Hairy

Brushes

Steve Strassmann

Computer Graphics and Animation Group,
MIT Media Laboratory

SIGGRAPH 1986 Presented by: Maria Pace
November 8, 2007

CS 536

Problem: Create a more realistic
painting model

» Current painting simulations are
oversimplified

* Most basic model is static or simple
pattern repeated like a “rubber stamp”

 Airbrush model: simply fills in circular
areas of pixels

Problem: Create a more realistic
painting model

* Other systems allow for some variation in
brush pattern (position, pressure, brush
shape), but still do not adequately
represent unique strokes

* “Drawing prism” model (Greene): uses
image of real brush, but still only a pixel
level abstraction

Motivation

More realistic model: paint brush as a set
of bristles with independent properties

Bristles can evolve in the process of
creating a stroke

Simulate traditional Japanese art: Sumi-e
painting.
Animated reproducible brushstrokes.

Sumi-e painting

e Sumi-e is a style of
traditional Japanese
painting.

* Uses minimal brush
strokes on a light
background, in black
and white

Sumi-e painting

 Emphasis is on the
quality of each stroke

//"’"/

- Process and . 5—;4
materials are varied | ¥
to create different iy / |

strokes.

Example of computer-generated
sumi-e

Figure 1: An example of Sumi-¢: “Shrimp and Leaf”

« 17 strokes total, defined as splines with 3-8 control
points

« Drawn interactively using mouse

« 8-bit 640x480 frame buffer

Solution: a modular abstraction for
sumi-e brush strokes

Brush: composed of individual bristles
Stroke: defined by position and pressure

Dip: how the paint is applied to the
brush/bristles

Paper: a mapping to the display device

Brush

* One-dimensional array of bristle objects

* Properties:
— Position relative to handle
— Ink supply

Brush

* Motion:
— Perpendicular to path of stroke

— State changes are periodically recomputed

* Bristle states updated using coded “rules” to define
properties (color, ink quantity, position)

* Properties change over time, unlike “rubber stamp”

e Determine bristle’s mark on paper based on
pressure, position and ink quantity

Stroke

* Defined by list of pressure and position
samples

» Parameters (pressure and position)
change as a function of time (or distance)

* Path represented by spline
— Control points specified by user mouse clicks

— Pressure values assigned to each point

Dip

 Colors and distribution of ink on brush

« Same brush can be used with different
dips to create different effects

Dip

* Repeatability:
— Ink quantity & position of bristles can change over the
course of a stroke

— Dip stores info about initial state so it can be reused

* Dip parameters:
— Blotchiness
— Smoothness
— Access to brush’s parameters
— Randomness

Paper

* Renders ink as it comes off the brush

* Brush sends message to paper
— Position
— Ink

* Paper renders single dot based on these
parameters

Reasons for this representation

« Modular representation:

— Brush: composed of
individual bristles

— Stroke: defined by position
and pressure

— Dip: how the paint is
applied to the brush/bristles

— Paper: a mapping to the
display device

3.

Adaptable: can
represent wide range of
paint/brushes

Reusability: stroke can
be saved and used with
different brush/dip/paper

Modular: easy to
change level of
complexity by turning
on/off effects

Implementation

. Use cubic spline to interpolate series of
nodes based on position and pressure
samples (stroke)

. Compute width of stroke at each node as
function of pressure

. Approximate filled areas between nodes
by quadrilaterals

Implementation

Az T

Figure 2: A stroke defined by 4 control points with interven-
ing nodes generated by a cubic spline. The area covered by
the stroke is approximated by quadrilaterals.

« Use position/time to sort the pixels in
chronological order

 Use brush to determine nearest bristle to each
pixel

Detalls: Stroke Path

* Represent stroke path as N nodes
(X,Y,P,S) fori=0,....,(N-1)
— X, Y are position coordinates
— P is pressure
— S is distance along the curve, where S, =0

* Brush center moves along line segments
connected by consecutive nodes using
Bresenham line drawing algorithm

Using cubic splines to calculate
distance

» User inputs (x,y,p); for jth control point
» Calculate distance s; :

3 B
so = 0,85 = > \(2e — ze-1)® + (v — va—1)?
k=1

Approximating the quadrilateral

—-'c

A bisects EH
B bisects FG
|EH| is the width computed from the pressure at A

|FG| is the width computed from the pressure at B
FG bisects <ABC

Generating the Pixels

* Position (X,y) on frame buffer — generated
during interpolation

» Position along stroke (S) — found by
interpolating (S,, Sg, Sg, SA) on polygon
EFGH

* Position on brush (B) — found by
interpolating (1, 1, O, 0) on polygon EFGH
— Brush position B is a value between 0 and 1
— Used to select closest bristle(s)

Anti-aliasing

« Can't just anti-alias edges of polygons,
since since brush could change over time

« Use supersampling:

— Stroke rendered first on patch of “virtual
paper” at higher resolution than frame buffer

— Patch is then sampled and copied back to
frame buffer

Efficiency

* Two main parts of algorithm:

— Serial: computation of stroke geometry

(polygons)
— Parallel:
* Bristle uses evolution rules to calculate next state
 Pixel gets color info from brush

» Parallel part uses 90% - 99% of total
computation time on average

Effects: Ink Quantity

Figure 5: Differenl quantities: (A) 50% of the bristles are
approx. 33% dry. (B) 75% of the bristles are approx. 50%
dry.

* Ink supply decreases as brush moves through stroke

« Scratchiness effect : dip puts smaller amount of ink on
brush
— Some percentage of bristles is set to run out of ink early

— Can determine this gty based on known stroke length for desired
effect

Effects: Ink Color

_—
—

Figure 6: Different colors: (A) Constant (B) Linear (C)
User-specified

» Color for each bristle is represented by fraction
between 0 and 1: shade of grey

 Distribution on brush can be constant, linear
progression, or arbitrary values

Methods for evolving color over
course of stroke

« Specify distribution for start and end of stroke

— For points in middle of stroke, color is interpolated
linearly based on start and end value

Methods for evolving color

 Diffusion: smoothing colors of neighboring bristles

— Example: C, = color of ith bristle at time ¢
D is speed-of-diffusion parameter between 0 and 1

Then C,,, = C,(1-D) + 1/2(C,

It+1

Left: Fast color diffusion (D = .5) Right: Slow diffusion (D = .1)

Ci+1 t)D

i-1¢

Methods for evolving color

* Generalized evolution algorithm

— color may be function of pressure, distance, or ink
remaining

— “ink stealing”: transfer of ink between neighboring
bristles

Left: random (Brownian) evolution of color Right: “Ink Stealing”

Effects of Pressure

« Spreading: more pressure spreads bristles
further apart

« Contact: more pressure brings more bristles in
contact with paper

‘——“\\\\—‘\\\\;:f___—_‘w (A) More pressure spreads bristles
%—f (B) More pressure bring more bristles in contact
S {—N__} (C) Combination of spreading and contact effects

Texture Mapping

 Two ways to map texture to stroke image:
1. Flat tiling: Use rectangular array to represent paper’s texture.
2. Map array along long axis of stroke

« Multiply texture array value by ink color (between 0 and
1) to apply texture.

(A) Textured paper (B) Textured smiley-face paper

A e b o

%— —r—,

(C) Texture mapping (D) Texture mapping with
with spreading bristles pressure threshold bristles

Animation

« Basic animation code

* Two-dimensional keyframing system
— User specifies key shapes of brush strokes

— Position and pressure is interpolated between
key frames

— Same brush and dip used throughout

Animation: “"Shrimp and Leaf”

Figure 1: An example of Sumi-¢: “Shrimp and Leaf”

« 92 frame sequence animated from 4 keyframes
« Each frame took 1 minute to render

* “very lifelike” — antenna and legs move, tall
kicks, water ripples

Further Work

» Better input methods
— Mouse input not as expressive as real brush

— Explore other input devices, including force-
sensitive touch-screens, LED-based body
trackers, magnetic pointing devices

» Better rendering hardware

— Use parallel computers to render strokes
faster, possibly in real-time

Further Work

* Expanding Rules
— Larger library of rules

— Include rules for more subjective qualities:
“blothiness”, “ ", “clumpiness”

, "dryness’,
» Real Color

— Experiment with full range of colors supported
by 24-bit color frame buffer

— Color change as function of paint thickness,
reaction with brush & paper

Further Work

« Paper Effects

— Specify absorption/wetness of paper and redistribute
iInk accordingly during anti-aliasing

— Can use simple asymmetrical fractal to simulate
bleeding effects on dry paper

o Splatter

— Simulate splatter effects based on brush
velocity/acceleration

— Use fractal distribution of scattered dots on paper

Further Work

* Music and Painting

— Stroke analogous to contour of musical note
over time

— Strokes create recognizable images, while
notes create recognizable chords

» 3D Strokes — simulated sculpture

— Would require 3D input device — moving
through air or another medium

— Rendered with stereoscopic displays or
holograms

