 and GIRK3 in dopamine neurons in the VTA and heterologous expression systems are less sensitive to Gβγ subunits. The coupling efficiency of GABAB receptors to GIRK channels was found to be lower in dopamine neurons in the VTA than in GABA neurons in the VTA that express GIRK1, −2, and −3 mRNA [34]. Furthermore, cocaine administration reduced GABA_B receptor-dependent GIRK currents in dopamine neurons in the VTA, which was prevented by pretreatment with the D2-like receptor antagonist sulpiride [4]. The reduction correlated with a reduction of GIRK2-containing channels on the plasma membrane [4]. In GABA neurons in the VTA, a single administration of methamphetamine or cocaine depressed GABA_B receptor-mediated GIRK currents [79]. After methamphetamine administration, phosphatase-dependent reductions of GIRK2 channels and GABA_B receptors were observed on the plasma membrane, with a concomitant increase in intracellular GIRK2 channels and GABA_B receptors. The phosphatase-dependent reduction of GIRK2 channels and GABA_B receptors in plasma membrane correlated with the depression of GABA_B receptor-mediated GIRK currents [79]. Furthermore, expressions of several genes: GIRK1-3, μ-opioid receptors, nociceptin/orphanin FQ receptors, NMDA receptor channel GluN2D subunit, Kir2.2 and Kir2.3, decreased even after 3 weeks following chronic administration of methamphetamine in a cDNA array system [102]. Additionally, repetitive administration of morphine and GHB increased the coupling efficiency of GABA_B receptors to GIRK channels through the downregulation of RGS2 in VTA dopamine neurons [52]. Therefore, GIRK channels can be both directly and indirectly involved in the complex effects of addictive substances. GIRK channels may play an important role in the rewarding effects and neuroadaptations induced by addictive substances.

4. Involvement of the GIRK channel genes in addictive substance effects

4.1. Studies in animal models

Studies that have used mutant mice to investigate GIRK channel genes have implicated GIRK channels in the alterations of in vivo responses to addictive substances (Table 1). We demonstrated that abnormal GIRK channels are involved in the reduction of the antinociceptive effects of ethanol in weaver mutant mice, which have a missense mutation in the pore-forming region of the GIRK2 gene [30,31], leading to a
loss of K⁺ selectivity with Na⁺ influx and insensitivity to G-proteins and ethanol [39,46,88] (Figure 2). Although some of the physiological and behavior responses to ethanol, including hypnotic effects, hyperactivity, hypothermia, and bradycardia, were similar in wildtype and weaver mice [39], weaver mice exhibited various impairments, including neuronal cell death in the cerebellar cortex, substantia nigra, and pontine nuclei and abnormal channel properties [31,78,80]. To further assess the in vivo roles of GIRK channels, GIRK-deficient mice without such anatomical anomalies have been generated. GIRK2 knockout mice also exhibited a marked reduction of ethanol-induced antinociceptive effects [9]. The activation of GIRK channels by ethanol is linked to analgesic effects. Moreover, GIRK2 knockout mice were less sensitive than wildtype mice to some of the acute effects of ethanol, including anxiolysis, habituated locomotor stimulation, and acute handling-induced convulsions [26]. Additionally, GIRK2 knockout mice exhibited a reduction of ethanol-induced conditioned taste aversion and conditioned place preference, suggesting that GIRK channels are involved in the rewarding and aversive motivational effects of ethanol [26]. Interestingly, GIRK3 knockout mice also exhibited a reduction of handling-induced convulsions after the administration of ethanol, pentobarbital, or zolpidem, indicating less severe withdrawal from ethanol and other hypnotics [48].

GIRK channels are also involved in the antinociceptive effects of various analgesics and pain thresholds (i.e., nociceptive sensitivity). Weaver mutant mice [30] (Figure 2) exhibited a reduction of the antinociceptive effects of opioids (i.e., morphine and the κ-opioid receptor agonist U50488), and GIRK2 knockout mice showed a reduction of the antinociceptive effects of the opioid receptor agonist morphine, M₂ muscarinic agonist oxotremorine, nicotinic acetylcholine receptor agonist nicotine, GABA_B receptor agonist baclofen, α₂ adrenergic agonist clonidine, and cannabinoid agonist WIN 55,212-2 [9,62,66]. GIRK2/GIRK3 double-knockout mice and GIRK3 knockout mice also showed a reduction of the antinociceptive effect of morphine [19,61]. The antinociceptive potency of morphine was decreased in GIRK2 knockout and GIRK2/GIRK3 double-knockout mice, but the maximal efficacy of the high dose was preserved [19,66]. By contrast, the antinociceptive effects of ketamine and nonsteroidal anti-inflammatory drug (NSAID) aminopyrine, which do not affect GIRK channels, remained intact in GIRK2 knockout mice and weaver mice, respectively [9,39] (Figure 2). These findings indicate that the coupling of various G₁/o PCRs to GIRK channels contributes to the antinociceptive effects of many classes of analgesics. Additionally, the effects of nicotine appear to be mediated by the indirect activation of GIRK channels. Moreover, GIRK2 and GIRK3 knockout mice displayed low thermal hyperalgesia in the hot plate test [9,61], and GIRK2/GIRK3 double-knockout mice displayed hyperalgesia in the hot plate test and tail flick test [19]. In wildtype mice, females were more sensitive than males to the noxious heat stimulus in the tail flick test [66], and the antinociceptive effects of morphine were more potent in males than in females, but the maximal efficacy was similar in the dose-response curves [19]. The sex differences were abolished in GIRK2 knockout mice and GIRK2/GIRK3 double-knockout mice.
mice [19]. Additionally, in GIRK2 knockout mice, the antinociceptive effects of ethanol, oxotremorine, baclofen, clonidine, and WIN 55,212-2 were markedly reduced or eliminated in males and reduced in females [9]. Therefore, GIRK channels may play a crucial role in pain perception and the antinociceptive effects of several classes of analgesic drugs and contribute to sex differences in nociception.

GIRK2 and GIRK3 knockout mice exhibited decreased cocaine self-administration [68]. GIRK2/GIRK3 double-knockout exhibited a strong attenuation of morphine withdrawal signs, without an increase in LC neuron firing rate in brain slices (i.e., the loss of an electrophysiological hallmark of opioid withdrawal) [19].

Pravetoni and Wickman [83] reported that although GIRK1 knockout mice, GIRK2 knockout mice, and GIRK3 knockout mice were able to learn an operant task using food as the reinforcing agent, within-session progressive-ratio responding revealed an increase in lever press behavior in GIRK2 knockout mice and, to a lesser extent, in GIRK1 knockout mice. Moreover, Cooper et al. [17] reported that mice with trisomy of the KCNJ6 gene that encodes the GIRK2 channel subunit exhibited deficits in hippocampal-dependent learning and memory in the fear-conditioning paradigm and altered responses to the availability of sucrose in the sucrose preference test, which may be related to the altered function of reward mechanisms.

GIRK-deficient mice are very useful for evaluating the behavioral, electrophysiological, and cellular functions of GIRK channels. GIRK channels are hypothesized to play an important role in the pharmacological effects of various addictive substances, including ethanol, opioids, cannabinoids, hypnotics, GHB, GABAB receptor agonists, nicotine, and cocaine. However, in addition to a simple loss of GIRK channel signaling, GIRK knockout mice have been suggested to present secondary neuroadaptations, such as D1 receptor-dependent basal hyperactivity in GIRK2 knockout mice [3] and elevated glutamatergic neurotransmission in dopamine neurons in the VTA and medium spiny neurons in the NAc in GIRK1 and GIRK2 knockout mice, with elevated synaptic densities of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors [3]. More selective genetic and pharmacological approaches will clarify the functional roles of GIRK channels.

4.2. Studies in humans

Opioids, such as morphine, fentanyl, and buprenorphine, are widely used to relieve severe pain. The analgesic dosages that are required to achieve satisfactory pain control are well known to vary widely among individual subjects [27]. Although individual differences in the sensitivity to analgesics are thought to be attributable to both genetic and environmental factors, the relative influence of each of these various factors remains largely unknown [18]. We previously showed that differences in the genetic sequence of GIRK2 subunit were associated with analgesic requirements in patients who underwent major open abdominal surgery [75] (Figure 3). A total of nine single-nucleotide polymorphisms (SNPs) were identified in the entire exon, 5′ flanking region, and exon-intron boundary region of the KCNJ6 gene that encodes GIRK2. G-1250A and A1032G were selected for the association study by considering the linkage disequilibrium structure, allele frequencies of the SNPs, and expected impact on gene function. Carriers of the A/A genotype in the A1032G SNP or -1250G/1032A haplotype required rescue analgesics more often than other genotypes and haplotypes and tended to require higher doses of rescue analgesics converted to equivalent oral morphine doses for all opioids and NSAIDs used during the first 24 h postoperative period, especially in females. Additionally, KCNJ6 gene expression levels in the 1032A/A subjects were significantly decreased compared with the 1032A/G and 1032G/G subjects in a real-time quantitative polymerase chain reaction (PCR) analysis that used human anterior cingulate cortex tissues, suggesting a decrease in GIRK2 subunit expression and a decrease in GIRK channels. Altogether, the 1032A/A subjects felt more pain and required more analgesics, likely because of lower KCNJ6 gene expression levels and consequently lower pain thresholds or insufficient analgesic effects. These findings provide valuable information for determining the analgesic doses required to achieve satisfactory pain control.
Further studies of KCNJ6 gene polymorphisms may clarify individual differences in pain control.

5. Therapeutic effects of GIRK channel inhibition on substance dependence

5.1. Animal studies

The selective serotonin reuptake inhibitor (SSRI) antidepressants fluoxetine and paroxetine but not fluvoxamine inhibited GIRK channels in the Xenopus oocyte expression system [42,43,45] (Figure 4). Pretreatment with fluoxetine or paroxetine decreased methamphetamine-induced conditioned place preference in mice, whereas pretreatment with fluvoxamine did not affect it [91,92] (Figure 4). The results suggest that fluoxetine and paroxetine may be useful for treating methamphetamine dependence. Furthermore, ifenprodil, which is a well-known antagonist of the α1 adrenergic receptor and GluN2B subunit-containing NMDA receptor, also inhibited GIRK channels [44] and attenuated methamphetamine-induced conditioned place preference [67]. Common molecules may be involved in these suppressive effects on methamphetamine-induced conditioned place preference. Psychostimulants, such as cocaine and amphetamines, increase the extracellular levels of dopamine, norepinephrine, and serotonin, and their subjective effects are similar [93]. GIRK knockout mice exhibited a reduction of cocaine self-administration [68]. The inhibition of GIRK channels may be an effective treatment strategy for psychostimulant addiction. Moreover, ifenprodil also inhibited GIRK currents induced by opioid receptor activation [44]. Ilenprodil was shown to suppress morphine-induced conditioned place preference [60]. Fluoxetine, paroxetine, and ifenprodil all inhibited ethanol-induced GIRK currents [42,44,45]. GIRK2 knockout mice were less sensitive than wildtype mice to some of the acute effects of ethanol, including anxiolysis and handling-induced convulsions [10]. GIRK3 knockout mice exhibited a reduction of handling-induced convulsions after ethanol administration [48]. Fluoxetine and ifenprodil reduced the anxiolytic effects of ethanol [22] and ethanol withdrawal signs, including convulsions [70], respectively. Altogether, agents that act as GIRK channel inhibitors might suppress the effects of addictive substances.

5.2. Studies in humans

Ethanol directly activates GIRK channels. GIRK knockout mouse studies have suggested that GIRK channels are involved in some ethanol-related behaviors [26], providing support for the therapeutic potential of GIRK channel inhibition for treating individuals with alcoholism. Retrospective studies have demonstrated the possible pharmacotherapeutic effects of inhibiting GIRK channels in individuals with alcoholism. We showed that GIRK channel inhibition with paroxetine, sertraline, ifenprodil, and chlorpromazine improved the lack of negative expectancy for alcohol drinking (i.e., a component of relapse risk) in outpatients with alcohol dependence [77]. Because environmental factors during the study and the time of initiation of drug treatment cannot be well controlled in outpatients, we secondly examined the influence of GIRK channel inhibition on relapse risk in Japanese alcohol-dependent inpatients while controlling environmental factors and the drug treatment schedule [89]. The results of the second study in inpatients suggested that GIRK channel inhibition improved the positive expectancy for alcohol, a component of relapse risk (Figure 5). Although the first study in outpatients [77] reported that GIRK channel inhibition improved the lack of negative expectancy for alcohol, both previous studies in outpatients and inpatients showed that GIRK channel inhibition may be useful for improving the maladaptive expectancy of the effect of alcohol. Altogether, the results from animal and human studies suggest that GIRK channel inhibition may be an effective treatment strategy for substance dependence.
in the rewarding and neuroadaptive effects induced by addictive substances. Studies on GIRK mutant and knockout mice have suggested the involvement of GIRK channels in the mechanisms that underlie the effects of addictive substances. Animal and human studies have demonstrated the possible therapeutic effects of GIRK channel inhibitors for the treatment of methamphetamine dependence and alcoholism, respectively. Selective GIRK channel inhibitors may be useful for treating substance dependence. The chemical structures of pharmacological agents that inhibit GIRK channels may provide insights into the development of novel drugs for the treatment of substance dependence.

Acknowledgments The authors thank Mr. Michael Arends for his assistance with editing the manuscript. This work was supported by the JSPS KAKENHI Grant Numbers 23390377, 24659549, 24659490, and 24790545, MEXT KAKENHI Grant Number 25116532, grants from the Ministry of Health, Labour and Welfare (MHLW) of Japan (no. H22-Iyaku-015 and H25-Iyaku-020), Smoking Research Foundation, and Astellas Foundation for Research on Metabolic Disorders.

References

Figure 5: Effects of GIRK channel inhibitors on alcohol relapse risk. GIRK channel inhibitors (e.g., paroxetine, sertraline, and chlorpromazine) reduce the positive expectancy for alcohol, a component of relapse risk, in inpatients with alcohol dependence. Because of the difference between groups in positive expectancy score on the Alcohol Relapse Risk Scale at Time 1, the non-GIRK inhibition treatment group was divided by a median of positive expectancy score at Time 1 into a high-score group and low-score group, and a comparison was made between these groups and the GIRK inhibition treatment group in positive expectancy score. Time 1: 2 weeks after hospitalization. Time 2: 45–60 days after Time 1. (Sugaya et al. [89]).

Nonetheless, some problems in these previous studies in humans have been noted. First, the patients in these studies took a wide range of drugs with GIRK channel inhibition properties, including anxiolytics, antidepressants, and antipsychotics. Second, these previous studies had retrospective designs. Therefore, a prospective randomized controlled study may be useful for investigating the effects of GIRK channel inhibitors on relapse prevention in patients with substance dependence.

6. Conclusion

The available treatments for substance addiction are currently insufficient. A better understanding of the neurobiology of substance addiction may lead to the discovery of new therapeutic strategies. GIRK channels are involved in the rewarding and neuroadative effects induced by...
Journal of the International Drug Abuse Research Society

extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens, Proc Natl Acad Sci U S A, 92 (1995), 12304–12308.

