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Modularity in Meta-Languages*

Peter D. Mosses

BRICS & Dept. of Computer Science, Univ. of Aarhus, Denmark

Abstract. A meta-language for semantics has a high degree of modular-
ity when descriptions of individual language constructs can be formulated
independently using it, and do not require reformulation when new con-
structs are added to the described language. The quest for modularity in
semantic meta-languages has been going on for more than two decades.
Here, most of the main meta-languages for operational, denotational,
and hybrid styles of semantics are compared regarding their modularity.
A simple bench-mark is used: describing the semantics of a pure func-
tional language, then extending the described language with references,
exceptions, and concurrency constructs. For each style of semantics, at
least one of the considered meta-languages appears to provide a high
degree of modularity.

1 Introduction

A meta-language for semantic description of programming languages may be re-
garded as having a high degree of modularity when it can be used to give descrip-
tions of individual language constructs that can be formulated (and understood)
independently of each other. As an illustrative bench-mark for assessing modu-
larity, consider the extension of a pure functional language with new features:
references, exceptions, and/or concurrent processes. Depending on whether or
not the original description of the functional constructs requires significant refor-
mulation when these new features are added to the language, the meta-language
may be regarded as having a lower, resp. higher degree of modularity.

The quest for modularity in semantic meta-languages has been going on for
more than two decades. The present author’s contributions to it include: pro-
posals for obtaining modularity in denotational semantics by use of particular
styles of auxiliary notation [13], abstract semantic algebras [14], and action com-
binators [16]; the hybrid (denotational/operational) framework of action seman-
tics [17, 18,23, 31]; and, recently, a modular framework for (small- and big-step)
structural operational semantics, called Modular SOS [20]. Moggi (provoked by
the ad-hoc nature of the usual techniques for constructing domains in denota-
tional semantics [15]) has proposed the use of monads and monad transformers
[11], see also [9]; he has subsequently developed a more general framework based
on translations between meta-languages [12]. Wansbrough and Hamer have pro-
posed the hybrid framework of modular monadic action semantics [30].

* Presented at LFM’2000, 2nd Workshop on Logical Frameworks and Meta-Languages,
Santa Barbara, California, USA, June 2000



Most of the major (and some minor) meta-languages that have been used for
semantic description of programming languages are assessed below regarding the
degree of modularity that they provide, using the illustrative bench-mark sug-
gested above. Sect. 2 considers operational semantics: conventional SOS, Modu-
lar SOS, and Evaluation Contexts. Sect. 3 deals with denotational semantics: the
conventional (Scott-Strachey) meta-language, monadic semantics, and Extensi-
ble Denotational Semantics. Sect. 4 assesses the approaches of Action Semantics
and of Type-Theoretic Interpretation, which are hybrids of operational and de-
notational semantics.

Although it would be unwise to draw any definitive conclusions on the ba-
sis of the simplistic assessments reported below, it seems safe to claim that
both Modular SOS and Action Semantics do perform particularly well regard-
ing modularity—as does the monadic style of denotational semantics. In each
case, achieving modularity was a stated aim of the design of the meta-language.

In fact modularity is just one of several “semantic engineering” aspects of
meta-languages that may be crucial for their successful use in large-scale appli-
cations. Others include: the ease of writing, reading, and understanding descrip-
tions; the possibility of generating compilers from language descriptions; and the
feasibility of proving expected consequences of a semantic description. It appears
that unfortunately, none of the current semantic meta-languages is completely
satisfactory concerning all these semantic engineering aspects.

Caveat: Some of the finer details of the various meta-languages are ignored
here, in an attempt to avoid distraction from the main points that are being
made. Moreover, the author is not equally familiar with all the meta-languages
considered, and some of the illustrative examples may be non-optimal, or even
erroneous.

A Simple Bench-Mark

For the assessment of modularity of semantic meta-languages, it suffices to con-
sider the description of a few typical constructs, forming tiny fragments of full
programming languages. The constructs below have been selected mainly for
their simplicity and familiarity, without (conscious) bias towards particular styles
of semantic meta-language. They are (in some cases, simplified versions of) con-
structs taken from Standard ML and Concurrent ML.

Purely functional constructs

exp ::= if exp then exp else exp | exp = exp
Let the values v € V of expressions exp € Ezp include both booleans b € B
and numbers n € N. Assume that only boolean values can be tested by if-

expressions, and that both boolean and numerical values can be compared by
equality expressions.



Constructs involving references
exp ::= deref exp | erp := exp

Let expression values include locations | € L, with dereferencing a location
returning the value last assigned to it.

Constructs involving exceptions
exp ::= fail | catch exp with exp

Let exceptional expression values x € X include fail, with the most-recently
started catch expression handling any fail that arises while evaluating its first
sub-expression.

Constructs involving concurrency
exp ::= synch | spawn ezp

Let spawn exp initiate the concurrent evaluation of the expression, and let any
two synch-expressions match when they occur concurrently, each then evaluating
to a null value ().

2 Operational Semantics

2.1 Conventional SOS

SOS (Structural Operational Semantics) is a particularly well-known meta-language
for describing process algebras and programming languages. Following Plotkin
[25], SOS has often been preferred to the more abstract framework of denota-
tional semantics. Plotkin himself was concerned about the modularity of SOS:

As regards modularity we just hope that if we get the other things in a
reasonable state, then current ideas for imposing modularity on specifi-
cations will prove useful. [25,
p. 64]

The so-called “big-step” or “natural semantics” style of SOS does not seem
to differ significantly from Plotkin’s original “small-step” style with respect to
modularity, so it is not considered separately here. Note also that the recent work
of Plotkin and Turi, aiming to reconcile operational and denotational semantics
[28], does not address the kind of modularity considered here.

Suppose that a pure functional language, including the functional constructs
of the bench-mark indicated in Sect. 1, is to be described using conventional
SOS. The configurations v € I" of a straightforward SOS for it would be simply
the “value-added” syntax obtained by extending the constructors for expressions
with the computed values as constants (or merely the original syntax, if it already
includes suitable canonical terms representing computed values). For instance,



if the boolean values ¢t and ff are not directly expressible, one should add to
the grammar for expressions exp € Ezp the following extra productions:

exp == tt | ff

and take I' to be Exp (which is of course different from taking I' = FxpU{it, ff'}
without extending the grammar for expressions). Similarly, one may evaluate
numerals to the corresponding abstract numbers, which would then also have to
be admitted as components of expressions.

The transition relation to be specified by the SOS rules may be written
exp — exp’, and values v are terminal configurations.! The rules for transitions
are then specified as follows:

exp, — exp)

if exp, then exp, else exp; — if exp) then exp, else exp,

if it then exp, else exps — exp, (2)
if ff then exp, else exp; — expy (3)
exp, — ep) expy — eaph @)
exp, = expy — expy = expy V] = erpy — V1 = exph
v=v— tt vy = vy — ff if v1 # vo (5)

If the functional language is to be extended to a language with references,
including dereferencing and assignment expressions such as those indicated in
Sect. 1, stores s € S would be added as an extra component to configurations,
and the transition relation would become exp,s — exp’,s’ (see e.g. [1]). All
the original rules for the functional language are unfortunately now inwvalid, and
would have to be reformulated thus:

erp,, s — exp, s’

(6)

if exp, then exp, else exps,s — if exp| then erp, else exps, s’

if it then exp, else exps, s — €xpy, S (7)
if ff then exp, else exps,s — exps, s (8)
exp,, s — expy, s’ eTPy, S — exply, s’ 9)
exp, = exp,, s — expy = exp,, s V] = expy, S — U1 = exph, s
v=v,8 — tt,s vy = v,8 — ff, s if v1 # Vg (10)

L If the expressions include binding constructs, their semantics may be described us-
ing substitution. Alternatively explicit environments p € Env may be introduced,
writing p b exp — exp’ for the (relative) transition relation [25, p. 72].



The necessity of such a reformulation confirms that conventional SOS indeed
has some problems regarding modularity. After the reformulation, the rules for
dereferencing and assignment can now be added:

exp,s — exp’, s’

(11)

deref exp,s — deref exp’, s’

deref l,s — v,sif s(I) =v (12)
exp,, s — expy, s’ expy, 8§ — exph, s’ (13)

exp, = expy, s — exp) 1= exp,y, s’ l1 1= expy, s — 11 := exph, s’
Iy 1= 02,8 — V2, 8[l1 — V2] (14)

On the other hand, if the functional language is to be extended to a language
where expressions may raise (and handle) exceptions, no extra components are
needed in configurations, and the original rules for functional constructs may
be retained—provided that the raised exceptions computed by expressions are
kept separate from the ordinary computed values. New rules (in fact just axioms
in the small-step style illustrated here) need to be added to specify how each
functional construct propagates exceptions, which might be tedious for a large
language; but for the functional constructs included in our bench-mark, we need
add only:

if x; then exp, else expy — 21 (15)

X1 = erpy — T V1 = Tg — T (16)

(where x1, x2 range over X, the raised exception values, assumed to include
fail). The rules for the new constructs themselves are:

exp; — exp)

17

catch erp, with exp, — catch exp] with exp, (7

catch fail with expy, — exp, catch vy with exp, — 11 (18)
catch zy with ezp, — z1 if 21 # fail (19)

Thus the modularity of SOS may be considered satisfactory regarding the inde-
pendence of the descriptions of normal and exceptional evaluation.

Finally, if the functional language is to be extended to a language with CML-
style concurrency constructs, transitions may be labelled by signals « € A =
{synch} U {spawn exp | exp € Ezp} U {7} for synchronization and process-
spawning, the transition relation then being written exzp —— exp’ (see e.g. [1]).
Here, as when adding references, all the original rules for the functional language
again have to be reformulated:

o /
exp; — €rpy

(20)
if erp, then erp, else erp, = if exp) then ezp, else exps



if tt then exp, else exp; — expy (21)

if ff then exp, else exp; — exps (22)
@ I @ I
erp, — exp} erp, — exph (23)
expy = erpy —— expy = exp, V1 = erpy —— U1 = eaph
v=v—>tt vy = vy — ff if v1 # vo (24)

(Letting the signals be terminal configurations and putting the computed val-
ues as labels [5] would require even greater reformulation.) The rules for the
concurrency constructs may now be added:

synch yned 0 (25)
spawn exp | —3" () (26)
proc, —= proc) procy — proch 27)
proc, || procy = proc} || procy proc, || procy = proc, || proc)
synch / synch ’
proc; — proch procy — proch (28)

procy || procy = procy || proc)

spawn exp’’ ’
exrp — exrp

T o (29)
exp — exp’ || exp
The overall conclusion, based on our simple bench-mark, is that conventional
SOS has a rather low degree of modularity. This conclusion is confirmed by the
examples of SOS that are given in various textbooks on semantics (e.g. [24]).

2.2 Modular SOS

As its name suggests, the Modular SOS (MSOS) meta-language [19, 20] is a vari-
ant of SOS that provides significantly greater modularity than the conventional
(small- or big-step) framework. The development of MSOS was prompted by
the success of the monadic approach to obtaining modularity in denotational
semantics, and by the lack of a satisfactory answer to the question of whether
or not something similar might be possible for operational semantics.

The key idea of MSOS is to restrict configurations to pure (value-added)
syntax, putting all auxiliary information (stores, environments, signals, etc.) in
the labels on transitions (in fact the set of labels naturally forms a category,
and labels on adjacent transitions are required to be composable). Thus the
transition relation for expressions in MSOS is always of the form exp —— exp’,
where a ranges over the labels. By treating labels as an abstract datatype whose
components can be accessed and changed independently of each other, MSOS
rules never have to be reformulated when new components are added.



In an MSOS for a functional language, environments may be included in
the labels, or substitution may be used in the rules for binding constructs—the
formulation of the rules for constructs not concerned with binding is unaffected
by the choice. Thus for the bench-mark functional constructs, the MSOS rules
would always be as follows:

o /
exp; — €rpy

(30)
if erp, then erp, else exp, = if exp) then ezp, else exps

if tt then exp, else exp; — expy (31)

if ff then exp, else exp; — exps (32)

@ l @ /
exp, — exp) eTpy — exph (33)
exp, = exp, — exp) = exp, V] = expy, —— vy = expl
V= —tt vy = vy — ff if v # vo (34)

The variable a ranges over all the arrows of the category of labels, about which
no assumptions need be made here. The use of « in the rules above specifies full
propagation of all information processing between steps of evaluating compound
expressions and those of their sub-expressions. In contrast, the variable ¢ ranges
only over the identity arrows of the label category, which always label inherently
unobservable transitions, not affecting any information being processed.

An extension with references would involve labels including (pairs of) stores,
but no reformulation of the rules for functional constructs would be needed: the
variables o and ¢ in the original rules simply range over the new category of
labels (see e.g. [21]). In fact adding stores to labels (using a product-forming
“label transformer”) preserves not only the values computed by expressions, but
also the computations themselves [19].

Let get,(a) return the first component of the pair of stores in «, and let
sets(a, s') return a label whose components are the same as those of «, except
that the second component of the pair of stores is now s’. The MSOS rules for
the bench-mark constructs involving references are as follows:

o I
erp — exp

= (35)
deref exp — deref cxp’
deref | — v if get (¢)(I) = v (36)
« / o /
exp; — exp) erpy — exph (37)
exp, 1= expy —— exp! 1= exp, Iy := expy —= 1y := expl
Iy i= vy -5 vy if a = set (1, get ,(1)[l1 — va]) (38)

The applications above of get, and sets; remain valid when further components
of labels are added.



As with conventional SOS, an extension with exceptions would not require
any reformulation of the rules for functional constructs, but it would require an
additional axiom or two for each:

if x; then exp, else erp; — x1 (39)

L L
X1 = erpy — T V1 = Ty — Ta (40)

Finally, since the transitions in MSOS are already labelled, it is unsurprising
that the original rules for the functional constructs can be retained also when
extending with concurrency constructs. Labels need an extra component whose
values represent sequences of synchronization and process spawning signals; let
get,(a) return the sequence of signals in «, and let set,(a,aq ...a,) return a
label whose components are the same as those of «, except that the sequence of
signals is now aj . ..a,. As with a conventional SOS, auxiliary configurations of
concurrent processes proc € Proc are required; a single expression exp is a single
process (but processes are not allowed as sub-expressions). The MSOS rules for
the bench-mark constructs involving references are then as follows:

synch % () if o = setq (1, synch) (41)
spawn exp — () if o = set, (1, (spawn exp)) (42)
« / o /
proc, — proc} procy — proch (43)
proc, || procy —= proc) || proc, proc, || procy —= proc, || procl
[e3 / a2 /
proc; — procy procy —= procy .. a1 = set,(t, synch)
- it and (44)
proc, || procy, — proc} || proc), ary = setq(t, synch)
exp — exp’
if o = setq (1, (spawn exp”)) (45)

exp —— exp’ || exp”

Full details of the extensions of a functional language with references and/or
concurrency are provided in [21], together with a comparison of that MSOS
with other published descriptions of comparable languages.

2.3 Evaluation Contexts

A popular alternative to conventional SOS is to model steps of computations as
reductions in a term rewriting system. The terms are formed from the syntax of
the described language, together with (irreducible) terms representing computed
values and auxiliary information (such as stores). Reductions exp — exp’ are
restricted to occur only in evaluation contexts [3,4,32], written E[], the form of
which is specified by context-free grammars. The empty context is denoted by

[



A semantic description of functional constructs in this meta-language cor-
responds closely to a description in conventional small-step SOS (using substi-
tution, rather than environments, to deal with bindings). For the bench-mark
constructs, evaluation contexts are specified thus:

E:=]]|if Ethenexp elseezp |E=exp|v=FE

The reduction rules are as follows:

if tt then exp, else exps; — exp, (46)
if ff then exp, else exp; — exp; (47)
v=0v— it vy = vo — ff if v1 # vy (48)
Elexp] — Elexp’] ift exp — exp’ (49)

Each alternative of the above grammar for evaluation contexts may be regarded
as abbreviating an inference rule of the small-step SOS description given in
Sect. 2.1, and each reduction rule exp — exp’ corresponds exactly to an SOS
axiom.

If the functional language is to be extended with references, a syntactic rep-
resentation of stores may be added as a component to the (top-level) evaluation
contexts:

P:=Es

The reduction rules for the functional constructs do not need any reformula-
tion, although their lifting to computation steps has to be extended to the new
contexts:

Elexp),s — Elexp’],s iff exp — exp’ (50)

Assignment and dereferencing may then be described by extending the grammar
of the original evaluation contexts:

E:=deref E|FE :=exp|l:=FE
and adding new computation rules of the form E[exp], s — E[exp’],s":
Elderef l],s — E[v],sif s(l) =v (51)

E[l; := v3],s — E[vs], s[l1 — v2] (52)

An extension of a functional language with exceptions may be described by first
adding further evaluation contexts:

F ::= catch FE with exp
C :=1[]|if C then exp else exp | C = ezxp |v=C

The following rules allow the reduction of a raised exception together with its
innermost exception-handling context:

catch U[fail] with ezp — exp (53)



catch v with exp — v (54)

Again, no reformulation of the original reduction rules is required. Notice how-
ever that it may be quite tedious to define contexts like C' which are like other
contexts except for omitting a single construct: the alternatives for C' above
correspond closely to the axioms needed in a (small-step) SOS or MSOS for
propagating exceptions through functional constructs.

Finally, an extension with concurrency constructs may follow Reppy [26,
27] by exploiting evaluation contexts to match process expressions with sub-
expressions whose evaluation requires synchronization or process-spawning. As
in SOS, auxiliary syntax for concurrent processes proc € Proc is required:

proc ::= exp | proc || proc
Evaluation contexts for sets of processes need introducing:
P:=FE|P| proc| proc || P

No reformulation of the original reduction rules for expression evaluation is re-
quired. The following additional rules match the (otherwise irreducible) terms
where a synchronization or spawning expression is to be evaluated, and lift re-
duction to computation steps for complete systems of processes:

Py[synch] || Py[synch] — Pi[()] || P2[()] (55)
E[spawn exp] — E[()] || exp (56)
P[proc] — P[proc’] iff proc — proc’ (57)

A drawback of this approach, compared to conventional SOS, is the lack of a
basis for bisimulation equivalence of processes [5]. Nevertheless, according to our
bench-mark, the modularity when using evaluation contexts appears to be just
as good as when using MSOS.

3 Denotational Semantics

3.1 Conventional Denotational Semantics

It is well-known [3,9, 11, 13-16, 23, 30] that the straightforward use of A-notation
(with fixed interpretation of A-abstraction, application, and composition in do-
mains of functions) leads to poor modularity in denotational semantics. This is
merely confirmed by our bench-mark, as follows.

A conventional denotational semantics for a functional language takes deno-
tations of expressions to be in Fnv — V', where environments p € Env provide
the values of free variables of expressions, and V is the domain of values com-
puted by expressions. Thus:

E:Exp— Env—V

E[if exp, then exp, else exps] = (58)
Ap-(Elexp,]p|B — Elexp,]p, Eexps]p)
Elexp, = exp,] = Ap.(E[exp,]p = Elexp,]p) (59)

10



An extension with references would involve changing the domain of denotations
to Env — (S — (V'x95)), and a complete reformulation of the semantic equations
for functional constructs would be required, as follows:

E:Fxp—Env—S—>VxS

E[if exp, then exp, else exps] = (60)
ApAs.(Mwt, 51).01 B — Elepylpsy, Elespslos:) (Elesp]ps)
Elexp, = expy] = (61)

ApAs.(A(v1, 81).(A(v2, $2).v1 = v2)(Elexpy]psi)) (Elexp,]ps)

An extension with exceptions could either replace Env — V by Env — (V + X),
where X is the domain of raised exception values, or switch from the “direct”
to the “continuation” style by taking denotations in Fnv — K — V where K =
V — V; in both cases, complete reformulation of the equations for functional
constructs would again be required:

E:FExp—FEnv—- K->V

E[if exp, then exp, else exps] = (62)
Ap Ak Elezp|p(Av.w|B — Elexpy]pk, Elexps]pr)

Eleap, = eapy] = (63)
Ap Ak .Efexpi]p(Avi.Elexps] p(Ave. k(v = v2)))

Finally, an extension with concurrency constructs would require denotations to
be in Env — P(R), where R is some domain of “resumptions”, and a corre-
sponding reformulation of the original equations for functional constructs (not
illustrated here).

Thus the modularity of conventional denotational semantics is as poor as it
could possibly be, according to our bench-mark.

3.2 Monadic Denotational Semantics

The use of a monadic meta-language in denotational semantics has been pro-
posed by Moggi [11], and adopted by Liang and Hudak [9], among others.

The key idea of monadic semantics is to avoid any dependency on the struc-
ture of denotations when giving the equations that define the semantic functions.
This is achieved by regarding denotations as elements of an abstract computa-
tion type, equipped with operations for composing computations (or functions
from computed values to computations) and for forming trivial computations
from computed values, satisfying the laws of monads. Particular monads may
provide further operations on computations and values.

A monadic semantics provides a particular definition of a monad of com-
putations, defining for each type of values 7 the domain T7 of computations
of values of type 7, and defining composition and other operations using con-
ventional A-notation. When the described language is changed or extended, the
semantic equations generally do not need any reformulation at all, even though

11



the definition of the domain of computations changes. This already provides a
substantial degree of modularity in denotational semantics.

However, the definitions of composition and of the other operations provided
by the monad generally have to be completely reformulated each time the domain
of computations is changed. To avoid this, Moggi proposed to construct monads
incrementally: transforming a monad T with domains of computation 77 into a
richer monad T” whose computations 7”7 are defined in terms of T'7, and whose
composition is defined in terms of that of 7', and then adding new operations
associated with the added structure. Ideally, all the operations provided by T
would automatically be lifted to operations on T”, avoiding the need for explicit
reformulation; but this turned out not to be possible, in general.

Let us check the claimed modularity of monadic semantics using our bench-
mark. To describe a pure functional language, one may start with the trivial
monad I, where the computations are simply values. This is provided that bind-
ing constructs are treated as functions, using higher-order abstract syntax; an
alternative, closer to conventional denotational semantics, is to construct an en-
vironment monad, where the domain of computations 7’7 of values of type T is
Env — 7, and with operations both for computing the current environment and
for setting it. The choice of monad does not affect the semantic equations for
constructs not involving binding, which are as follows:

E:FExp— Env—-TV

E[if exp, then exp, else exps] = (64)
let v = Efexp,] in (v|B — Elexp,], E[exps])
Elexp, = expy] = (65)

let v1 = Efezp,] in let vy = Efexp,] in [v1 = v2]

In Moggi’s notation, let x = ¢ in ¢5 is sequential composition of the computation
¢y of value z followed by computation ¢, which may depend on x. The injection
of values as trivial computations is written [v].

For the extension with references, a side-effect monad 7" is needed, with
computations of the form 77 = S — (Tt x S), and with operations update :
L xV — T() for assignment and lookup : L — T'V for dereferencing. When an
environment monad was used for the functional language, the side-effect monad
constructor needs to be applied before the environment constructor, but the side-
effect operations can then be lifted automatically to the environment monad, so
no explicit reformulation is required at all before adding;:

E[deref exp] = let | = Efexp] in lookup(l) (66)
Elexp; := expy] = (67)
let i1 = Efexp,] in let vo = Efexp,] in update(l1, va)
The extension to exceptions may use the simple exception monad constructor

that maps T'7 to T'(7 + X) for some domain of raised exception values X, pro-
viding raise : X — T7 and handle : X x Tt x Tt — T (the alternative is to use

12



the more complex continuation monad constructor.) As with side-effects, this
constructor should be applied before using an environment monad constructor,
but the operations can again be lifted automatically.

E[fail] = raise(fail) (68)
E[catch exp, with exp,] = handle(fail, E]exp,], E[exps]) (69)

The final extension incorporated in our bench-mark concerns concurrency con-
structs, which involve nondeterminism. Although there is no monad constructor
for adding nondeterminism to side-effect (or even environment) monads, one may
start from a monad for nondeterminism, instead of from the trivial monad. Then
a monad constructor for resumptions may be applied. In principle, one may pro-
ceed to describe the desired concurrency constructs in terms of the operations
provided by the monads (not illustrated here), without making any changes to
the description of the functional language.

Thus it appears that the modularity of monadic denotational semantics is
as good as it could possibly be, according to our bench-mark. Nevertheless,
Moggi has recently proposed a more general framework based on composing
translations between meta-languages [12]. The problem of lifting translations of
some operations through other translations is dealt with by allowing redefinition
of those operations to be expressed. This framework uses LF as a meta-meta-
language, and emphasizes the type-theoretic aspects of monadic denotational
semantics.

3.3 Extensible Denotational Semantics

Cartwright and Felleisen [3] have proposed the use of an operationally-motivated
style of denotational semantics, in the interests of modularity. As with monadic
denotational semantics, a distinction is made between the domain of computed
values V' and that of computations C, but here, C is defined to be (roughly)
V + ((V — C) x A), where only the domains V and A (of “actions”) depend
on the language described. Computations have to be composed using a special
function, handler : C — (V. — C) — C; however, it does not satisfy all the
monad laws. The semantics of a complete program is given by applying a further
function, admin : (C' x R) — ((V x E) x R), where R is a language-dependent
domain of “resources”, and F is a fixed domain of “errors”.

To describe a functional language using this meta-language, the domains V/,
A, and R are defined appropriately, and semantic equations for expressions are
given using handler to combine the denotations of sub-expressions. An extension
with references requires changes to the definitions of V', A, and R, as well as some
equations defining admin on the new elements of A, but the semantic equations
for functional constructs do not have to be reformulated at all. An extension
with exceptions (or even with first-class continuations) likewise does not require
any reformulation of the original semantic equations. The notation used in the
semantic equations is comparable to that used in monadic semantics, and so it
is not illustrated here.
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Unfortunately, however, it appears that an extension with concurrency con-
structs is simply not possible in this meta-language, since the definition of C' does
not allow for the possibility of nondeterminism. Thus although it is conceivable
that the meta-language could be relaxed to allow such changes, we must here
conclude that the modularity of this approach, while better than that of conven-
tional denotational semantics, falls short of that found in monadic denotational
semantics.

4 Hybrid Approaches

In this section we consider meta-languages that combine the operational and
denotational approaches.

4.1 Action Semantics

The present author, in collaboration with Watt, has proposed a framework called
action semantics [17, 18,23, 31]. The meta-language of action semantics includes
a rich notation for so-called actions, which are used as denotations of program-
ming constructs in much the same way as abstract computations are used in
monadic denotational semantics—in particular, action notation includes a com-
binator that corresponds closely to composition of (functions from values to)
computations in monads. However, there are also some significant differences
between monadic and action semantics:

— The intended interpretation of action notation is defined operationally, using
a small-step SOS, and data-types are specified algebraically [17], so action
semantics does not involve A-notation or domains at all.

— The various so-called facets of action notation support a particular combi-
nation of major computational concepts (data flow, control flow, scopes of
bindings, effects on storage, and distributed processing, without bias towards
any particular programming paradigm). In principle, action notation could
be extended with new facets, and the existing facets could be replaced by al-
ternative versions with different primitives and combinators; but in practice,
action-semantic descriptions have used action notation as originally defined.

— Although some laws have been provided for action notation, its equational
theory is weak. (However, a revised version of action notation has recently
been proposed [8], with a significantly simpler kernel and a much stronger
theory.)

An action semantics for a pure functional language uses actions with only
data flow, control flow, and binding facets as the denotations of expressions.
When the functional language is extended with references, exceptions, and/or
concurrency constructs, these actions may have further facets, but the action
notation used in describing the functional constructs does not require any refor-
mulation at all.
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evaluate : Fxp — Action
evaluate[if erp, then exp, else erp;] = (70)

evaluate exp, then
((check (it is true) then evaluate exp,) or
(check not (it is true) then evaluate exps))

evaluateexp; = exp,] = (71)

(evaluate exp, and then evaluate exp,) then
give (given value#1 is given value#2)

evaluate[deref exp] = (72)
evaluate exp then give the value stored in the given cell
evaluate[exp; := exp,] = (73)

(evaluate exp, and then evaluate exp,) then
store given value#2 in given cell#1

evaluate[fail] = escape with fail (74)
evaluate[catch exp, with exp,] = (75)

evaluate exp, trap
((check (it is fail) and then evaluate exp,) or
(check not (it is fail) and then escape))

See [22] for an action semantics of process synchronization and spawning, show-
ing that adding such constructs to a functional language does not involve changes
to the original description. Thus according to our simple bench-mark, the de-
gree of modularity of action semantics is as good as with MSOS and monadic
semantics.

Wansbrough and Hamer, however, were not satisfied with the original def-
inition of action notation: it was a monolithic conventional SOS, which would
generally require major reformulation when adding new facets. They proposed
[30] instead to define action notation incrementally by a monadic semantics,
using monad constructors to combine facets. Wansbrough [29] gave a monadic
semantics for much of the original action notation—omitting however most of
the facet concerned with concurrent processes—and showed how a facet support-
ing continuations could be added to action notation. Wansbrough and Hamer
dubbed their framework “modular monadic action semantics”. The description
of the bench-mark constructs in this approach would be exactly the same as with
the original action semantics, except that a description of the concurrency con-
structs could not be included here without a major enhancement of the monad
supporting the corresponding facet.

Stimulated by the apparent success of monadic semantics in giving a modular
definition of (most of) action notation, the present author developed Modular
SOS (MSOS, see Sect. 2.2), and has recently given an MSOS description of (the
complete) action notation. It is however still unclear how to extend the MSOS of
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action notation with support for continuations (a mixture of evaluation contexts
and MSOS might be useful here).

In any case, action notation provides good support for modular descriptions
of most conventional high-level programming languages, regardless of how it is
itself defined.

4.2 Type-Theoretic Interpretations

The last meta-language considered here is that used by Harper and Stone to
give an alternative definition of Standard ML [6], based on type-theoretic inter-
pretation. The original definition [10] was given using the big-step style of SOS
(the “natural semantics” approach developed by Kahn [7]), but it resorted to
“conventions” concerning the propagation of exceptions and states in order to
achieve (reasonable) conciseness.

Type-theoretic interpretation is similar in some respects to Moggi’s transla-
tion between meta-languages, in that the language described is translated to an
explicitly-typed “internal language” IL, and the treatment of types is stressed.
(The translation is expressed using inference rules rather than LF, but that
difference does not seem to be so crucial.) The main differences from monadic
semantics are that the internal language is itself defined operationally, using eval-
uation contexts, rather than denotationally (although Harper and Stone conjec-
ture that “it would also be feasible to give it a domain-theoretic interpretation
as in denotational semantics”); also, it does not involve any explicit monadic
structure.

It seems that type-theoretic interpretation is also quite similar in nature to
action semantics, with the internal language playing the role of action notation.
Here, apart from the disregard for types in action semantics, the main difference
is that the internal language used in [6] is specifically intended for representing
the semantics of ML constructs, whereas action notation aims to be unbiased
towards any particular class of languages. Harper and Stone’s conjecture that
“languages such as Caml, Haskell, and Scheme could be interpreted into an in-
ternal language substantially similar to the one given” may well be true, but
it remains doubtful whether it would be convenient to use the same internal
language for Java, for instance—or even for the forthcoming ML2000. A more
superficial difference is the use of inference rules, rather than the semantic equa-
tions used in action semantics, to specify the translation to the internal language.

To assess the modularity of type-theoretic interpretation, let us again con-
sider the description of a pure functional language and its extensions. The trans-
lation of if-constructs into the internal language IL is described as follows [6,
App. D.1]:

if exp, then exp, else exps — (76)
case® exp, of Avar : Boolgiss.€2ps, Avar : Boolgys.ezp, end

(In fact the if-expression above is regarded as a “derived form” in IL, available
for use also in IL terms occurring as the result of translation.) IL has equality
on numbers, so no translation at all is needed for exp; = exp,.
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Since references and exceptions are directly supported by IL, it is unsurprising
that when the described language is extended with the corresponding bench-
mark constructs, no reformulation of the translation of the above functional
constructs is required. A dereferencing expression deref exp is translated to an
application of the IL constant get, and an assignment ezp, := ezp, is translated
to an application of the constant set. The exception fail is translated to a
corresponding constant. The translation of catch-constructs into the internal
language IL is described as follows [6, App. D.1]:

catch erp, with exp, — (77)

handle ezp; with (Avar : Tagged.
iftagof var is basis.fail*.tag
then Avar : Unit.exp, else raise®™var)

However, the internal language provides no support at all for concurrency
(or even for nondeterminism), so it seems that any interpretation of concurrency
constructs would be quite indirect.

5 Conclusion

It would be unwise to try to draw any definite conclusions regarding modularity
in meta-languages from the simple bench-mark adopted here: perhaps the bench-
mark should have included continuations, or excluded concurrency, or maybe it is
biased towards the author’s favourite meta-languages? Nevertheless, it is hoped
that this survey has cast some light on the relative strengths and weaknesses
of the considered frameworks, and may perhaps inspire the development of new
meta-languages with even better modularity.

One major omission from this paper (due to shortage of time rather than
lack of interest) is an assessment of the Abstract State Machine (ASM) opera-
tional framework, which has been used to give “a programmer-friendly modular
definition of the semantics of Java” [2].
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