Analysis on Perfect Location Spoofing Attacks Using Beamforming

Ting Wang and Yaling Yang Virginia Tech, Dept. of ECE

Location information is critical

Location-based access control
 Identity spoofing detection

- Threats
 - □ Location concealing
 - □ Location spoofing with targeted fake location
 - More threatening

- Attack Model and Objective
- Problem Formulation
- Algorithm
- Simulation Results
- Conclusion

Attack Model

Perfect Location Spoofing (PLS)

 Falsify the RSS measurements to be almost the same as for the targeted fake location
 Using carefully designed beamforming pattern

- By answering the questions below:
 Is PLS attack possible?
 Under what situations will PLS be feasible?
- Provide:

Suggestions for defending PLS attacks

Road Map

- Attack Model and Objective
- Problem Formulation
 - □ How PLS attack works
 - Requirement of PLS attack
 - PLS feasibility problem
- Algorithm
- Simulation Results
- Conclusion

Beamforming

• Circular array $G(\theta) = \sum_{i=1}^{N_{ant}} w_i \exp[j\frac{2\pi}{\lambda}R\cos(\theta - \phi_i)]$

Complex weight

Variables to be optimized: $\mathbf{w} = [w_1, w_2, \cdots w_{N_{ant}}]^T$

Other geometries
 Linear array
 Planer array

ec

How PLS attack works

 Compensating path loss differences using beamforming

Requirement of PLS Attack

 For each anchor k within coverage, the falsified path loss is almost the same as the normal path loss from the fake location, with a difference no more than the standard deviation of Gaussian noise (δ dB).

$$|10\log_{10}(v_k|G(\theta_k)|^2) - 10\log_{10}(\hat{v}_k)| \le \delta(d\mathbf{B}).$$

Feasibility Problem of PLS

Road Map

- Attack Model and Objective
- Problem Formulation
- Algorithm
- Simulation Results
- Conclusion

Reformulation

Add quadratic objective function to the PLS problem:

 $\min_{\mathbf{w}} \quad obj = \sum_{k=1}^{K} (\operatorname{trace}(\mathbf{X}\mathbf{Q}_{k}) - 1)^{2}$ s.t. $\operatorname{trace}(\mathbf{X}\mathbf{Q}_{k}) \leq \delta \qquad obj \text{ r}$ $\operatorname{trace}(\mathbf{X}\mathbf{Q}_{k}) \geq \frac{1}{\delta} \qquad beamformula}$ $k = 1, 2, \cdots, K$ $\mathbf{X} \succeq 0 \qquad |\mathbf{w}^{H}\mathbf{f}|$ Non-convex $\operatorname{constraint} \qquad \mathbf{Q}_{k} = \mathbf{f}_{k}\mathbf{f}_{k}^{H}$

obj reaches 0 when the beamforming pattern is ideal, which means:

$$|\mathbf{w}^H \mathbf{f}_k|^2 = \frac{v_k |G(\theta_k)|^2}{\hat{v}_k} = 1$$

Semidefinite Relaxation

 Ignore the non-convex constraint "rank(X) = 1" and we get the following SDR (semidefinite relaxation) problem, which is convex:

$$\min_{\mathbf{w}} \sum_{k=1}^{K} (\operatorname{trace}(\mathbf{X}\mathbf{Q}_{k}) - 1)^{2}$$
s.t.
$$\operatorname{trace}(\mathbf{X}\mathbf{Q}_{k}) \leq \delta$$

$$\operatorname{trace}(\mathbf{X}\mathbf{Q}_{k}) \geq \frac{1}{\delta}$$

$$k = 1, 2, \cdots, K$$

$$\mathbf{X} \succ 0$$

Road Map

- Attack Model and Objective
- Problem Formulation
- Algorithm
- Simulation Resultst
- Conclusion

PLS Beamforming Pattern

- Anchors are randomly generated in a 200*200 m² 2-D space
- Attacker's location: (0, 0)
- Fake location: (30, 40)

Success Rates of PLS

- (# of feasible PLS / # of feasible SDR) out of 200 simulations
 - □ # of feasible PLS lower bound
 - □ # of feasible SDR upper bound

δ	K	$N_{ant}=6$	$N_{ant}=8$	$N_{ant}=10$	$N_{ant}=12$
1dB	4	66/70	142/160	170/181	175/192
	5	4/7	78/97	93/152	106/182
	6	0/0	20/34	43/97	31/162
	7	0/0	0/5	16/64	9/95
	8	0/0	0/0	3/29	1/33
2dB	4	96/96	129/129	171/172	180/181
	5	10/11	105/107	148/148	165/170
	6	0/0	55/56	110/110	134/141
	7	0/0	15/15	81/84	97/107
	8	0/0	1/1	43/50	74/78
3dB	4	80/84	144/145	169/169	186/188
	5	15/16	117/120	148/152	170/176
	6	0/0	60/62	117/120	133/145
	7	0/0	18/20	99/100	100/107
	8	0/0	0/1	44/47	78/86

Spoofed localization

Spoofed location estimations overlapping with noised localization results around the fake location

PLS Attacks are Difficult to Detect

Attack detection algorithm introduced in:

Y. Chen, W. Trappe, and R. P. Martin, "Attack detection in wireless localization," in Proceedings of IEEE INFOCOM, 2007.

Fixed Anchor Deployment

Road Map

- Attack Model and Objective
- Problem Formulation
- Algorithm
- Simulation Results
- Conclusion

 Anchor deployment with higher density lowers the success rate of PLS attacks.

Guard against PLS attacks
 Increase anchor density near critical area
 Use mobile anchors

Thanks!

Questions?

