Pattern Discovery in Bioinformatics

Laxmi Parida

IBM T J Watson Research Center, Yorktown Heights & Courant Inst. of Mathematical Sciences, New York University

IMA, May 4, 2007
What?: Context
- Biology as an information science
- Discovery Process
 - String patterns
 - Topological patterns
- Permutation patterns

How?: Permutations → PQ trees
- Gene Proximity Analysis
- Statistics of permutations

More?: PQ Variations
- Phylogeny etc.
- Population genomics
Information in Biology

Organization

- Ecosystem
- Species
- Organism
- Physiology
- Metabolism
- Network
- Function
- Structure
- Sequence
- Complexity

Comparative Genomics
Pharmacogenomics
Physiome
Metabolomics
Proteomics
Functional Genomics
Structural Genomics
Genome

What?: Context
How?: Permutations → PQ trees
More?: PQ Variations

Biology as an information science
Discovery Process
Permutation patterns

Laxmi Parida
Pattern Discovery in Bioinformatics
Discovering Information

- Given a large dataset
 (an indiscriminate body of evidence)
- Can anything be inferred/discovered?
 (questions from the answers)
 - How?
 - Forbidden Phenomenon
 - Unique Phenomenon (pattern-free)
 - Repeating Phenomenon (patterns)
Pattern Discovery

- Define the phenomenon
 - non-unique (occurs at least $k > 1$ times)
 - define occurrence

- Discover the phenomenon
 - Let D be the discovered set on input s, then
 - if $p \in D$ then, p is a pattern
 - if p is a pattern, then $p \in D$
What are the common patterns?

\[s_1 = \ldots g_1 g_2 g_3 g_4 g_5 g_6 g_7 \ldots \]

\[s_2 = \ldots g_8 g_2 g_3 g_4 g_5 g_9 g_0 \ldots \]
What are the common patterns?

\[s_1 = \ldots g_1 \underline{g_2 g_3 g_4 g_5} g_6 g_7 \ldots \]

\[s_2 = \ldots g_8 \underline{g_2 g_3 g_4 g_5} g_9 g_0 \ldots \]
Traditional (string) Pattern Discovery
How bad is the scenario?

String patterns: $O(n^2)$
Is there a combinatorial way of reducing the number?
Is there a combinatorial way of reducing the number?

Duality

Pattern description

Location/occurrence description
Is there a combinatorial way of reducing the number?

Let P be the set of all patterns on a given input string s. ($p_1 \in P$) is non-maximal with respect to ($p_2 \in P$) if both of the following hold.

1. Each occurrence of p_1 on s is covered by an occurrence of p_2 on s.
2. Each occurrence of p_2 on s covers $l \geq 1$ occurrence(s) of p_1 on s.

A pattern ($p_2 \in P$) is maximal, if there exists no ($p_1 \in P$) such that p_2 is non-maximal w.r.t. p_1.
Is there a combinatorial way of reducing the number?

Let P be the set of all patterns on a given input string s. $(p_1 \in P)$ is \textit{non-maximal} with respect to $(p_2 \in P)$ if both of the following hold.

(1) Each occurrence of p_1 on s is covered by an occurrence of p_2 on s.

(2) Each occurrence of p_2 on s covers $l \geq 1$, occurrence(s) of p_1 on s.

A pattern $(p_2 \in P)$ is \textbf{maximal}, if there exists no $(p_1 \in P)$ such that p_2 is non-maximal w.r.t. p_1.

Laxmi Parida Pattern Discovery in Bioinformatics
Is the definition “good”?

Theorem

Let M be the set of all maximal patterns, i.e.,

$$M = \{ p \in P \mid \text{there is no } (p' \in P) \text{ maximal w.r.t } p \}$$

Then M is unique.
Suffix tree = Trie of suffixes

$s = abcdabcdabcdabcab$

Maximal string patterns: $O(n)$
Again, what are the common patterns?
Topological Motifs (Network motifs)

- $|V_m| = 4$
- $|E_m| = 4$
- $N_{4,4} = 1$
- $|V_m| = 4$
- $|E_m| = 3$
- $N_{4,3} = 2$
- $|V_m| = 3$
- $|E_m| = 3$
- $N_{3,3} = 1$
- $|V_m| = 3$
- $|E_m| = 2$
- $N_{3,2} = 5$
- $|V_m| = 2$
- $|E_m| = 1$
- $N_{2,1} = 4$
- $|V_m| = 1$
- $|E_m| = 0$
Is there a combinatorial way of reducing the number?

Let P be the set of all patterns on a given input data set. ($p_1 \in P$) is non-maximal with respect to ($p_2 \in P$) if both of the following hold.

1. Each occurrence of p_1 is covered by an occurrence of p_2.
2. Each occurrence of p_2 covers an occurrence of p_1.

A pattern ($p_2 \in P$) is maximal, if there exists no ($p_1 \in P$) such that p_2 is non-maximal w.r.t. p_1.

Laxmi Parida

Pattern Discovery in Bioinformatics
Is there a combinatorial way of reducing the number?

Let P be the set of all patterns on a given input data set. $(p_1 \in P)$ is non-maximal with respect to $(p_2 \in P)$ if both of the following hold.

1. Each occurrence of p_1 is covered by an occurrence of p_2.
2. Each occurrence of p_2 covers an occurrence of p_1.

A pattern $(p_2 \in P)$ is maximal, if there exists no $(p_1 \in P)$ such that p_2 is non-maximal w.r.t. p_1.
But isomorphism is tricky..
There is a combinatorial way to reduce the output size...

1. Dual notation of motifs in terms of locations

2. **Compact** notation
 - compact vertices, edges and motifs
 - handles explosion due to isomorphisms

Again, what are the common patterns?

\[s_1 = \ldots g_1 g_2 g_3 g_4 g_5 g_6 g_7 \ldots \]

\[s_2 = \ldots g_8 g_5 g_2 g_4 g_3 g_9 g_0 \ldots \]
What are the common patterns?

\[s_1 = \ldots g_1 \boxed{g_2 g_3 g_4 g_5} g_6 g_7 \ldots \]

\[s_2 = \ldots g_8 \boxed{g_5 g_2 g_4 g_3} g_9 g_0 \ldots \]
Permutation patterns (\(\pi \) patterns)

\[
\begin{align*}
 s_1 &= \ldots g_1 \boxed{g_2 \ g_3 \ g_4 \ g_5} g_6 \ g_7 \ \ldots \\
 s_2 &= \ldots g_8 \boxed{g_5 \ g_2 \ g_4 \ g_3} g_9 \ g_0 \ \ldots
\end{align*}
\]

Genes \(g_i \) in \(s_1 \) and \(g_i \) in \(s_2 \) are orthologous.

Block of genes \(g_2, g_3, g_4, g_5 \)
appear together,
albeit in a different order.
Permutation patterns (π patterns)

\begin{align*}
 s_1 &= \ldots g_1 \boxed{g_2 \ g_3 \ g_4 \ g_5} \ g_6 \ g_7 \ \ldots \\
 s_2 &= \ldots g_8 \boxed{g_5 \ g_2 \ g_4 \ g_3} \ g_9 \ g_0 \ \ldots \\
\end{align*}

Genes g_i in s_1 and g_i in s_2 are **orthologous**

Block of genes g_2, g_3, g_4, g_5

appear together,

albeit in a different order

This block is a permutation (pattern)

\[\{g_2, g_3, g_4, g_5\} \]
Patterns Example
(Pursuit of the Preposterous)

\[S = abcdefghijabdcefhgij \]

(size 20)

{a,b}, {a,b,c,d}, {a,b,c,d,e}, {a,b,c,d,e,f}, {a,b,c,d,e,f,g,h}
{a,b,c,d,e,f,g,h,i}, {a,b,c,d,e,f,g,h,i,j},
{b,c,d}, {b,c,d,e,f}, {b,c,d,e,f,g,h}, {b,c,d,e,f,g,h,i,j},
{c,d}, {c,d,e}, {c,d,e,f}, {c,d,e,f,g,h}, {c,d,e,f,g,h,i},
{c,d,e,f,g,h,i,j},
{e,f}, {e,f,g,h}, {e,f,g,h,i,j},
{f,g,h}, {f,g,h,i,j},
{g,h}, {g,h,i,j},
{i,j}

25 \pi \text{Patterns}
How bad is the scenario?

Permutation patterns: $O(n^2)$
Maximal \(\pi \) patterns

Let \(P \) be the set of all patterns on a given input string \(s \). \((p_1 \in P)\) is non-maximal with respect to \((p_2 \in P)\) if both of the following hold.

1. Each occurrence of \(p_1 \) on \(s \) is covered by an occurrence of \(p_2 \) on \(s \).
2. Each occurrence of \(p_2 \) on \(s \) covers \(l \geq 1 \), occurrence(s) of \(p_1 \) on \(s \).

A pattern \((p_2 \in P)\) is \textbf{maximal}, if there exists no \((p_1 \in P)\) such that \(p_2 \) is non-maximal w.r.t. \(p_1 \).
π patterns (nested & straddling)

\[
s_1 = \ldots g \begin{array}{|c|c|c|} \hline a & c & d \hline \end{array} b \begin{array}{|c|c|c|} \hline e & f & g \hline \end{array} e b \ldots
\]

\[
s_2 = \ldots b \begin{array}{|c|c|c|} \hline g & f & e \hline \end{array} d \begin{array}{|c|c|c|} \hline a & b & c \hline \end{array} f b \ldots
\]
\(\pi \) patterns (nested & straddling)

\[s_1 = \ldots g \begin{array}{|c|c|} \hline a & c \\ b & e \\ d & f \\ g & e \\ \hline \end{array} \ e \begin{array}{|c|c|} \hline b & \ldots \\ \end{array} \]

\[s_2 = \ldots b \begin{array}{|c|c|} \hline g & f \\ e & \hline \end{array} \ d \begin{array}{|c|c|} \hline a & b \\ c & \hline \end{array} \ f \begin{array}{|c|c|} \hline b & \ldots \\ \end{array} \]

\[p = \{a, b, c, d, e, f, g\}, \]

\[\text{nonMaximal}(p) = \{\{e, f\}, \{f, g\}, \{e, f, g\}, \{a, b, c, d\}\}. \]

Biology as an information science
Discovery Process
Permutation patterns

Laxmi Parida
Pattern Discovery in Bioinformatics
Theorems on π Patterns

Theorem:
Let $R = \{Q' | Q' \text{ is non-maximal w.r.t } Q\}$. Then there exists a permutation Q'' of the elements of Q, such that for each Q', a permutation of the elements of Q' is a substring of Q''

Corollary 1:
The ordering is not necessarily complete

Corollary 2:
A representation that captures the order of elements of Q along with intervals that captures each of Q' encodes Q
What is a PQ Tree?

Is there a sequence where the sets are consecutive?

A collection of sets

{5, 6}
{1, 2, 3, 4}
{1, 2, 3, 4, 5}
{1, 2, 3, 4, 5, 6}

The answer is YES for this set. All such sequences captured by the PQ tree.
PQ Trees Revisited

\{a, b, c, d\}, \{b, c\}, \{g, h\}, \{h, i\}

cbadghi
dacbihg
abcdihg
ghidacb
ihgdabc

 a
 |

 d g h i
 |
 |
c b
 :
Maximal πPatterns
(Notation, PQ Tree notation)

- immediate neighbors "-" (Q)
- otherwise "," (P)
- groups "()" levels in the PQ tree
Linear Notation

\[p = \{a, b, c, d, e, f, g\}, \]

\[\text{nonMaximal}(p) = \}\{\{e, f\}, \{f, g\}, \{e, f, g\}, \{a, b, c, d\}\}\].

Linear notation: \(((a, b, c, d), (e-f-g))\)
Pattern (maximal)

\[S = \text{abcdefghijabdcefhgij} \] (input size 20, no of patt 25)

\{a,b\}, \{a,b,c,d\}, \{a,b,c,d,e\}, \{a,b,c,d,e,f\}, \{a,b,c,d,e,f,g,h\}
\{a,b,c,d,e,f,g,h,i\}, \{a,b,c,d,e,f,g,h,i,j\},
\{b,c,d\}, \{b,c,d,e,f\}, \{b,c,d,e,f,g,h\}, \{b,c,d,e,f,g,h,i\},
\{c,d\}, \{c,d,e\}, \{c,d,e,f\}, \{c,d,e,f,g,h\}, \{c,d,e,f,g,h,i\},
\{c,d,e,f,g,h,i,j\},
\{e,f\}, \{e,f,g,h\}, \{e,f,g,h,i\},
\{f,g,h\}, \{f,g,h,i\},
\{g,h\}, \{g,h,i\},
\{i,j\}

Distribution:

\[\text{a-b-(c-d)-e-f-(g-h)-i-j} \]
Is the definition any good?

Theorem

Let M be the set of all maximal patterns, i.e.,

$$M = \{ p \in P \mid \text{there is no } (p' \in P) \text{ maximal w.r.t } p \}$$

Then M is unique.
Gene Proximity Analysis on Whole Genomes
(CPM 05, JCB 06)

- Human, rat genomes (http://bio.math.berkeley.edu/slam)
- 25,422 putative orthologous genes
- 23 human, 21 rat chromosomes
Algorithms

- Find the patterns \((WABI 03, JCB 04)\)
 For a fixed pattern size, the time taken is

 \[
 \mathcal{O}(|\Sigma| + n(\log t)^2 \log |\Sigma|),
 \]

 where

 \[
 t = \mathcal{O}(|\Sigma| + n \log |\Sigma|).
 \]

- Extract maximal form \((CPM 05, JCB 06)\)
 The Minimal Consensus PQ Tree Algorithm (linear time)
Human & Rat

\(\pi \text{Pattern (166)} \)

Human chromosome 1
Rat chromosome 13

ABCDEFGHIJ
JIHGDBFECA
Human & Rat

Pattern (303)

- What?: Context
- How?: Permutations \rightarrow PQ trees
- More?: PQ Variations

Gene Proximity Analysis
Statistics of permutations

Human chromosome 11
Rat chromosome 1

A B C
D1 ... D11

I1 ... I17

E F G
H1 ... H12

Laxmi Parida
Pattern Discovery in Bioinformatics
Pattern (250)

- A
- B
- Human chromosomes 10,11
- Rat chromosome 1
- C1 \ldots C6
- D1 \ldots D3
- E1 \ldots E3
- F1 \ldots F2

Gene Proximity Analysis

Statistics of permutations

Human & Rat

Pattern Discovery in Bioinformatics
Proximity- Summary

<table>
<thead>
<tr>
<th></th>
<th>Number of all patterns</th>
<th>Number of maximal patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Coli K-12 & B Subtilis</td>
<td>15,000</td>
<td>450</td>
</tr>
<tr>
<td>human & rat</td>
<td>1,574,312</td>
<td>504</td>
</tr>
</tbody>
</table>

(Joint work with Revital Eres, Oren Weimann, Gadi Landau)
Two related but distinct questions:

1. Given \(n \) random permutations of \(k \) genes, what is the probability that \(K \) of these \(n \) contain the cluster \(q \)?

2. Given that a permutation pattern \(q \) occurs \(K \) times in the input, what is the probability of its maximal form given as a PQ tree \(T \)?

Statistical Significance of Large Gene Clusters,
Laxmi Parida, under submission, 2007.
Generalized Question 1:

Let the input be generated by a stationary, \textit{iid} source which emits x_i with probability p_{x_i}.

$$q = \{x_1(i_1), x_2(i_2), \ldots, x_l(i_l)\}$$
Generalized Question 1:

Let the input be generated by a stationary, iid source which emits x_i with probability p_{x_i}.

$$q = \{x_1(i_1), x_2(i_2), \ldots, x_l(i_l)\}$$

$$\mathbb{P}_q = \left(\frac{(i_1 + i_2 + \ldots + i_l)!}{i_1! i_2! \ldots i_l!} \right) (p_{x_1})^{i_1} (p_{x_2})^{i_2} \ldots (p_{x_l})^{i_l}$$
How to answer Question 2?

- Count the size of the frontier set of T
- What is the bottleneck?
 - How many possibilities does a P node introduce?
How to answer Question 2?

- Count the size of the frontier set of T
- What is the bottleneck?
 How many possibilities does a P node introduce?
P-arrangement

<table>
<thead>
<tr>
<th>Interval</th>
<th>P(q1[k1..k2])</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[k1..k2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-trivial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3..4]</td>
<td>5 2 4 3 1</td>
<td>{3, 4}</td>
</tr>
<tr>
<td>[2..4]</td>
<td>5 2 4 3 1</td>
<td>{2, 3, 4}</td>
</tr>
<tr>
<td>[1..4]</td>
<td>5 2 4 3 1</td>
<td>{2, 3, 4, 5}</td>
</tr>
</tbody>
</table>

trivial:

| [1..5] | 5 2 4 3 1 | {1, 2, 3, 4, 5} | 5 |
An arrangement of size k is a P-arrangement if it has no non-trivial intervals.

Examples:

- 2 4 1 3
- 2 4 1 5 3
- 2 6 4 1 5 3
The central question:

What is the number of P-arrangements of size k?
The central question:

What is the number of P-arrangements of size k?

Theorem

Let q be a P-arrangement of size $k + 1$. Let q' be obtained by replacing an extreme element (either $k + 1$ or 1) from its position j in q, with the empty symbol. Then q' is a P-arrangement or every interval $[i_1 \ldots i_2]$ in q' is such that $i_1 < j < i_2$.
Nested Arrangements

\[q = 9 \ 1 \ 5 \ 2 \ \phi \ 3 \ 6 \ 4 \ 7 \ 10 \ 8 \]
Nested Arrangements

\[q = 9 \ 1 \ 5 \ 2 \ \phi \ 3 \ 6 \ 4 \ 7 \ 10 \ 8 \]

\[
\begin{align*}
9 & 1 & 5 & 2 & \phi & 3 & 6 & 4 & 7 & 10 & 8 \\
9 & 1 & 5 & 2 & \phi & 3 & 6 & 4 & 7 & 10 & 8 & 2 \\
9 & 1 & 5 & 2 & \phi & 3 & 6 & 4 & 7 & 10 & 8 & 5 \\
9 & 1 & 5 & 2 & \phi & 3 & 6 & 4 & 7 & 10 & 8 & 6(2) \\
9 & 1 & 5 & 2 & \phi & 3 & 6 & 4 & 7 & 10 & 8 & 10
\end{align*}
\]
Nested Arrangements

\[q = 9 \ 1 \ 5 \ 2 \ \phi \ 3 \ 6 \ 4 \ 7 \ 10 \ 8 \]

\[
\begin{align*}
9 \ 1 \ 5 & \ 2 \ \phi \ 3 \ 6 \ 4 \ 7 \ 10 \ 8 & 2 \\
9 \ 1 & \ 5 \ 2 \ \phi \ 3 \ 6 \ 4 \ 7 \ 10 \ 8 & 5 \\
9 & \ 1 \ 5 \ 2 \ \phi \ 3 \ 6 \ 4 \ 7 \ 10 \ 8 & 6(2) \\
9 \ 1 \ 5 \ 2 \ \phi \ 3 \ 6 \ 4 \ 7 \ 10 \ 8 & 10
\end{align*}
\]

Signature: \(\text{sig}(q) = 2(1) < 5(1) < 6(2) < 10(1) \)
Signature Lemma

Let \(q \) be a nested arrangement of size \(k \) with symbol \(\phi \) in position \(j \). Let the size of the interval be \(i_r = i_{r2} - i_{r1} + 1 \).

1. *(straddling intervals)* If two such intervals, where one is not nested in the other, are of size \(i \) and \(i' \), then \(i = i' \) and they must overlap in \(i - 1 \) positions.
Signature Lemma

Let \(q \) be a nested arrangement of size \(k \) with symbol \(\phi \) in position \(j \). Let the size of the interval be \(i_r = i_{r2} - i_{r1} + 1 \).

1. (straddling intervals) If two such intervals, where one is not nested in the other, are of size \(i \) and \(i' \), then \(i = i' \) and they must overlap in \(i - 1 \) positions.

2. (uniqueness and form)

\[
\text{sig}(q) = i_1(k_{i_1}) < i_2(k_{i_2}) < \ldots < i_r(k_{i_r}) < \ldots < i_K(k_{i_K}),
\]

is unique with \(k_{i_1} = 1, k_{i_K} = 1, i_K = k \), and each \(k_{i_r}, 1 \leq r < K \), is either 1 or 2.
Formula for number of P-arrangements

\[
\begin{align*}
Pa(2) &= 2, \\
Pa(3) &= 0, \\
Pa(4) &= 2, \\
Pa(k) &= Nst'(k - 1), \quad \text{for } k > 4.
\end{align*}
\]

Polynomial time dynamic programming solution.
Number of nested arrangements with viable positions to get $k + 1$-sized P-arrangements:

$$Nst'(k) = S(k, 2) - S_{cnt}(k, 2) + \sum_{l=4}^{k} (l - 1)S(k, l) - 2S_{cnt}(k, l).$$
Number of nested arrangements with smallest \(l \) and largest \(u \) interval sizes:

\[
S(u, l) = 4S(u-1, l) + 2S(u-2, l) + \sum_{y=3}^{u-l} \Delta_{u-y} Pa(\Delta_{u-y}) S(u - y, l)
\]

Number of nested arrangements with the extreme element in the smallest interval:

\[
S_{cnt}(u, l) = 2S_{cnt}(u-1, l) + \sum_{y=3}^{u-l} Pa(\Delta_{u-y}) S_{cnt}(u - y, l)
\]
Chloroplast gene order in *Campanulaceae*

Data: 105 genes & 13 extant species
(PRIB 06: Joint work with Enam Karim, Arun Lakhotia)
What more?

- Gapped π patterns (WABI 06, JCB 06)
- Bounded π patterns (work in progress)
- Can we enrich the PQ structure?
Recall: PQ Tree (proximity information)

\[s_1 = \ldots g \begin{array}{|c|c|c|} \hline a & c & d \hline b & e & f & g \hline \end{array} e b \ldots \]

\[s_2 = \ldots b \begin{array}{|c|c|c|} \hline g & f \hline e & d & a & b & c \hline f & b \ldots \end{array} \]
Fortifying the PQ?

\[s_1 = \ldots g a c d b e f g e b \ldots \]

\[s_2 = \ldots b g f e d a b c f b \ldots \]
Food for thought...(fortified PQ)

- How do a set of transcription factors hone in on a target set of genes?
- use mini-motifs in binding site layouts (say in yeast species *S. cerevisiae, S. paradoxus, S. mikatae*, and *S. bayanus*)
What else is PQ structure good for?
WHAT?: addresses a fundamental curiosity: how did humans populate the earth as we see today? (genetic migratory history)
WHO?: National Geographic & IBM on a 5-year study
HOW?: collect data - DNA sample from people all over the world (associate geography)
WHAT? addresses a fundamental curiosity: how did humans populate the earth as we see today? (genetic migratory history)
WHAT? addresses a fundamental curiosity: how did humans populate the earth as we see today? (genetic migratory history)

WHO? National Geographic & IBM on a 5-year study
WHAT? addresses a fundamental curiosity: how did humans populate the earth as we see today? (genetic migratory history)

WHO? National Geographic & IBM on a 5-year study

HOW? collect data-
DNA sample from people all over the world indigenous people (associate geography)
The Genographic Project
Y-SNP Phylogeny

90 (50 - 130) KYA, Hammer and Zegura
59 (40 - 140) KYA, Thomson et al.

69 (56 - 81) KYA, Hammer and Zegura
40 (35 - 89) KYA, Thomson et al.
Y-Haplogroup Distribution

What?: Context
How?: Permutations → PQ trees
More?: PQ Variations

Phylogeny etc.
Population genomics

Pattern Discovery in Bioinformatics
What?: Context
How?: Permutations → PQ trees
More?: PQ Variations
Phylogeny etc.
Population genomics

mtDNA TREE
What?: Context
How?: Permutations → PQ trees
More?: PQ Variations

(Possible) Migration History

Human mtDNA Migrations
Copyright 2002 © Mitomap.org

Laxmi Parida
Pattern Discovery in Bioinformatics
Some Unanswered Questions...
Block of Short Tandem Repeat Polymorphisms (STRP) inverted in a significant fraction of human population:

STRP’s on the short arm of chromosome 8
Block of Short Tandem Repeat Polymorphisms (STRP) inverted in a significant fraction of human population:

STRP’s on the long arm of chromosome 17
The Phylogeny Reconstruction Problem

\[
\Pi \\
A=0234516789 \\
B=0154326987 \\
C=0678321549 \\
D=3210678549 \\
E=0123678945 \\
F=0187632549 \\
G=0123459876 \\
H=0154326789
\]
Assumptions

1. unsigned permutations
2. inversion and translocation
 - $D(\pi_1, \pi_2)$ denote the smallest number of operations, inversion and/or transposition, that takes π_1 to π_2.
Terminology

Definition

$F(T)$: The *frontier* of a tree T, $F(T)$, is the permutation obtained by reading the labels of the leaves from left to right.

Definition

$T \equiv T'$: T is *equivalent* to T', if one can be obtained from the other by applying a sequence of the following transformation rules:

1. Arbitrarily permute the children of a P-node, and
2. Reverse the children of a Q-node.

Definition

$\mathcal{F}(T)$: $\mathcal{F}(T) = \{ F(T') | T' \equiv T \}$.
Example

\[X = \{ \text{a, b, c, d, e} \} \]

\[T \]

\[\text{FRONTIER}(T) = \text{abcde} \]

\[T' \]

\[\text{FRONTIER}(T') = \text{edabc} \]

\[T' \equiv T. \]

\[\mathcal{F}(T) = \mathcal{F}(T') \]

\[= \{ \text{abcde, abced, cbade, cbaed, deabc, decba, edabc, edcba} \}. \]
A Tree T such that $\Pi \subseteq F(T(\Pi))$

(\Pi is a set of permutations)

$\pi_1 = 0123456789$
$\pi_2 = 0145238967$
$\pi_3 = 6723894510$
$\pi_4 = 4598326701$
$\pi_5 = 8923674501$
$\pi_6 = 8932674501$

$T(\Pi)$ is the minimal consensus PQ tree of Π.

$Laxmi Parida
Pattern Discovery in Bioinformatics$
Oriented PQ Trees (oPQ Trees)

1. Minimal consensus of two permutations.
2. All Q-nodes are oriented.
3. The children of P-nodes are labeled with integers.
oPQ Tree Example

\[\vec{T} = \vec{T}_{\pi_1}(\pi_2) \]

The oPQ tree of \(\pi_1 \) and \(\pi_2 \). Note that \(\text{Size}(\vec{T}_1) = 7 \).
Algorithmic Implication-1

Theorem

Given permutations π_1, π_2 of length n each, $\vec{T}_{\pi_1}(\pi_2)$

1. is unique,

2. $\text{Size}(\vec{T}_{\pi_1}(\pi_2)) = \mathcal{O}(n)$, and,

3. can be constructed in $\mathcal{O}(n)$ time.
Algorithmic Implication-2

Theorem

Given a fixed constant c *and* π *of size* n *and*, let S *a set of non-equivalent oPQ trees* S *be defined as follows:*

$$S = \left\{ \vec{T}_{\pi}(\pi') \mid D(\pi, \pi') = c \text{ and } \pi' \text{ is a permutation of size } n \right\}$$

Then

1. $|S| = \mathcal{O}(1)$, and
2. for each $\vec{T} \in S$, $\text{Size}(\vec{T}) = \mathcal{O}(1)$.

Laxmi Parida

Pattern Discovery in Bioinformatics
An oPQ tree where:

1. Each internal node has at most one leaf node.

2. Each leaf node is labeled with a signed number \(i \) where it represents the \(i \)th block in \(\pi_1 \).

\(\text{(plus sign - identical in } \pi_1 \text{ and } \pi_2, \)

\(\text{minus sign - block flipped in } \pi_2. \) \)
Designing the oPQ Templates (Nested block inversions)
Two Inversions (Disjoint blocks)

What?: Context

How?: Permutations → PQ trees

More?: PQ Variations

Phylogeny etc.

Population genomics

Two Inversions (Disjoint blocks)

+1 +2 +3 +4 +5

+1 +3 +4 +5

D1

+1 +2 +3 -4 +5

D2

D1

D2

Laxmi Parida

Pattern Discovery in Bioinformatics
Two Inversions (Straddling blocks)

What?: Context
How?: Permutations → PQ trees
More?: PQ Variations
Phylogeny etc.
Population genomics

Laxmi Parida
Pattern Discovery in Bioinformatics
The Permutation Tree Construction Problem

Problem
Given Π, the PTC problem is to construct the permutation tree $T(V, E)$ of minimum length, where

$$\text{Len}(T) = \sum_{(v_1, v_2) \in E} D(\pi(v_1), \pi(v_2)).$$

Theorem
Given a random collection Π, the expected number of permutation trees (with small edge length c) on Π is $o(1)$.
Experiments

1. sequence of length 200 each
2. transposition or inversion (size 5 to 10 bases)
3. 16 leafnodes and 4-7 internal nodes makeup Π
Results on simulations
(RECOMBCG 06, JCB 06)

(a) inserting and/or deleting random positions,
(b) inserting random segment of size from 2 to 7,
(c) deleting random segments, and,
(d) a combination of (b) and (c).

Number of correct trees out of the 50 experiments:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifurcating</td>
<td>39</td>
<td>35</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>Multifurcating</td>
<td>36</td>
<td>28</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>
Pattern Discovery in Bioinformatics
Theory & Algorithms
Laxmi Parida