# **BINGHAMTON** A Neural Network Based Nonlinear Feature Transformation for Speech Recognition

UNIVERSITY

STATE UNIVERSITY OF NEW YORK

### Hongbing Hu, Stephen A, Zahorian

Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902, USA hongbing.hu@binghamton.edu, zahorian@binghamton.edu

# Introduction

- Accurate Automatic Speech Recognition (ASR) Highly discriminative features
  - Incorporate nonlinear frequency scales and time dependency
  - Low dimensionality of feature space
  - Efficient recognition models
  - HMMs: good time alignment capability and convenient mechanisms for incorporating language models
  - Neural Networks: good discriminative power
- Nonlinear Feature Transformation for Speech Recognition
  - Combination of Neural Networks and HMMs A neural network based Nonlinear Principal Component
  - Analysis (NLPCA) is used as a dimensionality reduction approach for speech features

# **Experimental Evaluation**

### Database

| TIMIT database |                                                                 |
|----------------|-----------------------------------------------------------------|
| Target         | Reduced 39 phone set mapped<br>down from the TIMIT 62 phone set |
| Training data  | 4620 sentences (460 speakers)                                   |
| Testing data   | 1680 sentences (168 speakers)                                   |

## Experiment 1

- NLPCA was evaluated with various dimensions in the reduced feature space
- □ HMMs were trained with 1, 3 and 5 states, and with 1, 2, 5 and 10 mixtures per state

### Experiment 1 Results

Recognition accuracies of 1-state (left) and 3-state HMMs (right) with various reduced feature dimensions





> NLPCA is able to represent the complexity of original feature in a reduced dimensionality space The reduced features result in high accuracy using a small number of mixtures and states in HMMs

## **NLPCA for HMM Recognition** Nonlinear Principal Components Analysis (NLPCA)

Based on a bottleneck neural network Activations from the middle hidden layer are used as the reduced dimensionality data



reduced data more suitable for speech representation

- Phoneme HMMs for Phonetic Recognition Dimensionality reduced features are recognized as phonemes using HMMs with Gaussian Mixture Model
- Parameters of the HMMs are trained by the Baum-Welch algorithm, independent of the NLPCA training



- Speech Features A modified Discrete Cosine Transformation Coefficients (DCTC) for representing speech spectra
- Discrete Cosine Series Coefficients (DCSC) for representing speech trajectories
- A total of 91 features (13 DCTCs x 7 DCSCs) are computed using 20 ms frames with 10 ms frame spacing Block lengths are fixed (10 frames in Exp. 1) and varied (Exp. 2 and 3)

## Experiment 2

- Various block lengths in DCTC-DCSC feature calculation were evaluated for optimal block length
- 20-dimensional NLPCA features were used to compare with the original 91-dimensional features

### Experiment 2 Results

Recognition accuracies of 1-state (left) and 3-state HMMs (right) using the original and reduced features





> NLPCA can account for some of the temporal information accounted with HMMS, thus potentially simplifying the HMM configuration



- 39 monophone HMMs are created using the HTK toolbox
- Bigram phone information is used as the language model
- Neural network in NLPCA 3 hidden-lavers with 500 nodes in the first and third hidden layers and varied nodes in the second layer

Input layer with 91 nodes and output layer with 39 nodes

## Experiment 3

- 50% of the training data was used for the NLPCA training and the other 50% of the data for HMMs
- 20-dimensional NLPCA features were compared with the original features with varying block length

### Experiment 3 Results

Recognition accuracies of 1-state (left) and 3-state HMMs (right) using the original and reduced



□ Comparing results with full training data, the best 1 state HMMs results are 2% lower and the best 3 state results are slightly lower using the partitioned training data

> Only a small degradation due to reduced size of the training data

# **NLPCA Training**

Neural Network in NLPCA is trained as a Classifier Feature Scaling

A input feature vector x at time i is scaled using

| µ: mean vector               |
|------------------------------|
| σ: standard deviation vector |
| of input features            |
|                              |

- Training Target Data
- A number of output nodes equal to the number of phone categories with a value of 1 for the target category and 0 for the non-target categories
- Weights estimation of the neural network Back-propagation algorithm to minimize the distance
- between the input features and target data is used

## Illustrations of features





Training Target Data



# Conclusions

- A neural network based nonlinear feature transformation (NLPCA) is incorporated with an HMM recognition model for continuous speech phonetic recognition
- Recognition accuracies with NLPCA reduced dimensionality features are higher than that with original features, especially for a small number of states and mixtures
- NLPCA features are able to well represent spectraltemporal information in segments as long as 200ms, thus potentially reducing HMM model complexity
- The entire recognition system could benefit from low dimensional features in terms of processing time and recognition accuracy