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INTRODUCTION

Machine learning is a set of statistical and 
computational techniques that is becoming 
increasingly prominent in the lay press and  
medical research. Outside of healthcare, machine 
learning was quickly adopted to recommend 
movies and music, annotate images, and translate 
language. In healthcare, in which the stakes are 

high, although the enthusiasm surrounding 
machine learning is immense,1 the evidence of 
clinical impact remains scant. New platforms were 
created to disseminate machine learning research 
in healthcare, such as the Machine Learning for 
Healthcare Conference (MLHC), and certain 
academic journals have been created to provide 
a platform for the proliferating research. This 
enthusiasm for novel technologies unfortunately 
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Abstract
Despite enormous enthusiasm, machine learning models are rarely translated into clinical care and  
there is minimal evidence of clinical or economic impact. New conference venues and academic  
journals have emerged to promote the proliferating research; however, the translational path remains 
unclear. This review undertakes the first in-depth study to identify how machine learning models 
that ingest structured electronic health record data can be applied to clinical decision support tasks 
and translated into clinical practice. The authors complement their own work with the experience of 
21 machine learning products that address problems across clinical domains and across geographic 
populations. Four phases of translation emerge: design and develop, evaluate and validate, diffuse 
and scale, and continuing monitoring and maintenance. The review highlights the varying approaches 
taken across each phase by teams building machine learning products and presents a discussion 
of challenges and opportunities. The translational path and associated findings are instructive 
to researchers and developers building machine learning products, policy makers regulating 
machine learning products, and health system leaders who are considering adopting a machine  
learning product. 
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overshadows the challenging path to successfully 
translate machine learning technologies into 
routine clinical care.

National and international efforts are underway 
to ensure that appropriate guardrails are in place 
for machine learning to become part of routine 
care delivery. The International Medical Device 
Regulators Forum (IMDRF) has defined Software 
as a Medical Device as “software intended to 
be used for medical purposes that performs 
its objectives without being part of a hardware 
medical device.”2 European regulatory agencies 
and the U.S. Food and Drug Administration 
(FDA) are embracing Software as a Medical 
Device frameworks to regulate machine learning 
technologies, and national strategies for machine 
learning are emerging.3-6 Regulations are actively 
being developed and implemented, with new 
guidance from the FDA in September 20197 and 
upcoming changes in European Union Medical 
Device Regulation (EU MDR) in March 2020.8 
While regulators and medical professional 
societies proactively shape the machine learning 
ecosystem, many challenges remain to achieve 
the anticipated benefits. 

This narrative review proposes a general 
framework for translating machine learning 
into healthcare. The framework draws upon the 
authors’ experience building and integrating 
machine learning products within a local setting 
as well as 21 case studies of machine learning 
models that are being integrated into clinical  
care. This review focusses on machine learning 
models that input data from electronic health 
records (EHR) applied to clinical decision support 
tasks, rather than models applied to automation 
tasks.9 Automation tasks are cases in which “a 
machine operates independently to complete 
a task,” whereas clinical decision support tasks 
are cases in which “a machine is concerned 
with providing information or assistance to the  
primary agent responsible for task completion.”9 
Distinct from prior systematic reviews of EHR 
models,10,11 the current review focusses on models 
that have been productised and integrated 
into clinical care rather than the large body of 
academic work of published models that are 
not integrated. The review builds upon related 
work that highlights how academic and industry 
partners collaborate to develop machine learning 
products,12 as well as the need for engagement 
from front-line clinicians and standard reporting.13

Case studies were selected amongst 1,672 
presentations at 9 informatics and machine 
learning conferences between January 2018 
and October 2019. The conferences include 
American Medical Informatics Association 
(AMIA) Annual Symposia and Summits, MLHC, 
Health Information and Management Systems 
Society (HIMSS) Machine Learning and Artificial 
Intelligence Forum, and the Health AI Deployment 
Symposium. Machine learning technologies 
were included as case studies if they met two 
criteria: 1) they tackle a clinical problem using 
solely EHR data; and 2) they are evaluated and 
validated through direct integration with an EHR 
to demonstrate clinical, statistical, or economic 
utility. Machine learning technologies that 
analysed images were excluded. This review also 
advances prior work to propose best practices for 
teams building machine learning models within 
a healthcare setting14 and for teams conducting 
quality improvement work following the learning 
health system framework.15 However, there is not 
a unifying translational path to inform teams 
beyond success within a single setting to diffuse 
and scale across healthcare. This review fills that 
gap and highlights how teams building machine 
learning products approach clinical translation 
and discusses challenges and opportunities  
for improvement.

MACHINE LEARNING APPLIED TO 
CLINICAL DECISION SUPPORT TASKS

Machine learning has been described as “the 
fundamental technology required to meaningfully 
process data that exceed the capacity of the 
human brain to comprehend.”16 Machine learning 
models are often trained on millions of pieces of 
information. Existing knowledge about individual 
data elements and relationships between data 
elements are not explicitly programmed into the 
model and are instead learned through repeated 
iterations of mapping between inputs and  
outputs. This is in contrast to algorithms that 
comprise predictors and weights that are agreed 
upon by medical experts. Collaboration between 
machine learning and clinical experts is crucial 
and there are a range of modelling techniques 
that incorporate varying amounts of clinical 
expertise into model specifications.17 Machine 
learning models can be trained in a supervised and 
unsupervised fashion. Supervised models assume 
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that the output labels, for example a disease, are 
known up front, whereas unsupervised models 
assume that the output labels are unknown. An 
example of a supervised model is identifying 
which patients will develop sepsis, a known 
entity, whereas an example of an unsupervised 
model is identifying unknown subgroups of 
asthma patients. Most models integrated into 
clinical workflows as clinical decision support are 
supervised machine learning models.

This review focusses on models applied to 
clinical decision support tasks rather than 
models applied to automation tasks. Not only 
does automation involve heightened regulatory 
burden,18 but machine learning is initially expected 
to impact healthcare through augmenting 
rather than replacing clinical workflows.19 The 
distinction between decision support and 
automation is critical: “while it may be assumed 
that decision support is simply a stepping stone 
on the progression towards full automation, 
the truth is that decision support systems have 
fundamentally different considerations that must 
be accounted for in design and implementation.”9 
Recommendations for the design and 
implementation of machine learning as clinical 
decision support are only beginning to emerge.20

Machine learning can be applied to a wide variety 
of clinical decision support tasks in the inpatient 
and outpatient setting. Of the 21 case studies, 
14 apply primarily to the inpatient setting and 7 
apply primarily to the outpatient setting. Some 
models, such as a 30-day readmission model, 
can inform clinical decisions in the inpatient 
and outpatient setting. Examples of inpatient 
applications include prediction of intensive care 
unit transfer, acute kidney injury, sepsis, and 
Clostridium difficile infection, while examples 
of outpatient applications include prediction 
of chronic kidney disease progression, death, 
surgical complications, and colon cancer. Table 
1 presents how models from the 21 case studies 
can be translated into clinical care and provides 
example clinical workflows. Additional details 
about each model are provided in the next 
section. This workflow summary is designed to be 
illustrative and more comprehensive overviews 
of models and potential workflows can be found 
elsewhere.10,21 Configurations are categorised as 
either centralised or decentralised. In centralised 
workflows, the user of the clinical decision 
support is removed from direct in-person patient 

interactions. The user may be a physician, nurse, 
or care manager involved in managing the health 
of a population or cohort of patients. Centralised 
workflows are often involved in ‘command 
centres’ or ‘air-traffic controls’. In decentralised 
workflows, the user of the clinical decision 
support is directly involved in in-person patient 
interactions and is typically a nurse or physician. 
Decentralised clinical decision support tends to 
be directly embedded within the EHR. However, 
there is no single best workflow for a model and 
in fact many implementations of clinical decision 
support fail to improve outcomes. 

THE TRANSLATIONAL PATH

The pathway for translating machine learning 
applied to clinical decision support tasks is 
based on an examination of 21 machine learning  
products and the authors’ own experience 
integrating machine learning products into 
clinical care.22-24 In this section, machine learning 
technologies are referred to as products rather 
than models, recognising the significant effort 
required to productise and operationalise models 
that are often built primarily for academic 
purposes. Table 2 summarises the products, 
provides context on the origin of the team and 
development effort, and highlights translational 
milestones. To map between individual products 
and the translational path, milestones for each 
product are marked within three phases: 1) design 
and develop; 2) evaluate and validate; 3) diffuse 
and scale. These phases are described in more 
detail below.

Milestone highlights also track the type of source 
as peer review, online marketing by the product 
development entity, or industry news. The 
products are designed to solve a variety of clinical 
and operational problems ranging from sepsis to 
escalation of cost and capture experiences from 
across the globe. The important role of academic 
research in commercialising products cannot 
be understated, as 16 of the 21 products were 
originally developed in academic settings. Many 
of those products are then externally licensed 
and are being scaled and diffused via commercial 
entities. Notably, these products have raised more 
than $200 million in private venture capital, but 
several products have also been funded through 
government grants as well as health systems.
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The translational path focusses on products that 
are actively being integrated into healthcare 
delivery settings and are often also being diffused 
and scaled beyond the original development 
context. The translational path, depicted in Figure 
1, contains four phases discussed in detail below: 
1) design and develop; 2) evaluate and validate; 3) 
diffuse and scale; 4) and continuing monitoring 
and maintenance. Each step contains a set of 
activities that teams building machine learning 
products often complete. The activities do not 
define requirements for any single product, but 
are representative of the activities completed 
across the 21 products in Table 2. The path is not 
linear and may be highly iterative.

1. Design and Develop

The first step to building a machine learning 
product is identifying the right problem to solve. 
Healthcare is a data rich environment and even 
though a model can be developed to generate an 
insight, for the insight to support clinical decisions 
it must be actionable and must have the potential 
to impact patient care. Many of the products 
in Table 2 generate insights for conditions that 
require immediate action in the inpatient setting, 
such as cardiac arrest, sepsis, and deterioration. 
Products focussed on the outpatient setting 
tackle problems associated with high costs to 
healthcare payers or providers, such as surgical 
complications, hospital readmissions, and end-
stage renal disease.

Table 1: Types of workflow configurations for machine learning applied to clinical decision support tasks.

AISE: AISepsis Expert; eCART: electronic Cardiac Arrest Risk Triage; EWS: Early Warning Score;  ICU: intensive care 
unit; TREW: targeted real-time early warning.

Configuration Machine learning products Example user experience

Centralised

Outpatient Kidney Failure Risk Equation: Kidney failure model
Kensci: End of life model
Ayasdi: Escalation of cost model

Interdisciplinary team meets 
weekly to discuss high-risk patients 
and support front-line clinicians 
by identifying gaps in care and 
providing recommendations.

Inpatient Advance Alert Monitor: ICU transfer model
Sepsis Watch: Sepsis model
Clostridium difficile: C. diff model
PiecesTM: 30-day readmission model

Nurse continuously reviews model 
and supports front-line clinicians 
by identifying gaps in care and 
providing recommendations.

Decentralised

Outpatient Pythia: Surgical complication model
Medial EarlySign: Colon cancer model

Front-line clinician receives 
notification directly for high-risk 
patient and ensures there are no 
gaps in patient care.

Inpatient eCart: Cardiac arrest model
eTriage: Emergency department triaging model
Rothman Index: Continuous measure of patient state
Inpatient fall model
Dascena InSight: Sepsis model
Jvion Machine: Sepsis model
TREW Score: Sepsis model
Deep-AISE: Sepsis model
EWS 2.0: Sepsis model
ePNA: Pneumonia model
DeepMind Streams: acute kidney injury model
HBI Spotlight: Length of stay model

Front-line clinician receives 
notification directly for high-risk 
patient and makes immediate 
assessment to make diagnosis or 
change care plan.
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Table 2: A table examining the experience of 14 machine leaning products actively undergoing translation into 
clinical care.

Product name Product 
description 

Origin setting 
(country)

Translational path milestone
(year, type of source)

eTriage ED triaging 
algorithm

Academia: Johns 
Hopkins, Baltimore, 
Maryland (USA)

Develop: Funding from AHRQ and NSF (2018, peer 
reviewed).25 
Validate: Multisite, retrospective, cross-sectional validation 
study of >170,000 ED visits (2018, peer reviewed).25

eCart Cardiac arrest 
algorithm

Academia: University 
of Chicago, Chicago, 
Illinois (USA)

Develop: Retrospective internal data used through University 
of Chicago’s EHR data (2014, peer reviewed).26

Validate: Multicentre dataset (5 total) with 10-fold cross 
validation for each centre (2016, peer reviewed).27

Scale: $600,000 privately raised to scale via QuantHC 
Startup (2012, news article).28

Scale: Technology acquired by EarlySense Inc., Waltham, 
Massachusetts, USA, for undisclosed amount (2018, news 
article).29

PeraHealth 
Rothman Index

Continuous 
measure of 
patient health

Startup (USA) Develop and Validate: Retrospective EHR data from Sarasota 
Memorial Hospital, Sarasota, Florida (2013, peer reviewed).30

Validate: Model validated using retrospective EHR data from 
two other hospitals (2013, peer reviewed).31

Scale: Secured funding from Mainsail Partners, San Francisco, 
California, USA, with $14 million (2017, PeraHealth website).32

Scale: PeraHealth Solutions, Charlotte, North Carolina, USA, 
used by >80 hospitals (2017, PeraHealth website).32

Advance Alert 
Monitor (AAM)

Intensive care 
unit transfer 
and mortality 
algorithm

Academia: Kaiser 
Permanente Division 
of Research, Oakland, 
California (USA)

Develop and Validate: Model trained on data from 14 Kaiser 
Permanente Northern California hospitals (2012, peer 
reviewed).33

Scale: Scaling to 21 Kaiser Permanente Northern California 
hospitals (2018, peer reviewed)34

Inpatient Fall 
Prediction

Inpatient fall 
algorithm

Academia: Inha 
University, Incheon 
(South Korea)

Develop and Validate: Model trained and externally validated 
on data from two hospitals in Seoul, South Korea (2019, peer 
reviewed).35

Validate: Clinical utility evaluation completed with 12 nursing 
units (2019, peer reviewed).36

Sepsis Watch Sepsis 
algorithm

Academia: Duke 
University, Durham, 
North Carolina (USA)

Develop: Interdisciplinary team at Duke Health working to 
build sepsis-prediction model (2017, peer reviewed).22

Validate: Prospective internal data using Duke’s EHR (2018–
2019, ClinicalTrial.gov).37

Scale: Cohere Med Licensing (2019, Duke University 
website).38 

Dascena InSight Sepsis 
algorithm

Startup (USA) Develop: SBIR/STTR grants from NIH to perform clinical trials 
(2016–2018, ClinicalTrials.gov).39

Validate: Prospective internal study at University of 
California, San Francisco, California (2017, peer reviewed).40

Validate: Multicentre retrospective data from six institutions 
for generalisability (2018, peer reviewed).41

Scale: Approximately $1.9 million from SBIR/STTR (2016–
2018, SBIR Website).39

Jvion Machine Example: 
Sepsis 
algorithm; 
ED admission 
algorithm

Startup (USA) Develop: Model includes a combination of Eigen-based 
mathematics and a dataset of >16 million patients (2019, 
Jvion website).42

Validate: Average reductions of 30% in preventable harm 
incidents/cost savings of $6.3 million a year (2019, Jvion 
website).42

Scale: $8.9 million in funding (2019, Crunchbase website).43
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Product name Product 
description 

Origin setting 
(country)

Translational path milestone
(year, type of source)

TREW Score Sepsis 
algorithm

Academia: Johns 
Hopkins (USA)

Develop and Validate: TREWScore developed for early sepsis 
detection using external retrospective data (MIMIC-II) (2015, 
peer reviewed).44

Develop: Spinout company Bayesian Health, Wilmington, 
Delaware, USA, formed (2019, news article).45

Scale: TREWScore has been implemented at two hospitals, 
with three more planned in 2019 (2019, news article).45

Scale: $15.0 million Series A (2019, Pitchbook website).46

Deep-AISE Sepsis 
algorithm

Academia: Emory 
University, Atlanta, 
Georgia (USA)

Develop: Interdisciplinary team working at Emory University 
to build a sepsis prediction model (2018, peer reviewed).47

Validate: External validation using MIMIC-III (2018, peer 
reviewed).47

Scale: Approximately $700,000 BARDA grant funding sepsis 
consortium to scale across 3 sites (2019, Emory University 
website).48

EWS 2.0 Sepsis 
algorithm

Academia: University 
of Pennsylvania, 
Philadelphia, 
Pennsylvania (USA)

Develop and Validate: Model developed using internal EHR 
data from University of Pennsylvania Health System (2019, 
peer reviewed).49

Validation: Clinical utility evaluation completed in internal 
setting (2019, peer reviewed).49

Validation: Clinician perception qualitative evaluation 
completed in internal setting (2019, peer reviewed).50

ePNa Pneumonia 
algorithm in 
the ED

Academia: 
Intermountain 
Medical Center, Salt 
Lake City, Utah (USA)

Develop and Validate: Internally developed on EHR data and 
radiology reports (2013, peer reviewed).51

Validate: Clinical validation performed across four internal ED 
(2015, peer reviewed).52

Validate: Qualitative evaluation to understand clinician 
response to CDS completed internally (2019, peer 
reviewed).53

Scale: Reprogrammed and integrated into Cerner EHR 
and expanded across Intermountain hospitals (2019, peer 
reviewed).54

Clostridium 
Difficile

C. difficile 
infection 
algorithm

Academia: 
Massachusetts 
Institute of 
Technology, 
Cambridge, 
Massachusetts (USA)

Develop and Validate: Developed on data from a single USA 
hospital (2012, peer reviewed).55

Validate: Multi-site evaluation of transfer learning methods 
across three hospitals (2014, peer reviewed).56

Validate: Site-specific model development and evaluation 
approach across two hospitals (2018, peer reviewed).57

DeepMind 
Streams

Acute 
kidney injury 
algorithm 

Startup (UK) Develop: Founded in London by two PhD students and an 
entrepreneur (2010, DeepMind website).58

Develop: Partnered with NHS to develop Streams (2015, news 
article).59

Validate: Prospective study of workflow tool at NHS hospital 
(2019, peer reviewed).60

Scale: Acquired by Google for $500.0 million (2014, 
DeepMind website).61

HBI Spotlight 
platform

Example: 
Length of stay 
algorithm

Academia: Stanford 
University, Stanford, 
California (USA)

Develop: Multidisciplinary Stanford team sought to improve 
health/reduce care costs (2011, HBI Website).62

Validate: Temporal validation of hospital readmission model 
(2015, peer reviewed).63

Validate: Temporal validation of inpatient mortality model 
(2019, peer reviewed).64

Scale: Series A funding of $12.6 million (2015, HBI Website).65

Table 2 continued.
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Product name Product 
description 

Origin setting 
(country)

Translational path milestone
(year, type of source)

PiecesTM Example: 
30-day 
readmission 
algorithm

Academia: 
University of Texas 
Southwestern, Dallas, 
Texas (USA)

Develop: Creation of the non-profit named PCCI, funding 
from various grants (2012, news article).66

Validate: 30-day readmission model with external validation 
from 7 large hospitals (2015, peer reviewed).67

Scale: Series A funding of $21.6 million (2016, news article).68

Pythia Surgery 
complication 
algorithm

Academia: Duke 
University

Develop and Validate: Development and validation on 
data from a single health system and compared to national 
benchmark model (2018, peer reviewed).23

Validate: Site-specific and ensemble model development 
and validation approach across three hospitals (2019, peer 
reviewed).69

Kidney Failure 
Risk Equation

Kidney failure 
algorithm

Academia: University 
of Toronto, 
Sunnybrook Hospital, 
Toronto, Ontario 
(Canada)

Develop and Validate: Development and validation at two 
Independent Canadian hospitals (2011, peer reviewed).70

Validate: Multicentre retrospective data from >30 countries 
from 1982 to 2014 (2016, peer reviewed).71

Scale: Available as a website calculator (2019, website).72

Scale: Physician lead joins Viewics, Santa Clara, California, 
USA, advisory board to integrate kidney analytics into 
products (2016, news article).73

Scale: Viewics acquired by Roche, Basel, Switzerland, for 
undisclosed amount (2017, Roche website).74

Kensci Example: 
End-of-life 
algorithm

Academia: University 
of Washington, 
Seattle, Washington 
(USA)

Develop and Validate: 7 years of research and >40 
publications in various fields (2012–2019, Kensci website).75

Validate and Scale: Integration in >25 health systems (2017, 
Kensci website).75

Scale: Partnered with agencies including CDC and various 
industry entities (2016, Kensci website).75

Scale: Series A funding of $8.5 million (2017, Kensci 
website).75

Scale: Series B funding of $22.0 million (2019, Kensci 
website).75

Ayasdi platform Example: 
Escalation of 
cost algorithm

Startup (USA) Develop: Machine learning company applying resources and 
applications to healthcare (2019, Ayasdi website).76

Validate: Multiple peer-reviewed publications (2008–2019, 
Ayasdi website).76

Scale: $106.3 million in funding through Series C (2015, 
Crunchbase website).77

Medial EarlySign 
ColonFlag

Colon cancer 
screening 
algorithm

Academia: Tel-Aviv 
University, Tel Aviv 
(Israel)

Develop and Validate: Model trained on data from Israeli 
insurer and validated on Israeli data and external dataset 
from the UK (2016, peer reviewed).78

Validate: Temporal validation in Israel to determine clinical 
utility (2018, peer reviewed).79

Validate: Independent external validations on UK cohort 
(2017, peer reviewed) 80 and USA cohort (2017, peer 
reviewed).81

Scale: $30.0 million Series B (2018, Pitchbook website).82

Table 2 continued.

The table includes the name, a brief description of the machine learning product, the origin, and the path to 
translation. 

AHRQ: Agency for Healthcare Research and Quality; BARDA: Biomedical Advanced Research and Development 
Authority; CDC: U.S. Centers for Disease Control and Prevention; CDS: clinical decision support; ED: emergency 
department; EHR: electronic health record; MIMIC: Medical Information Mart for Intensive Care; NSF: National Science 
Foundation; PCCI: Parkland Center for Clinical Innovation; SBIR: Small Business Innovation Research; STTR: Small 
Business Technology Transfer; TREW: targeted real-time early warning.
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The setting and funding of the team shapes many 
aspects of how the machine learning product 
is designed and developed. For example, in an 
academic setting it may be easier to cultivate 
collaborations across domains of expertise early 
on in the process. However, academic settings 
may have difficulty recruiting and retaining the 
technical talent required to productise complex 
technologies. Funding sources can also vary as 
products proceed through different stages of 
the translational path. For example, many of the 
products in Table 2 were initially funded internally 
or externally through grants and secured private 
investment once the product was licensed to 
an outside company. Setting also significantly 
impacts the data available to develop a machine 
learning product. In an academic setting, teams 
may have access to internal data, whereas teams 
situated outside of a healthcare system need to 
obtain data through partnerships. Public datasets 
also play an important role in promoting product 
development. Three sepsis products (Deep-
AISepsis Expert [AISE], targeted real-time early 
warning [TREW] Score, Insight) used Medical 
Information Mart for Intensive Care (MIMIC)-III 
data for training or evaluation.83

Finally, there are cases in which existing algorithms 
are productised while more sophisticated 
machine learning techniques are developed 
as product enhancements. A notable example 
of this is DeepMind Streams, which originally 
productised a national acute kidney injury 
algorithm.84 In parallel, DeepMind implemented 
and evaluated the workflow solution as well as 
developed machine learning methods to enhance 
the product.60,85 Similarly, the regression-based 
Kidney Failure Risk Equation (KFRE) used to 
predict progression of chronic kidney disease, 
was productised by Viewics inc., Santa Clara, 
California, USA, while additional technologies 
were built in parallel. 

2. Evaluate and Validate 

An initial round of machine learning product 
evaluation and validation, Step 2a, can be 
completed entirely on retrospective data. These 
experiments are called ‘in silico’ and demonstrate 
three dimensions of validity and utility.21 Clinical 
utility addresses the question: can the product 
improve clinical care and patient outcomes? This 
requires that the team marketing or developing a 
machine learning product can calculate baseline 

performance on data relevant to the adopting 
organisation. Statistical validity addresses the 
question: can the machine learning product 
perform well on metrics of accuracy, reliability, 
and calibration? This requires that there is 
agreement on important and relevant model 
performance measures and a sense of what makes 
a product perform well enough for adoption. 
Finally, economic utility addresses the question: 
can there be a net benefit from the investment 
in the machine learning product? The economic 
utility can be demonstrated through cost  
savings, increased reimbursement, increased 
efficiency, and through brand equity. All forms 
of utility and validity are ultimately in the eye 
of the beholder. As such, relationships and 
communication between the machine learning 
product team and organisational stakeholders 
are critical.

The evaluation and validation of machine 
learning products requires multiple iterations. 
Demonstrating utility or validity on retrospective, 
in silico settings does not guarantee that the 
product will perform well in a different setting57 
or in a different time period.86,87 The utility and 
validity of the product must be reassessed 
across time (Step 2b) and space (Step 2d). 
Evaluating a machine learning product on a 
hold-out and temporal validation set (Step 2a) 
is recommended before integrating a product 
into clinical care.14 Evaluating a machine learning 
product on external geographic datasets (Step 
2d) can help drive adoption in new settings. 
Of the products listed in Table 2, Sepsis Watch, 
Advanced Alert Monitor, ePNa, and Early  
Warning Score 2.0 were integrated within the 
healthcare organisation that developed the 
product without external validation. On the 
other hand, electronic Cardiac Arrest Risk Triage 
(eCART),26,27 KFRE,71 InSight,41 Rothman Index,31 
PiecesTM readmission model,67 Deep-AISE,47 and 
eTriage25 completed peer-reviewed external 
validations. The two products with the most 
extensive external validations include the KFRE, 
which was validated on a multi-national dataset 
consisting of >30 countries,71 and ColonFlag, 
which was validated on cohorts in the USA,81 UK,80 
and Israel.88 These external validations evaluate  
the same model in different geographical  
contexts. However, several teams are taking a 
different approach to validating models across 
settings. The teams working on C. difficile 
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and surgical complication models are building 
generalisable approaches by which site-specific 
models are developed and validated.57,69

The production environment of a health 
information technology system often differs 
dramatically from the environment that stores 
retrospective or even day-old data. Significant 
effort and infrastructure investment are required 
to integrate products into production EHR  
systems (Step 2c). One study estimated the cost 
to validate and integrate the KFRE into clinical 
workflows at a single site at nearly $220,000.24 
Redundant costs across sites, as a result of a 
lack of interoperability and lack of infrastructure,  
would require similar investment by institutions 
following a similar approach. Furthermore, 
the ‘inconvenient truth’ of machine learning 
in healthcare was pointedly described as “at 
present the algorithms that feature prominently 
in research literature are in fact not, for the most 
part, executable at the front lines of clinical 
practice.”89 Finally, before being integrated 
into clinical care, a machine learning product 
needs to be evaluated and validated in a 
‘silent’ mode, “in which predictions are made 
in real-time and exposed to a group of clinical 
experts.”14 This period is crucial for finalising 
workflows and product configurations as well as 
serving as a temporal validation (Step 2b). An 
example of a silent mode evaluation is an eCart  
feasibility study.90

Although represented as a single arrow, the 
‘Clinical Integration’ step (Step 2c) can often be 
the most difficult step in the entire translational 
path. Most implementations of clinical decision 
support do not have the intended effect because 
of the difficulty with clinical integration. What 
differentiates the products listed in Table 2 from 
most machine learning models is that these 
products have undertaken clinical integration. 
Only one product,  InSight (Dascena, Oakland, 
California, USA),40 conducted a single-site, 
randomised control trial with 142 patients and 
demonstrated positive results. This single study 
needs to be followed up with larger trials from 
every team trying to drive adoption of a machine 
learning product. 

3. Diffuse and Scale

There are many machine learning products 
that focus on solving a local problem. The next 

challenge is to diffuse and scale across settings, 
which requires special attention to deployment 
modalities, funding, and drivers of adoption. As 
described earlier, machine learning products 
that ingest structured data from EHR require 
significant integration effort and infrastructure. 
This has driven the rapid adoption of models 
and algorithms sold and distributed by EHR  
vendors.91 To scale, machine learning products 
must be able to ingest data from different EHR 
and must also support on-premise and cloud 
deployments. For this reason, many models are 
also distributed as stand-alone web applications 
that require manual entry to calculate risk.

During this stage, machine learning product 
teams seek external investment and financial 
resources. As shown in Table 2, tens of millions 
of dollars are often raised by companies trying 
to scale products. The resources are required 
for both scaling deployment of the product 
as well as navigating the drivers of adoption. 
Several adoption strategies include academic 
dissemination, marketing and sales, and 
partnerships with regulators and payers to create 
reimbursement mechanisms. The “nonadoption, 
abandomnent, and challenges to the scale-up, 
spread, and sustainability of health and care 
technologies” is an example of a technology 
adoption framework that covers seven domains 
and has been recently applied to machine  
learning products.92,93 To date, no machine learning 
product ingesting EHR data has successfully 
diffused and scaled across healthcare. The 
products listed in Table 2 are as far along 
as any and will be closely watched over the  
coming years.

4. Continuing Monitoring  
and Maintenance

The translational path for a machine learning 
product does not have a finish line. Data quality, 
population characteristics, and clinical practice 
change over time and impact the validity and 
utility of models. Model reliability and model 
updating are active fields of research and will 
be integral to ensure the robustness of machine 
learning products in clinical care.94,95 Another 
example of model maintenance is updating 
outcome definitions to retrain models as 
scientific understanding of disease progresses. 
For example, many of the sepsis products listed 
in Table 2 use sepsis definitions that pre-date 
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Sepsis-3, the most recent international consensus 
definition.96 Similar to other technology 
innovations, the product lifecycle continues and 
will need to adapt to changes in market dynamics 
and organisational needs. Similarly, the product 
will evolve over time and will require continued 
validation and iteration. Throughout the process, 
teams developing machine learning products 
need to work closely with regulators and operate 
within evolving regulatory frameworks.14 

CHALLENGES AND OPPORTUNITIES

The translational path described above is not 
well trodden and, for better or for worse, the 
products listed in Table 2 are establishing norms 
for the industry. Across the 21 products, there are 
opportunities to improve how machine learning 
products are translated into clinical care. Outside 
of the scope of this review, the path of IDx-DR, a 
machine learning product used to automatically 
diagnose diabetic retinopathy, is instructive. IDx-
DR has conducted a randomised control trial and 
has received regulatory approval in both the USA 
and EU as a medical device.97,98 IDx-DR is now 
actively being scaled and diffused. Unfortunately, 
many products in Table 2 are pursuing ‘stealth 
science’ to protect trade secrets and avoiding 
regulatory or academic scrutiny.99 While stealth 
science is not uncommon amongst biomedical 
innovations, lack of transparency is particularly 
concerning with machine learning. This narrative 
review was unable to provide standard metrics of 
adoption, because many of the figures marketed 
by product developers have no peer-reviewed 
evidence. Machine learning products, which often 
lack inherent interpretability, need evidence that 
ensures validity as well as safety and efficacy.

There are three opportunities to enhance how all 
machine learning products that ingest structured 
EHR data are translated into clinical care. First, 
data quality systems and frameworks need to be 
adopted to ensure that machine learning models 
have face validity. Significant effort and resources 
are required to transform the raw data extracted 
from EHR into a usable format for training machine 
learning models.24 Distributed research networks 
that leverage EHR data for clinical research have 
developed frameworks for assessing quality 
of EHR data, but these frameworks have not 
been adopted by machine learning product 
developers.100-102 Incorporating high quality data 

into a model is as important as incorporating 
that same data into a pharmaceutical clinical trial. 
However, reporting the results of data quality 
assessments rarely accompanies reporting 
of model performance. Second, without 
interoperability across EHR systems, machine 
learning products will continue to face significant 
challenges scaling and diffusing across systems. 
New regulatory and policy mechanisms need 
to drive interoperability between EHR systems. 
Third, products listed in Table 2 that predict 
the same outcome cannot be easily compared. 
Reporting of machine learning models often 
fails to follow establish best practices and model 
performance measures are not standardised 
across publications.21,103,104 Data sources and data 
transformations also impact model performance 
across studies. Furthermore, there is no current 
standard definition of accuracy and patient 
health outcomes against which to measure the 
products. There is a head-to-head comparison of 
the Advance Alert Monitor and eCart on the same 
dataset,105 but this practice is exceedingly rare. 
Benchmark datasets, funding mechanisms, and 
agreement on model and clinical performance 
measures must be established to facilitate 
comparisons across products and settings.

Finally, there are a host of ethical challenges 
entailed in each step throughout the translation 
of machine learning in clinical care. First, patients 
are largely left unaware when personal data is 
shared with machine learning model developers, 
whether through a waiver of consent within an 
academic organisation or through a business 
agreement with an industry partner. These 
privacy concerns are prompting legal challenges 
and revisions of healthcare privacy law across 
the USA and Europe.106 Second, the dataset used 
to train a model107 or the outcome that a model 
predicts108 can have significant implications 
for how models lessen or worsen disparities in 
healthcare. Unfortunately, these biases have 
been discovered in models that run on hundreds 
of millions of patients. There are additional 
ethical challenges in machine learning that are 
described in more detail in related reviews.107,109 
Teams building machine learning products need 
to consider these challenges early and often and 
incorporate ethical and legal perspectives into 
their work.
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CONCLUSION

Despite enormous enthusiasm surrounding the 
potential for machine learning to transform 
healthcare, the successful translation of machine 
learning products into clinical care is exceedingly 
rare. Evidence of clinical impact remains scant. 
This review examines the experience of 21 
machine learning products that integrate with 

EHR to provide clinical decision support. The 
steps and activities involved in the design and 
development, evaluation and validation, and scale 
and diffusion of the machine learning products 
are described. This translational path can guide 
current and future efforts to successfully translate 
machine learning products into healthcare.
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