
Hairy
Brushes

Steve Strassmann

Computer Graphics and Animation Group,
MIT Media Laboratory

SIGGRAPH 1986 Presented by: Maria Pace
November 8, 2007

CS 536

Problem: Create a more realistic
painting model

� Current painting simulations are
oversimplified

� Most basic model is static or simple
pattern repeated like a �rubber stamp�

� Airbrush model: simply fills in circular
areas of pixels

Problem: Create a more realistic
painting model

� Other systems allow for some variation in
brush pattern (position, pressure, brush
shape), but still do not adequately
represent unique strokes

� �Drawing prism� model (Greene): uses
image of real brush, but still only a pixel
level abstraction

Motivation

� More realistic model: paint brush as a set
of bristles with independent properties

� Bristles can evolve in the process of
creating a stroke

� Simulate traditional Japanese art: Sumi-e
painting.

� Animated reproducible brushstrokes.

Sumi-e painting
� Sumi-e is a style of

traditional Japanese
painting.

� Uses minimal brush
strokes on a light
background, in black
and white

Sumi-e painting

� Emphasis is on the
quality of each stroke

� Process and
materials are varied
to create different
strokes.

� 17 strokes total, defined as splines with 3-8 control
points

� Drawn interactively using mouse
� 8-bit 640x480 frame buffer

Example of computer-generated
sumi-e

Solution: a modular abstraction for
sumi-e brush strokes

� Brush: composed of individual bristles
� Stroke: defined by position and pressure
� Dip: how the paint is applied to the

brush/bristles
� Paper: a mapping to the display device

Brush

� One-dimensional array of bristle objects
� Properties:

� Position relative to handle
� Ink supply

Brush

� Motion:
� Perpendicular to path of stroke
� State changes are periodically recomputed

� Bristle states updated using coded �rules� to define
properties (color, ink quantity, position)

� Properties change over time, unlike �rubber stamp�
� Determine bristle�s mark on paper based on

pressure, position and ink quantity

Stroke

� Defined by list of pressure and position
samples

� Parameters (pressure and position)
change as a function of time (or distance)

� Path represented by spline
� Control points specified by user mouse clicks
� Pressure values assigned to each point

Dip

� Colors and distribution of ink on brush
� Same brush can be used with different

dips to create different effects

Dip

� Repeatability:
� Ink quantity & position of bristles can change over the

course of a stroke
� Dip stores info about initial state so it can be reused

� Dip parameters:
� Blotchiness
� Smoothness
� Access to brush�s parameters
� Randomness

Paper

� Renders ink as it comes off the brush
� Brush sends message to paper

� Position
� Ink

� Paper renders single dot based on these
parameters

Reasons for this representation
� Modular representation:

� Brush: composed of
individual bristles

� Stroke: defined by position
and pressure

� Dip: how the paint is
applied to the brush/bristles

� Paper: a mapping to the
display device

1. Adaptable: can
represent wide range of
paint/brushes

2. Reusability: stroke can
be saved and used with
different brush/dip/paper

3. Modular: easy to
change level of
complexity by turning
on/off effects

Implementation

1. Use cubic spline to interpolate series of
nodes based on position and pressure
samples (stroke)

2. Compute width of stroke at each node as
function of pressure

3. Approximate filled areas between nodes
by quadrilaterals

Implementation

� Use position/time to sort the pixels in
chronological order

� Use brush to determine nearest bristle to each
pixel

Details: Stroke Path

� Represent stroke path as N nodes
(X,Y,P,S)i for i = 0,�,(N � 1)
� X, Y are position coordinates
� P is pressure
� S is distance along the curve, where S0 = 0

� Brush center moves along line segments
connected by consecutive nodes using
Bresenham line drawing algorithm

Using cubic splines to calculate
distance

� User inputs (x,y,p)j for jth control point
� Calculate distance sj :

Approximating the quadrilateral

� A bisects EH
� B bisects FG
� |EH| is the width computed from the pressure at A
� |FG| is the width computed from the pressure at B
� FG bisects <ABC

Generating the Pixels

� Position (x,y) on frame buffer � generated
during interpolation

� Position along stroke (S) � found by
interpolating (SA, SB, SB, SA) on polygon
EFGH

� Position on brush (B) � found by
interpolating (1, 1, 0, 0) on polygon EFGH
� Brush position B is a value between 0 and 1
� Used to select closest bristle(s)

Anti-aliasing

� Can�t just anti-alias edges of polygons,
since since brush could change over time

� Use supersampling:
� Stroke rendered first on patch of �virtual

paper� at higher resolution than frame buffer
� Patch is then sampled and copied back to

frame buffer

Efficiency

� Two main parts of algorithm:
� Serial: computation of stroke geometry

(polygons)
� Parallel:

� Bristle uses evolution rules to calculate next state
� Pixel gets color info from brush

� Parallel part uses 90% - 99% of total
computation time on average

Effects: Ink Quantity

� Ink supply decreases as brush moves through stroke
� Scratchiness effect : dip puts smaller amount of ink on

brush
� Some percentage of bristles is set to run out of ink early
� Can determine this qty based on known stroke length for desired

effect

Effects: Ink Color

� Color for each bristle is represented by fraction
between 0 and 1: shade of grey

� Distribution on brush can be constant, linear
progression, or arbitrary values

Methods for evolving color over
course of stroke

� Specify distribution for start and end of stroke

� For points in middle of stroke, color is interpolated
linearly based on start and end value

Methods for evolving color
� Diffusion: smoothing colors of neighboring bristles

� Example: Cit = color of ith bristle at time t
D is speed-of-diffusion parameter between 0 and 1

Then Cit+1 = Cit(1-D) + 1/2(Ci-1t + Ci+1t)D

Left: Fast color diffusion (D = .5) Right: Slow diffusion (D = .1)

Methods for evolving color

� Generalized evolution algorithm
� color may be function of pressure, distance, or ink

remaining
� �ink stealing�: transfer of ink between neighboring

bristles

Left: random (Brownian) evolution of color Right: �Ink Stealing�

Effects of Pressure

� Spreading: more pressure spreads bristles
further apart

� Contact: more pressure brings more bristles in
contact with paper

(A) More pressure spreads bristles

(B) More pressure bring more bristles in contact

(C) Combination of spreading and contact effects

Texture Mapping
� Two ways to map texture to stroke image:

1. Flat tiling: Use rectangular array to represent paper�s texture.
2. Map array along long axis of stroke

� Multiply texture array value by ink color (between 0 and
1) to apply texture.

(A) Textured paper (B) Textured smiley-face paper

(C) Texture mapping
with spreading bristles

(D) Texture mapping with
pressure threshold bristles

Animation

� Basic animation code
� Two-dimensional keyframing system

� User specifies key shapes of brush strokes
� Position and pressure is interpolated between

key frames
� Same brush and dip used throughout

Animation: �Shrimp and Leaf�

� 92 frame sequence animated from 4 keyframes
� Each frame took 1 minute to render
� �very lifelike� � antenna and legs move, tail

kicks, water ripples

Further Work

� Better input methods
� Mouse input not as expressive as real brush
� Explore other input devices, including force-

sensitive touch-screens, LED-based body
trackers, magnetic pointing devices

� Better rendering hardware
� Use parallel computers to render strokes

faster, possibly in real-time

Further Work

� Expanding Rules
� Larger library of rules
� Include rules for more subjective qualities:

�blothiness�, �dryness�, �clumpiness�
� Real Color

� Experiment with full range of colors supported
by 24-bit color frame buffer

� Color change as function of paint thickness,
reaction with brush & paper

Further Work

� Paper Effects
� Specify absorption/wetness of paper and redistribute

ink accordingly during anti-aliasing
� Can use simple asymmetrical fractal to simulate

bleeding effects on dry paper
� Splatter

� Simulate splatter effects based on brush
velocity/acceleration

� Use fractal distribution of scattered dots on paper

Further Work

� Music and Painting
� Stroke analogous to contour of musical note

over time
� Strokes create recognizable images, while

notes create recognizable chords
� 3D Strokes � simulated sculpture

� Would require 3D input device � moving
through air or another medium

� Rendered with stereoscopic displays or
holograms

