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ABSTRACT 
 

A routine air quality data assimilation (DA) system was established at the China National Environmental Monitoring 
Center (CNEMC) based on the optimal interpolation (OI) method. The surface observations from more than 1,400 stations 
across China were assimilated into a real-time air quality forecast system with three nested domains. The initial conditions 
of NO2, SO2 and PM2.5 in the three domains were optimized by the data assimilation system. The impact of the data 
assimilation on the real-time PM2.5 forecast over the Beijing-Tianjin-Hebei (BTH) Region during the heavy haze season of 
2015 was evaluated. The results show that the DA can significantly improve real-time PM2.5 forecasts, reducing the root 
mean square error (RMSE) by 23%, 8.2% and 4.8% in the forecasts of the first, second and third day, respectively. The 
mean fractional bias and the mean fractional error of the forecast were reduced from 50.9% and 70.67% to 40% and 
62.3%, respectively, and the performance changed from “criteria” to approaching “goal” (as defined by Boylan and 
Russell, 2006). Additionally, increasing the assimilation frequency can improve the DA system performance for real-time 
forecasts. As can be seen from the various cases studied here, the improvement in data assimilation is more significant 
when the bias of the model is higher and there is still much room for correction. The results also show a rapid decay of the 
DA effects on the PM2.5 forecast, which highlights the limitations of the current routine data assimilation system in which 
only initial conditions are optimized. Further improvements in the data assimilation system with meteorological data 
assimilation and chemical parameter optimization are needed. 
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INTRODUCTION 
 

China faces serious atmospheric pollution problems, 
with high concentrations of fine particulate matter (PM2.5) 
regularly causing serious and large scale haze pollution 
events (Huang et al., 2014; Li et al., 2016; Wang et al., 
2016; Sun et al., 2016). In response to these large-scale 
haze pollution incidents, in the years since 2013 the China 
National Environmental Monitoring Center (CNEMC) and 
many provincial level environmental monitoring departments 
in China established air quality warning and forecasting  
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system based on the chemistry transport model (CTM). 
CTM can predict the temporal and spatial distribution of 
pollutants. But due to the complexity of atmospheric 
pollution caused by many different pollutants, the uncertainty 
of emissions and the chemical process modeled in the 
CTM, air quality forecasts still deviate from actual conditions 
(Carmichael et al., 2008), in especially heavy pollution the 
deviation can reach up to 30–50% (Zheng et al., 2015), 
and the simulation uncertainty of high chemical activity 
species such as nitrate can reach up to 3 times that (Hayami et 
al., 2008). DA can reduce the uncertainty (such as its 
initial conditions) by coupling the model with observations 
to improve the model performance. (Houtekamer et al., 
2005; Tang et al., 2011; Bocquet et al., 2015). 

DA has thus proven to be an effective method to 
improve weather forecasts (Bouttier and Courtier, 2002; 
Kalnay, 2003; Crawford et al., 2016). In the field of air 
pollution forecasting, Sandu et al. (2011) have shown that 
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data assimilation also plays an important role in improving 
air pollution prediction. Based on the NAQPMS (Nested 
Air Quality Prediction Model System, Wang et al., 2001, 
2002, 2006), Huang et al. (2016) reanalyzed the PM2.5 
pollution process in the Beijing-Tianjin-Hebei (BTH) region 
by using the optimal interpolation assimilation method and 
found that assimilation can reproduce the pollution process 
better. Wu et al. (2015) used the 3D-Var method to assimilate 
PM2.5 initial conditions based on WRF-Chem (Grell et al., 
2005), and improved a 0–48-h PM2.5 forecast, while Zhen 
et al. (2017) assimilated the PM2.5 initial conditions and 
emission sources, which can also effectively improve the 
PM2.5 forecast in China base on the WRF-Chem model and 
ensemble Kalman filter (EnKF) (Evensen, 2010; Schutgens 
et al., 2010; Yumimoto et al., 2016) method. 

In recent years, countries in Europe and other regions 
have also established assimilation business systems for air 
quality forecasting (Kukkonen et al., 2012; Marécal et al., 
2015). In contrast, in China only air quality prediction 
systems without DA business systems have been built. 
Meanwhile, although a large number of air pollutant 
monitoring sites have been established, their huge data sets 
are mostly used for posthoc case studies, and have not been 
used for real-time forecasting. Based on the NAQPMS and 
the observation data of 1,436 sites provided by CNEMC, 
we used the optimal interpolation (OI) method to build a 
data assimilation business system named ChemDAS for 
the PM2.5 real-time forecast in CNEMC. It began operating in 
May 2015. In this paper, we added two sets of comparison 
experiments based on the results of ChemDAS, one is a 
72-h forecast without DA and the other one is a 72-h 
forecast with different DA frequency, to evaluate the effect 
of DA for PM2.5 real-time forecast (0–72 h) during heavy 
pollution events. The reduction in improvement by DA and 
the influence of assimilation frequency on real-time forecast 
are also discussed. 
 
METHODOLOGY 
 
Chemical Transport Model 

In this paper, the chemistry transport model NAQPMS 
was used, developed by the Institute of Atmospheric Physics, 
Chinese Academy of Sciences. Based on the three-
dimensional Euler sulfide transport model, this model 
cases emission, advection, diffusion, dry and wet deposition, 
chemical (including gas phase, aqueous phase, aerosol, and 
heterogeneous phase) reaction processes, and the 
incorporation of pollution source tracking, process analysis, 
and other advanced model techniques, and can carry out 
multi-scale and multi-pollutant simulation in a mid-latitude 
area study. NAQPMS settings are consistent with those 
described in Chen et al. (2015): The improved RADM2 
and ISORROPIA1.7 mechanisms are used in the gas phase 
and inorganic aerosol chemistries (SO4, NO3, and NH4). 
The dust and sea salt processes developed by Luo et al. 
(2006) and Athanasopoulou et al. (2008) are used to model 
their respective natural aerosols. The formation of 
secondary organic aerosols is based on Odum et al. (1997). 
The heterogeneous chemistry of the aerosol surface is also 

considered, including 28 chemical reactions (Li et al., 
2012). As one of the official CTMs used in CNEMC’s air 
quality prediction system, NAQPMS was successfully 
used during Beijing’s Olympic Games, the Shanghai World 
Expo, APEC and other important activities in China to 
ensure air quality (Sun et al., 2016). 
 
Observation Network 

Some 1,436 national control observation sites data for 
PM2.5, SO2, NO2 concentrations provided by CNEMC 
(http://www.cnemc.cn/) are used in this paper, and 80 
observation sites in the BTH region. As all of these 
national control stations’ observation data are collected 
within a 1-h process of automatic collection and upload, it 
is difficult to avoid errors in the data that may come from 
individual site abnormalities. On the other hand, as most of 
the observation sites are concentrated in the eastern part of 
China, and are densely distributed in urban areas, error 
data from individual abnormal sites may be diluted by 
other nearby sites, so it is necessary to pay special 
attention to the possibility of a larger error skewing the 
data. To prevent this, we created an automatic data quality 
control to remove data exceeding the maximum range 
according to the pollutant measurement instruments (PM2.5 
< 1000 µg m−3, SO2 < 1428 µg m−3, NO2 < 1026 µg m−3). 
Fig. 1(b) shows the distribution of observations sites in D1. 
For the first time, all country control sites in China are 
included in one real-time forecasting assimilation system. 
 
Data Assimilation Method 

The OI method is one of the commonly used assimilation 
algorithms used to improve the initial conditions of CTMs. 
Collins et al. (2001) first developed OI to study the 
inversion of the aerosol optical depth. Wang and Niu (2013) 
used the OI method to study dust aerosol assimilation in 
eastern Asian in a mesoscale numerical weather prediction 
system (GRAPES/CUACE_Dust). A DA system was 
developed by Jiang et al. (2013) in the WRF-Chem model 
that used the OI method to study the improvement of DA 
for PM10 simulation over China. Wang et al. (2014) also 
used the OI method to study the impact of assimilation of 
lidar observations for aerosol forecasting in the western 
Mediterranean Basin. It was proved that the OI method has 
lower computational cost then other assimilation algorithms 
(Wu et al., 2008), which means that it is easier to realize, 
especially in real-time forecast business systems. 4-
dimensional variational (4D-Var) and the ensemble Kalman 
filter (EnKF) are two other widely used assimilation methods 
with better assimilation effects than OI method (Benedetti 
and Fisher, 2007; Candiani et al., 2013), but 4D-Var requires 
a more complex concomitant model (Benedetti et al., 2009; 
Sugimoto and Uno, 2009), while the computational cost of 
EnKF is much larger than an OI method (Denby et al., 
2008; Pagowski and Grell, 2012). Taking into account the 
timeliness and computational cost in real-time forecasting, 
our system used the OI method. 

The OI approach uses the optimal linear combination 
between the background state and the observed value 
(Daley, 1991). The analytical values can be obtained from 
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the following equation 
 
xa = xb +BHT(HBHT + R)–1 (y – H[xb]) (1) 
 

In this equation, xa is the analyzed mass concentration, 
xb is the background vector (model mass concentration), y 
is the observation vector, H is the observation operator, H 
is the tangent linear operator of the observation operator H, 
B is the background error covariance matrix with static 
assumptions, and R is the observation error covariance 
matrix. Only a few observation data are important for 
incremental decision analysis in general, which means it 
only assimilates patterns of observation information around 
a model coordinate point. For the selection of the observation 
error covariance matrix R, the observation error variance is 
δ2 = [0.1Y(i)]2, and the observation error mean variance is 
15% for all the observation points. In addition, the spatial 
correlation of the observation site is ignored, so R is a 
diagonal matrix. This article used a static and isotropic 
background error covariance, and the error correlation 
between state variables of each grid only depends on the 
space distance between each grid. The horizontal correlation 
function uses a Gaussian distribution function:  
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L is the characteristic scale of the spatial correlation. 
According to the model resolution and spatial distribution 
of the observation site, 125 km was selected for this paper. 
d is the distance between two grids, and Cov is the error 
covariance between two grids. Var is the model simulation 
error variance between two grids, according to a long-term 
comparison between the simulation and observation, it was 
set to 80% of the benchmark simulation concentration.  
 
Configuration of the Routine PM2.5 Data Assimilation 

In this system, the NAQPMS model uses a three-layer 
nested domain. As shown in Fig. 1(a), the first domain 

(D1) covers the entire East Asian region, and the horizontal 
resolution is 45 km, the second domain (D2) covers much 
of China’s landmass, and the horizontal resolution is 15 km. 
Hebei Province is the center of the third domain (D3) 
which includes the BTH region, Henan, Shanxi, Shandong, 
Liaoning and other neighboring provinces, the horizontal 
resolution of D3 is 5 km. The model uses a Sigma-Z 
terrain-following coordinate, the vertical layer of 1000–
100 hPa was divided into 20 layers with 8 layers under 2 km. 
In this study, we mainly evaluate the improvement of 
simulation in the BTH region, so all the results presented 
in this paper are from D3. 

Multi-Resolution Emission Inventory for China (MEIC, 
http://www.meicmodel.org/) developed by Tsinghua 
University was used for anthropogenic sources. The 
resolution is 0.25° × 0.25° and the base year is 2010. Biogenic 
emissions were taken from the Global Emission Inventory 
Activity (GEIA) (Guenther et al., 1995) and biomass 
burning emissions were from Cao et al. (2005). 

The mesoscale meteorological model WRFv3.6 was 
used for calculating the hourly model meteorological field, 
and the meteorological initial and boundary conditions 
were obtained from the National Centers for Environmental 
Prediction Global Forecast System (GFS). In this paper, 
the experiment period was November 1–December 3, 2015, 
during which there were three cases of heavy pollution over 
the BTH region. At every 0 UTC and 12 UTC a prediction 
was made using the previous prediction as a baseline. The 
model integration time step was 5 min and the output 
frequency was 1 h. 

All the initial conditions of the three domains were 
assimilated during the simulation period. In the vertical 
direction, the range of assimilation was 3 layers. As SO2 
and NO2 are related to the PM2.5 precursor, we assimilated 
PM2.5, SO2 and NO2 in the initial field. In the initial field, 
the variables related to PM2.5 concentration were PM2.5, BC, 
OC, SOA1, SOA2, SOA3, SOA5, SOA6, NH4AQ, SO4AQ, 
HSO4AQ, NO3AQ, (NH4)2SO4, NH4NO3, H2SO4AQ, 
NH4HSO4S, and (NH4)4(HSO4)2, a total of 18 components in 

 

 
Fig. 1. (a) Domain description, (b) Observation site distribution in D1. 
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NAQPMS. We first distributed observed PM2.5 concentrations 
to all the related components, according to the 18 components 
concentration ratio in the original initial field, then 
assimilated all the components respectively. 

In order to evaluate the effect of assimilation for real-time 
forecasting, we added two sets of simulation experiments 
shown in Table 1. Control (CT) was a 72-h forecast without 
DA at every 12 UTC. 24-h DA provided 72-h forecasting 
with DA at every 12 UTC to evaluate the impact of 
assimilation frequency for 72-h forecasting, and 12-h DA 
was the same as the system setup. All of the experiment’s 
first forecasts were based on the same initial conditions 
before DA, which was taken from the business system. 
 
RESULTS AND DISCUSSION 
 
PM2.5 Pollution Episodes  

From November 1 till December 3, 2015, most regions 
in the BTH region were heavily polluted as a whole (PM2.5 
average concentration up to 95 µg m−3). Beijing, Baoding, 
Langfang and some other cities’ PM2.5 daily average 
concentration reached 500 µg m−3 or more. Fig. 2 shows 
the time series of daily average PM2.5 concentration of all 
cities in the BTH region during the simulation period. The 
red line represents the average in the BTH region and the 

shadowed areas represent Beijing, Tianjin, Shijiazhuang 
and all the other cities in Hebei Province. As can be seen in 
Fig. 2, the different cities experienced different degrees of 
haze pollution during the simulation period, but the 
aggregate trend is consistent. In addition to assessing the 
effect of assimilation over the whole period, we also wanted 
to know the effect of assimilation during each process of the 
pollution event, so we divided the whole simulation time 
into three cases according to changes in PM2.5 concentration. 
Among them, Case 2 was the longest-running case, lasting 
10 days in total, and Case 3 was the most serious case, 
with the daily average concentration of PM2.5 reaching up 
to 250 µg m−3 or more in the whole BTH area. 

 
Improvement of Initial Conditions 

We chose D3 for the initial conditions verification 
because at the highest resolution (5 km) it allows the 
observed data to distribute as much as possible in the 
different grids. Therefore, all the observations sites (490) 
in the D3 were divided into two groups averagely in each 
city, one for assimilation and the other group for verification. 
These sites are shown in Fig. 3(a) (black point sites are 
those used for assimilation and red circle sites are those 
used for verification). Fig. 3(b) shows the scatter plot 
comparison of PM2.5 concentrations of the simulation and 

 

Table 1. Experiments setup. 

Experiment Forecasting setup DA method DA time 
Control (Model without DA) 72 hours at 12 o'clock (UTC) - - 
24-h-DA 72 hours at 12 o'clock (UTC) OI 12 o'clock (UTC) 
12-h-DA 72 hours at 12 o'clock (UTC), 

12 hours at 0 o'clock (UTC) 
OI 12 o'clock (UTC), 0 o'clock (UTC)

 

 
Fig. 2. Time series of PM2.5 daily average observations concentration of all cities in BTH during the simulation period, red 
line represent average in BTH and shadow areas represent cities. 
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Fig. 3(a). Verification and assimilation observation sites distribution in D3, black point sites for assimilation and red circle 
sites for verification. 
 

 
Fig. 3(b). The scatter plot of the comparison of PM2.5 concentration of simulation and observations before and after 
assimilation in D3 on October 31, 2015. 

 

actual observations both before and after assimilation in 
D3 on October 31. It is obvious that the assimilation corrected 
the initial PM2.5 concentration significantly, especially in the 
region overestimate, and the RMSE of all verification sites 

was reduced from 100 µg m−3 to 53.2 µg m−3. Comparison of 
the RMSE of every 72-h forecast’s initial conditions 
during experimental period before and after DA (12-h DA 
experiment, all the same in Section 3.2, Figs. 3 and 4) is 
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shown in Fig. 3(c). The improvement of initial conditions 
with DA was significant for the majority of these 
verifications, except on November 8. The reason for the 
high value of RMSE before and after DA on November 8 
might be that the observed data include a sudden increase 
in most of Tianjin’s sites, further illustrating the importance 
of the observations’ data quality for DA. In addition, as 
Fig. 4 shows, we compared the PM2.5 observations and 
PM2.5 concentration in initial conditions before and after 
DA within all the 1,436 observations sites in every domain 
on October 31. This was done to understand the impact of 
DA for initial conditions in the system’s actual operating 
situation. In D1 and D2, the improvement of the simulation 
in the southwest region of China is obvious, while in D3 
the distribution of PM2.5 concentration is closer to the 
observations distribution after DA. 
 
Improvement of the 24-h PM2.5 Forecast  

Fig. 5 shows the time series of the 24-h real-time forecast 
PM2.5 daily average concentrations of the three experiments 
in Beijing during experimentation period, with the statistical 
related coefficient (R) and RMSE, in which a represents 
CT, b represents 24-h DA, and c represents 12-h DA. It can 
be seen from the figure that the correlation coefficients of 
the three experiments were both satisfactory (R > 0.82) in 
Case 1, and the RMSE of 12-h DA was reduced from 61.3 
(CT) to 45.9, in Case 2, the relative coefficient of 24-h DA 
and 12-h DA had a small improvement compared to CT, 
while the RMSE both improved remarkably (12-h DA’s 
RMSE decreased by 37.4%). However, the RMSE after 

assimilation was still high (RMSE > 100), which means 
the assimilation effect still had a larger optimized space. 
Case 3 had a smaller assimilation effect compared with the 
other two cases. In general, the assimilation improvement 
effect of the 24-h real-time forecast was acceptable for the 
heavy pollution event in Beijing, especially for the RMSE, 
and the improvement effect is more obvious when the 
simulation deviation is larger. In addition to the northern 
cities such as Zhangjiakou and Chengde, most of cities in 
the BTH region had similar characteristics with Beijing. 
Besides this, the assimilation improvement effect of 12-h DA 
was also better than 24-h DA. Fig. 6 shows the distribution 
of PM2.5 monthly mean concentrations of observations and 
three experiments in D3 during November 2015. The 
simulated concentration of PM2.5 in the whole BTH region 
is significantly reduced after assimilation, which is in good 
agreement with the spatial distribution of the PM2.5 
observations. Here the improvement effect by 12-h DA is 
also better than 24-h DA. 
According to the study of Boylan and Russell (2006), the 
mean fractional bias (MFB) and the mean fractional error 
(MFE) can be used to judge model performance. When 
both MFE and MFB are less than or equal to + 75% and 
± 60% respectively, the model performance “criteria” has 
been met. Additionally, the model performance “goal” has 
been met when both the MFE ≤ + 50% and MFB ≤ ± 30%. 
Table 2 shows the statistics of the 24-h PM2.5 real-time 
forecast results of three experiments in the BTH region 
that lasted from November 1 till December 3, 2015. From 
the average of the observations (MO) and the average

 

 
Fig. 3(c). Comparison of the RMSE of every 72-h forecast’s initial conditions during the experimental period before and 
after DA. 
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Fig. 4. Comparison of the PM2.5 observations and PM2.5 concentration in initial conditions before and after DA within all 
the 1436 observation sites in every domain on October 31, 2015, within Obs for observations, CT for initial conditions 
without DA and DA for initial conditions with DA. 

 

of the model results (MM), it is clear that the model 
estimation was higher than the observations over the whole 
BTH region, and the model bias (MB) was big. It also can 
be seen from the table, the model performance is “criteria” 
level without DA (MFB is 50.9% and MFE is 70.7%). The 
model performance was improved in the 24-h DA 
experiment: The MFB and MFE were both reduced and the 
RMSE was reduced by about 16% in BTH. Compared to 
the 24-h DA experiment, the model performance of the 12-
h DA experiment was further improved, the RMSE was 
reduced by about 10%, and the MFB and MFE are further 
approximated to the “goal” level, so increasing assimilation 
frequency can help to improve the assimilation effect. The 
results for Beijing, Tianjin and Shijiazhuang also show 
with the same characteristics. Among them, the model 
performance in Tianjin is closest to the “goal” level with 

DA, and the assimilation helped the model performance in 
Shijiazhuang to reach the “criteria” level. 
 
Improvement of the 72-h PM2.5 Forecast 

The simulation effect of 72-h real-time forecast is 
important for air quality prediction, so it is necessary to 
evaluate the assimilation improvement effect of the 72-h 
real-time forecast. Fig. 7 shows the 0–72 forecast hour 
PM2.5 concentrations of observations, a CT and 12-h DA 
experiment, and the RMSE of CT and a 12-h DA experiment 
in both a single real-time forecast (on November 5) and over 
the whole experiment period (with averages corresponding to 
the same forecast hour) in BTH. In both the single real-time 
forecast and the whole experiment period, the assimilation 
effect on the 0–24-h forecast was significantly higher than 
that of 24–48-h forecast, the assimilation improvement
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Fig. 5. Time series of the 24-h real-time forecast PM2.5 daily average concentration of the three experiments in Beijing 
during experimentation period, with the statistical of related coefficient (R) and RMSE, in which a represents CT, b 
represents 24-h-DA, and c represents 12-h-DA. 
 

 

 
Fig. 6. Distribution of PM2.5 monthly mean concentrations of observations and three experiments in D3 during November 
2015. 
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Table 2. The Statistic of 24-h PM2.5 real-time forecast results of three experiments in BTH from November 1 to December 3. 

 Experiment MO (µg m−3) MM (µg m−3) MB (µg m−3) RMSE MFB MFE 
BTH Control 95.0 156.7 61.7 101.4 50.90% 70.67% 

24h-DA 95.0 142.0 47.0 85.0 44.90% 65.39% 
12h-DA 95.0 132.2 37.1 77.5 40.00% 62.30% 

Beijing Control 122.2 187.5 65.3 101.1 51.30% 68.36% 
24h-DA 122.2 170.1 47.9 82.7 44.50% 62.01% 
12h-DA 122.2 160.9 38.7 76.3 40.00% 59.37% 

Tianjing Control 90.3 148.9 58.6 81.2 50.70% 64.22% 
24h-DA 90.3 137.1 46.9 69.4 44.80% 58.94% 
12h-DA 90.3 128.6 38.3 62.9 40.00% 55.97% 

Shijiazhuang Control 111.2 214.2 102.9 123.8 72.10% 80.19% 
24h-DA 111.2 185.7 74.4 97.8 62.90% 72.05% 
12h-DA 111.2 170.0 58.8 86.3 57.00% 67.98% 

 

 
Fig. 7. The 0–72 forecast hour PM2.5 concentrations of observations, CT and 12-h-DA experiment and the RMSE of CT 
and 12-h-DA experiment in a single real-time forecast (on November 5) and the whole experiment period (average 
according to the same forecast hour) in BTH. Line is for the PM2.5 concentrations and bar for the RMSE. 

 

effect on the 48–72-h forecast was even weaker. The 
assimilation had an impact on all of the forecasted hours, 
but the improvement effect was diminished as time increased 
To further study the assimilation improvement effect of 
every forecast hour in a 72-h real-time forecast, we compared 
the attenuation curve of the RMSE improvement effect of 
12-h DA experiment with CT in BTH (as shown in Fig. 8). 
The RMSE improvement is best (20–65%) in the initial 
stage of forecast (< 12 h), but the improvement of RMSE 
rapidly fell to about 15% in the 24th forecast hour, then 
further dropped to about 10% during the 24–48-h period, and 
finally became weak (< 10%) during the 48–72-h period. 

Table 3 shows the statistics of the RMSE improvement 
of the 12-h DA experiment compared with the CT for 72-h 
real-time forecast in the BTH region. For the 0–24-h real-

time forecast, the improvement effect of RMSE was 23.6% 
in the whole of the BTH region, and higher than 20% in 
most cities. Handan had the highest rate (33.7%), and 
Zhangjiakou the lowest (16.8%) because of the lowest 
background concentration of PM2.5. For the 24–48-h and 
48–72-h real-time forecasts, the RMSE improvement was 
8.2% and 4.8% in BTH respectively, with about 10% and 
5% in cities. For the whole 72-h real-time forecast, the 
RMSE improvement was 12.8% in the BTH region and 
about 10% in cities. 
 
CONCLUSIONS 
 

In this paper, we built a data assimilation business system 
for 72-h real-time forecasts with data from CNEMC’s 
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Fig. 8. The attenuation curve of the RMSE improvement effect of 12-h-DA experiment compared with CT in BTH. 

 

Table 3. The statistics of the RMSE improvement of 12-DA experiment compared with CT for 72-h real-time forecast in 
BTH. 

 0–24 h (%) 24–48 h (%) 48–72 h (%) 0–72 h (%) 
JJJ 23.6 8.2 4.8 12.3 
Beijing 24.5 6.2 5.3 12.1 
Tianjing 22.5 8.6 7.1 12.8 
Shijiazhuang 30.3 10.3 7.0 16.2 
Tangshan 16.2 4.8 5.7 9.2 
Qinhuangdao 17.2 8.4 6.6 10.9 
Handan 33.7 12.4 5.2 17.8 
Xingtai 32.6 10.2 5.9 16.8 
Baoding 22.9 7.8 0.7 10.6 
Zhangjiakou 16.8 9.1 6.8 10.9 
Chengde 18.4 9.2 5.6 11.0 
Cangzhou 21.0 11.4 9.0 13.8 
Langfang 17.1 5.8 2.5 8.7 
Hengshui 22.3 10.9 3.7 12.3 

 

1,436 national control observation sites and an OI method. 
This system is the first of its kind in China and assimilates 
the initial conditions of PM2.5, SO2 and NO2 concentrations. 
To evaluate the improvement of the DA system for PM2.5 
simulation, three experiments during heavy PM2.5 pollution 
in the BTH region were conducted. We found that the model 
bias of the 24-h real-time forecast in the BTH region was 
higher (61.7 µg m−3) without DA and lower (37.1 µg m−3) 
with DA, whereas the RMSE was reduced from 101.4 before 
assimilation to 77.5 afterwards. The model performance 
approached “goal” from “criteria,” with reductions in the 
MFB and MFE from 50.9% and 70.67% to 40% and 62.3%, 
respectively. Compared to a 24-h DA experiment (with one 
assimilation daily), the 12-h DA (with two assimilations 
daily) showed a greater improvement (about 10% for the 
RMSE), meaning that increasing the assimilation frequency 
can improve the DA system performance for real-time 
forecasts. The RMSE improvement was 24%, 8.2%, 4.8% 

and 12.3% for 0–24 h, 24–48 h, 48–72 h and 0–72 h in BTH, 
respectively. The improvement effect was diminished as 
the forecast hour increased, especially in the beginning (0–
12 h). The RMSE improvement in the first 24 hours of the 
forecast remained above 15%, then dropped to about 10% 
during the 24–48-h forecast, and finally weakened (< 10%) 
during the 48–72-h period. 

With DA, the RMSE was over 100 during Case 2. Even 
this RMSE improvement is significant, possibly because of 
the uncertainty of the emission sources and the physical 
and chemical mechanisms in the model. However, the RMSE 
of the initial conditions remaining high after assimilation is 
likely one of the reasons for this result. Hence, even if the 
assimilation improvement effect is acceptable as a whole, 
the system has a larger optimized space. It is necessary to 
improve the DA system in terms of the parameters of the 
OI algorithm, assimilation frequency, observation data 
quality control and so forth, in the future. 
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