

Agroforestry Research and Development: Policy Impacts and Needs

Coordinating convening lead author: John Beer Convening lead authors: Muhammad Ibrahim and Fergus Sinclair

Forests in the Global Balance – Changing Paradigms
IUFRO World Series Vol. 17

Outline

What is agroforestry

Evolution

Shifts in focus

Challenges

The way forward

(Slides 3-4)

(Slides 5-6)

(Slides 7-9)

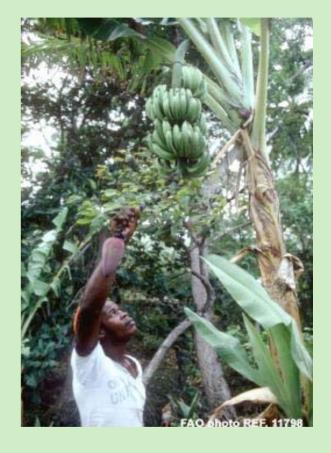
(Slides 10-13)

(Slides 14-15)

What is agroforestry?

Agroforestry (AF) is:

- practices where trees are integrated into farming
- interdisciplinary subject area
 - embracing land use systems
 - involving interactions among trees, people and agriculture.


There is a long tradition of AF practice in many parts of the world, but only during the last three decades, AF has developed as a formal scientific discipline.

AF unites the subject areas of forestry and agriculture

Agroforestry:

- contributes to sustainable natural resource management
- introduces a more human perspective from agricultural tradition into forestry
- includes the understanding of social processes and behaviour of people

- emphasizes a more ecological perspective in agriculture
- includes longer time horizons and larger spatial scales than agriculture.

Evolution of AF research since the 1970s (1)

Description: farmer knowledge of agroforestry systems (AFS); tropical and temperate agroforestry

Quantification phase: scientific quantification of biomass and productivity; above-ground nutrient cycling

Interactions: adaptations from other disciplines for tree-crop interactions; below-ground studies

Socio-economics: economic analyses; farmer decision making; labour and gender; market studies of products

continues...

Evolution 1/2

Evolution of AF research since the 1970s (2)

Integration: integration of bio-physical with socio-economic

variables; indirect interactions

Environmental services: biodiversity in AFS versus other land uses; AFS and water/carbon; soil and nutrient conservation

Markets: quality of products; certification; value chains; national and international markets

Policy: intellectual property/germ-plasm rights; reforestation incentives; land use and policy interventions; competitiveness

Evolution 2/2

The major general shifts in AF research and development

In broad lines the emphasis has shifted:

- from description of systems, to understanding how they function
- from simple systems at field and farm levels, to complex, diverse systems at landscape and regional levels
- at photography on the farmer designed
- from researcher designed practices, to farmer designed practices based on local knowledge
- from quantification of productivity, to economic valuation of environmental services.

From a narrow focus on biophysical variables to an interdisciplinary approach

Today focus is on:

 diversified land uses (e.g. timber-coffee AFS) or particular functions (e.g. climate change) rather than on one commodity (coffee) or discipline (e.g. soil fertility)

 integrating information from both the socio-economic and biophysical fields.

Growing emphasis on an interdisciplinary approach to sustainability

Today AFS research and development emphasize:

 improving farm profitability (productivity, sustainability and quality of products)

as well as

 quantifying and valuing the environmental services provided in managed rural landscapes.

Shifts in focus 3/3

Major changes in funding and collaboration mechanisms

- Many public sector institutions contributing to AFS research and development are privatized, with decreased budgets and personnel.
- Medium and long-term sustainability of specific research areas and independence of researchers is diminishing.
- New public-private partnerships and new management models for research and development institutes need to be built.

Challenges in developing AFS (1)

Climate change:

- adaptation to cope with droughts and/or intensive rainfall
- mitigation by AFS enhancing productivity and carbon sequestration

Genetics and plant improvement:

diversification of AFS species of high market value and quality

Ecosystem sustainability:

quantifying and valuing environmental services of AFS

continues...

Challenges in developing AFS (2)

Soil micro-flora and macro/micro-fauna:

 identification of soil components for the management of AFS interventions

Biological and cultural control:

biological disease and pest control to reduce costs

Value chain analyses:

 supporting value chains, certification and chain of custody

continues...

Challenges in developing AFS (3)

Landscape planning and management:

 assessment of different land uses and management of environmental services at different scales

Policies:

 prevention of degradation and rural poverty

Socio-economics:

 understanding of the rapid changes in the social structures at all levels

Towards a new AFS research and development framework

A more interdisciplinary research framework is needed with:

- decentralized flexible, interdisciplinary thematic groups
- innovative collaborative arrangements with new partners

 improved integration of higher education and research programmes and joint degree programmes.

Agroforestry for development and sustainability

More integrated and synthesized information is needed for efficient, cost effective and socially equal policy making and for setting local, national and international priorities.

For example there is need for:

- models and predictions of the effects of macroeconomic changes on the viability of AFS, both traditional and novel
- methods to integrate and predict the effects of different policy interventions.