Does This Patient Have Parkinson Disease?
Goutham Rao; Laura Fisch; Sukanya Srinivasan; et al.

http://jama.ama-assn.org/cgi/content/full/289/3/347

Correction
Contact me if this article is corrected.

Citations
This article has been cited 18 times.
Contact me when this article is cited.

Topic collections
Neurology; Movement Disorders; Parkinson Disease/ Parkinsonian Disorders; The Rational Clinical Examination
Contact me when new articles are published in these topic areas.

Subscribe
http://jama.com/subscribe

Permissions
permissions@ama-assn.org
http://pubs.ama-assn.org/misc/permissions.dtl

Email Alerts
http://jamaarchives.com/alerts

Reprints/E-prints
reprints@ama-assn.org
Does This Patient Have Parkinson Disease?

Context Diagnosis of Parkinson disease (PD) remains challenging. An accurate diagnosis is important because effective symptomatic treatment for PD is available.

Objective To systematically review the literature for information on the precision and accuracy of the clinical examination for diagnosing PD.

Data Sources MEDLINE database was searched for all English-language articles related to the diagnosis of PD published from January 1966 through April 2001. The reference lists of all articles retrieved were searched for additional relevant sources.

Study Selection Studies in which patients presented with 1 or more typical features of PD were included if the final diagnosis was confirmed by a suitable criterion and data could be extracted to determine the accuracy of 1 or more symptoms or signs. Variability in descriptions of symptoms and signs made it impossible to combine data across existing studies for most findings.

Data Synthesis We identified 6 studies that met our criteria. The positive (presence) likelihood ratios (LRs) for tremor as a symptom of PD ranged from 1.3 to 17 (range of negative [absence] LRs, 0.24 to 0.60). Tremor as a sign of PD produced a range of positive LRs from 1.3 to 1.5 (negative LRs, 0.47 to 0.61). Clinical features useful in the diagnosis of PD include a history of the combination of symptoms of rigidity and bradykinesia (positive LR, 4.5; negative LR, 0.12); a history of loss of balance (range of positive LRs, 1.6 to 6.6; range of negative LRs, 0.29 to 0.39), symptoms of micrographia (range of positive LRs, 2.8 to 5.9; range of negative LRs, 0.30 to 0.44), and a history of shuffling gait (range of positive LRs, 3.3 to 15; range of negative LRs, 0.32 to 0.50). Trouble with certain tasks such as turning in bed (positive LR, 13; negative LR, 0.56), opening jars (positive LR, 6.1; negative LR, 0.26), and rising from a chair (range of positive LRs, 1.9 to 5.2; range of negative LRs, 0.39 to 0.58). Useful signs include the glabella tap test (positive LR, 4.5; negative LR, 0.13), difficulty walking heel-to-toe (positive LR, 2.9; negative LR, 0.32), and rigidity (range of positive LRs, 0.53 to 2.8; range of negative LRs, 0.38 to 1.6). Significant selection bias was detected in all studies included for review.

Conclusions Symptoms of tremor, rigidity, bradykinesia, micrographia, shuffling gait, and difficulty with the tasks of turning in bed, opening jars, and rising from a chair should be carefully reviewed in all patients with suspected PD. The glabella tap and heel-to-toe tests also should be assessed.

JAMA. 2003;289:347-353

www.jama.com
Box 1. Typological Classification of Tremors

Rest Tremor: Tremor occurring in a body part that is not voluntarily activated and is supported completely against gravity.

Action Tremors:

- **Postural.** Tremor that occurs while voluntarily maintaining a position against gravity.
- **Kinetic.** Tremor occurring during any voluntary movement.
 - (1) Simple. Tremor occurring during voluntary movements that are not target-directed.
 - (2) Intention. Tremor whose amplitude increases during visually guided movements (eg, finger-to-nose test).
 - (3) Task-Specific. Tremor that appears or is exacerbated by specific tasks (eg, writing).
 - (4) Isometric. Tremor that occurs during voluntary muscle contraction against a rigid stationary object (eg, squeezing examiner’s hand).

Box 2. Three Common Tremor Syndromes

Tremor of Parkinson Disease: Slow frequency (4-6/s) tremor at rest. Tremor inhibited during movement and sleep. Aggravated by emotional distress. “Pill rolling quality.”

Classic Essential Tremor: Bilateral, usually symmetric postural or kinetic tremor. Family history of tremor is common. Attenuated by alcohol.

Physiological Tremor: Present to differing degrees in all subjects. Enhanced form is easily visible, mainly postural, and has a high frequency (8-12/s). No evidence of underlying neurological disease. Cause is usually reversible (eg, caffeine).

41 patients diagnosed clinically with PD by neurologists, the disease was confirmed neuropathologically at autopsy in 31 (positive predictive value [PPV] of 76%). Hughes et al recently evaluated the accuracy of clinical diagnosis among 100 patients with PD, 86 of whom were followed up by neurologists, 7 by geriatricians, and 7 by internists. The diagnosis was confirmed at autopsy in 90 persons (PPV = 90%). An even more recent study confirmed PD at autopsy among 72 of 73 patients (PPV = 98.6%) followed up by neurologists affiliated with a highly specialized movement disorders center.8 Despite these improvements and impressive results, it is important to keep in mind that the clinical diagnoses in these studies were often made over a long period and by physicians with a great deal of expertise and experience. The accuracy of clinical diagnosis in other settings is unclear. Parkinson disease is still mistaken for other neurological disorders. The most frequent misdiagnoses include progressive supranuclear palsy, multisystem atrophy (MSA) (encompasses the diagnoses Shy-Drager syndrome, olivopontocerebellar atrophy, and striatoniigral degeneration), and dementia with Lewy bodies.9 The differential diagnosis also includes essential tremor and vascular pseudoparkinsonism. Mistaking PD for other conditions can lead to inappropriate and ineffective treatment. While a patient with essential tremor, for example, may benefit from a β-blocker, this treatment would have no effect on the tremor of PD. Inappropriate treatment based on misdiagnosis also delays the use of dopaminergic medications, which can decrease the severity of symptoms and disability.9

Mistaking other disorders for PD is also harmful. Dyskinesias, for example, appear in 15% to 85% of persons within 5 years of treatment with levodopa and hallucinations occur in 20% of patients.10 There is also evidence that levodopa causes damage to dopamine neurons leading to accelerated dopamine degeneration.3 Whether the initial diagnosis is correct or not, the disease has serious social and psychological consequences.11,12 In summary, the clinical examination is important in suspected PD because no laboratory or radiological tests are helpful diagnostically. Misdiagnosis of PD is associated with adverse effects.

Pathophysiological Characteristics

It is important to distinguish between PD and parkinsonism. Parkinsonism refers to any clinical syndrome in which 2 or more features are present such as tremor, rigidity, and bradykinesia. Parkinson disease is a form of primary or idiopathic parkinsonism. Viral infections, environmental toxins, oxidative stress, and heredity have all been suspected as causes.13 Secondary or acquired parkinsonism has a variety of causes including head trauma, cerebrovascular disease, and hydrocephalus.14,15 Secondary parkinsonism may persist for months after the drugs that caused it are discontinued. A thorough inquiry into past and current medication use, therefore, is essential when questioning patients presenting with parkinsonism. Parkinson disease manifests as neurons and dopamine are lost from the substantia nigra and intracytoplasmic inclusions (Lewy bodies) appear. Symptoms appear when 70% to 80% of dopamine is lost.16

Symptoms and Signs

Nonspecific insidious symptoms including generalized malaise, easy fatigability, and subtle personality changes mark the onset of PD. These may occur years prior to the appearance of tremor, limb rigidity, bradykinesia, and postural instability.16 Numerous secondary manifestations appear unpredictably and are as varied as disordered sleep (42% of patients),17 constipation (50%), pain (50%), depression (40%), and dementia (20%).16,18 Signs typically begin unilaterally and then progress asymmetrical.
James Parkinson described the combination of tremor and bradykinesia as a shaking palsy. Seventy-five percent of patients complain initially of a tremor that usually occurs at rest in an upper extremity and is characterized by visible oscillations with a frequency of 4 to 6 per second. Tremor appears intermittently, disappearing during sleep and increasing in severity during times of emotional distress or anxiety. It is often described as pill-rolling, because a rhythmic movement is observed in the hand as the index finger flexes and extends against the thumb repetitively.

Some basic features distinguish the tremor of PD from physiological and essential tremors (Box 1 and Box 2). Rigidity, an involuntary stiffness of the skeletal muscles, is a common sign. Electromyogram assessment of parkinsonian patients reveals an alternating discharge pattern in opposing muscle groups, even at rest (eg, triceps and biceps). Resistance to movement of limbs may be smooth or interrupted. Cog wheeling refers to the jerky motion of limbs as constant force is applied across a joint, which is similar to the ratcheting of the cogs of gears as they click. Unlike rigidity, spasticity refers to a selective increase of tone of flexor muscles in the arms and extensor muscles in the legs and suggests a diagnosis other than PD.

Bradykinesia refers to the overall slowing of active movement or slowness in initiating movement. The initial surge of motor activity is inadequate and movements are fragmented into a series of incremental steps. Postural instability in patients with PD presents as changes in gait and balance. Short and shuffling steps are often accompanied by festination. Loss of arm movements commonly appears. The patient may walk with the arms straight down, rather than swinging them back and forth. Gait disturbance is the major cause of disability in many patients. As postural reflex mechanisms are lost, patients become stooped over and have a tendency to fall. Those with severe deficits are sometimes confined to a wheelchair or bed.

How to Elicit Signs

Tremor. Tremor can be defined as any rhythmical, involuntary oscillatory movement of a body part. The tremor classification is complex and has overlapping features in different disease syndromes. Nevertheless, the Movement Disorder Society has developed a classification system to help clinicians distinguish tremor types. Tremors can be classified as rest or action.

The classification system divides tremors into 11 syndromes. Patients with PD typically have a slow (frequency of about 4-6/s) tremor at rest. It is easily observed by having the patient position his/her hands on his/her lap. Clinicians should be aware of the key features of this and classic essential tremor and physiological tremor (Box 2).

Precise measurement of tremor frequency and amplitude are sometimes used in diagnostic evaluation. This requires special devices and is beyond the scope of the clinical examination.

Rigidity. Involuntary muscle stiffness or rigidity can be shown if resistance to passive movement of the limbs is detected. With the patient relaxed, the examiner places his/her thumb across the antecubital fossa with one hand while passively flexing and extending the elbow several times with the other hand. Rigidity often increases with repeated flexion and extension movements. With cog wheeling, the examiner feels alternate periods of resistance and relaxation. With lead-pipe rigidity, the examiner feels smooth but increased muscle tone throughout passive flexion and extension. Rigidity and cog wheeling may be felt in other large joints, but if detected in the arms, there is no need to confirm their presence elsewhere. Many patients with essential tremor manifest a rhythmical resistance to passive movements of a limb.
while there is voluntary action of another body part. This is not true cog wheeling but is known as Froment sign, which also appears in PD patients.

Bradykinesia. Bradykinesia refers to a decrease in the speed and amplitude of complex movements. Jobbagy et al describe 4 maneuvers designed to detect bradykinesia: tapping the fingers, twiddling, pinching and circling, and tapping with the heel. Twiddling refers to repeated rotation of the hands in front of the body. The pinching and circling test is a sequence of 6 movements: pinching (opposing thumb and index finger) with the right hand and then with the left hand; circling (rotating the hand in a circle) with the right hand and then with the left hand; pinching with the right hand while simultaneously circling with the left; and pinching with the left hand while simultaneously circling with the right (FIGURE 1). Jobbagy et al were able to quantify the performance of patients on these tasks using a motion analyzer, although a specific threshold “score” to define bradykinesia was not determined. However, poor performance of these maneuvers is easily detectable and clinicians can use them to confirm the presence of bradykinesia subjectively.

Glabella Tap Reflex. This reflex is tested by percussion of the forehead with the examiner’s index finger or by pulling a fold of skin between the thumb and index finger on the temple lateral to the external canthus and tapping with the thumb. The orbicularis oculi muscle reflexively contracts causing both eyes to blink. The reflex blinking normally stops after tapping is repeated 5 to 10 times. Persistent blinking is a positive response sometimes referred to as Myerson sign. Care should be taken to keep the examiner’s finger above the patient’s eyes to avoid blinking in response to visual threat (FIGURE 2).

Are These Features Found in Other Diseases?

The symptoms and signs of idiopathic PD overlap with those of other neurological diseases including MSA and progressive supranuclear palsy.

Like PD, MSA often presents with asymmetric rigidity and akinesia, but only a minority of patients has resting tremor. Half of patients with MSA present with autonomic dysfunction and cerebellar symptoms and one quarter demonstrate a transient response to levodopa. Similarly, patients with progressive supranuclear palsy seldom present with tremor. Rigidity and postural instability, however, are common.

Parkinsonism is sometimes also a feature of Alzheimer disease. However, Alzheimer disease is easy to distin-

![Figure 2. Glabella Tap Test](Image)

Table 1. Grade C Studies Included for Review

<table>
<thead>
<tr>
<th>Source</th>
<th>No. of Subjects</th>
<th>Age, Mean (Range), y</th>
<th>Patient Population</th>
<th>Reference Standard for Diagnosis of PD</th>
<th>Reason Study Not Grade A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hughes et al, 1992</td>
<td>100</td>
<td>64.5 (31-85)</td>
<td>Diagnosed clinically as having PD</td>
<td>Autopsy findings of depletion of nigral pigmented neurons and proliferation of Lewy bodies</td>
<td>Significant selection bias because patients studied were clinically diagnosed as having PD</td>
</tr>
<tr>
<td>Wenning et al, 2000</td>
<td>138</td>
<td>60.6 (NA)</td>
<td>Diagnosed clinically as having PD or MSA</td>
<td>Autopsy findings consistent with PD or MSA</td>
<td>Significant selection bias because patients studied were clinically diagnosed as having PD</td>
</tr>
<tr>
<td>Pearce et al, 1968</td>
<td>100</td>
<td>47.8 (NA)</td>
<td>Unselected inpatients and outpatients diagnosed as having PD and controls without known neurological disease</td>
<td>Detailed neurological examination</td>
<td>Samples of patients who obviously have the condition; comparisons nonindependent; small sample size</td>
</tr>
<tr>
<td>Duarte et al, 1995</td>
<td>128</td>
<td>66.3 (30-89)*</td>
<td>Patients attending a movement disorders polyclinic for the first time</td>
<td>Detailed neurological evaluation</td>
<td>Convenience sample including many individuals likely to have PD; small sample size</td>
</tr>
<tr>
<td>Mutch et al, 1991</td>
<td>123</td>
<td></td>
<td></td>
<td>Unclear standard used</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>75 (57-89)</td>
<td>35 Diagnosed as having PD</td>
<td>Unclear standard used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meneghini et al, 1992</td>
<td>108</td>
<td>NA</td>
<td>87 Inpatients with neurological disorders and 21 patients without known neurological disease</td>
<td>Detailed neurological evaluation</td>
<td>Samples of patients who obviously have the condition (including many individuals likely to have PD and controls); small sample size; prone to observer bias</td>
</tr>
</tbody>
</table>

Abbreviations: PD, Parkinson disease; MSA, multisystem atrophy; NA, not available.
*For 37 patients diagnosed as having PD only.
guish from PD because other features are much more prominent. Furthermore, unlike in PD, cognitive impairment is present at the onset of Alzheimer disease.

METHODS

Four of the authors (G.R., L.F., T.O., and C.E.) performed independent searches of the MEDLINE database (1966-2001), using a number of Medical Subject Headings (exp tremor, exp PD, essential tremor) combined with the search terms and strategy used for the Rational Clinical Examination series.31

All relevant articles were retrieved. The resulting set of articles was divided into 3 parts, each of which was reviewed by a pair of authors. The reference lists of all articles were also carefully searched for additional articles. Articles were included for study if they met the following criteria: dealt primarily with the diagnosis of PD; included patients presenting with 1 or more typical parkinsonian symptoms or signs (eg, tremor, rigidity); final diagnosis confirmed by a suitable criterion standard, such as serial or detailed neurological evaluation or pathological confirmation at autopsy; and contained original data from which 2 × 2 tables could be extracted to calculate the sensitivity, specificity, and positive and negative likelihood ratios (LRs) for different signs and symptoms. As the number of suitable articles was small, additional inclusion criteria such as a minimum sample size or publication after a certain year were not used. However, the quality of articles included was assessed according to criteria previously developed for this series.31

The LRs for different diagnostic features were calculated when not available in the original articles. Corresponding 95% confidence intervals (CIs) were determined by the method of Greenland and Robins.32 All values were rounded to 2 significant digits. When identical or similar diagnostic features appeared in more than 1 article and the patients were similar across studies in terms of demographics and illness characteristics, weighted summary LRs (pooled LRs) and the corresponding 95% CIs were calculated using the Der-Simonian-Laird random effects method.33 We used MetaWin statistical software (version 2; Sinauer Associates, Sunderland, Mass).

RESULTS

Quality of the Evidence

A total of 185 articles were reviewed. All authors agreed about which articles met our selection criteria. We chose 6 articles. Two articles34,35 included independent blind comparisons of symptoms and signs of a small number of patients who had been diagnosed as having PD or MSA based on comparison of clinical records to pathological results at autopsy. Because the patients studied had already been diagnosed clinically as having PD or MSA, selection bias was a serious problem. These 2 articles provided level 3 evidence, leading to grade C recommendations.

The remaining 4 articles36-39 had numerous methodological biases. Although of lower methodological quality, they can still be classified as containing level 3 evidence and providing grade C recommendations (TABLE 1). Selection bias was a major problem in all 4 articles since many of the patients evaluated had either been diagnosed as having PD on initial clinical examination or had obvious par-

<table>
<thead>
<tr>
<th>Table 2. Symptoms Evaluated in Patients With Possible Parkinson Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom</td>
</tr>
<tr>
<td>Tremor</td>
</tr>
<tr>
<td>Arms or legs shake</td>
</tr>
<tr>
<td>Duarte et al,37 1995</td>
</tr>
<tr>
<td>Pearce et al,36 1968</td>
</tr>
<tr>
<td>Tremor as initial symptom34</td>
</tr>
<tr>
<td>Tremor of head or limbs35</td>
</tr>
<tr>
<td>Rigidity</td>
</tr>
<tr>
<td>Muscle stiffness36</td>
</tr>
<tr>
<td>Paralysis or weakness37</td>
</tr>
<tr>
<td>Rigidity and bradykinesia39</td>
</tr>
<tr>
<td>Facies and general symptoms or historical findings</td>
</tr>
<tr>
<td>Face less expressive41</td>
</tr>
<tr>
<td>Feet freeze35</td>
</tr>
<tr>
<td>Impaired consciousness35</td>
</tr>
<tr>
<td>Symmetric onset35</td>
</tr>
<tr>
<td>Bradykinesia</td>
</tr>
<tr>
<td>Difficulty rising from chair</td>
</tr>
<tr>
<td>Duarte et al,37 1995</td>
</tr>
<tr>
<td>Mutch et al,36 1991</td>
</tr>
<tr>
<td>Posture and motor tasks</td>
</tr>
<tr>
<td>Loss of balance</td>
</tr>
<tr>
<td>Duarte et al,37 1995</td>
</tr>
<tr>
<td>Mutch et al,36 1991</td>
</tr>
<tr>
<td>Shuffling gait</td>
</tr>
<tr>
<td>Duarte et al,37 1995</td>
</tr>
<tr>
<td>Mutch et al,36 1991</td>
</tr>
<tr>
<td>Trouble turning in bed40</td>
</tr>
<tr>
<td>Trouble buttoning35</td>
</tr>
<tr>
<td>Trouble opening jars35</td>
</tr>
<tr>
<td>Uncontrolled limbs35</td>
</tr>
<tr>
<td>History of falls35</td>
</tr>
<tr>
<td>Fine motor</td>
</tr>
<tr>
<td>Micrographia</td>
</tr>
<tr>
<td>Duarte et al,37 1995</td>
</tr>
<tr>
<td>Mutch et al,36 1991</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; LR, likelihood ratio.
tremor, rigidity, and bradykinesia. In one study,39 a screening instrument was administered to patients with either an initial diagnosis of PD, peripheral neuropathy, stroke, or epilepsy. The instrument included both a self-administered questionnaire and a set of physical examination tasks, performance of which was graded subjectively. Neurologists confirming the presence of PD were aware of each patient’s initial diagnosis and responses to the screening instrument. This obviously makes the study prone to observer bias. Like most studies with low methodological quality, these 4 articles36-39 reported optimistic LRs.

Precision

Interclinician and intraclinician reliability of symptoms and signs was documented only for the glabella tap sign.36 Precision could not be quantified in the clinicopathological studies since symptom histories were obtained retrospectively from charts. Interclinician reliability in eliciting the glabella tap sign was found to be 88% among patients with intracranial disease and 100% in controls.36 A κ coefficient for interclinician agreement could not be calculated because data about how each clinician scored each patient was not included. No causes for imprecision in assessing symptoms or signs were documented in the selected articles.

Accuracy

Several symptoms, collected by patient self-report in a questionnaire,38 significantly increase the likelihood of PD when present and decrease it when absent. The symptoms are: trouble turning in bed; shuffling while walking; micrographia; difficulty rising from a chair; loss of balance; and trouble opening jars. The diagnostic value of tremor as a symptom varied widely among the selected articles, with a range in positive LRs of 1.3 to 1.4 in the studies of higher quality (Table 2 and Table 3).

The lack of tremor as a symptom makes PD less likely (range of negative LRs, 0.24 to 0.60). However, the usefulness of the lack of tremor as a symptom is limited by verification bias in the corresponding studies. Verification bias occurs when confirmatory or criterion standards are selectively applied to patients depending on the results of their preliminary screening test.30 The value of a tremor detected on physical examination approximates that tremor as a sign (range of positive LRs, 1.3 to 1.5). The 95% CIs around the LR for the absence of tremor on physical examination are also similar to those for the lack of tremor as a sign (LR, 0.27-1.03). Rigidity as a symptom or...
sign has limited usefulness because the 95% CIs include 1. The glabella tap sign is useful with a positive LR of 4.5 (95% CI, 2.8-7.4) and a negative LR of 0.13 (95% CI, 0.03-0.47). Pooling the results for “change in speech” and “voice softer” provides a positive LR of 3.4 (95% CI, 2.6-3.7) and a negative LR of 0.45 (95% CI, 0.23-0.73) (Table 4). The results confirm the limited usefulness of a positive response to levodopa, as the pooled positive LR is 1.4 (95% CI, 1.0-1.8). The negative LR, however, is 0.46 (95% CI, 0.39-0.68) making PD less likely in patients who do not respond.

SCENARIO RESOLUTION

This patient presents with many common features of PD. We would question him about the tasks of turning in bed and opening jars. A sample of his writing may reveal micrographia. A glabella tap test should be performed. Additional positive symptoms or signs would justify empiric treatment with dopaminergic medication with careful follow-up by a physician experienced in the treatment of this condition.

BOTTOM LINE

Few studies address the clinical diagnosis of PD rigorously. Nearly 200 years after it was first described, the accurate clinical diagnosis of PD remains a significant challenge. There is a great need for diagnostic studies involving larger numbers of patients in which presenting symptoms and signs are prospectively compared with the final diagnosis, established through a suitable criterion standard, such as autopsy or serial neurological evaluation.

A number of classic features of PD, when present, do help establish the diagnosis. These include the symptoms of tremor, combination of rigidity and bradykinesia, loss of balance, micrographia, and shuffling gait. Difficulty with the tasks of turning in bed, opening jars, and rising from a chair should also raise the suspicion of PD. It is difficult to gauge the usefulness of the absence of tremor as a symptom in ruling out PD because of verification bias in the studies in which it was evaluated.

The diagnostic value of the classic combination of tremor, rigidity, and bradykinesia on examination is modest at best. Useful signs include the glabella tap, difficulty walking heel to toe, and the presence of rigidity on examination.

Acknowledgment: We thank Richard Bedlack, MD, Mitchell Helfin, MD, and Amy Rosenthal, MD, for their helpful reviews of the manuscript; Amy Haugh, MLS, for her valuable library assistance; and David Simel, MD, for his valuable guidance.

REFERENCES

SYMPTOMS AND SIGNS OF PARKINSON DISEASE

JAMA, January 15, 2003—Vol 289, No. 3 353

Downloaded from www.jama.com at MUSC Library on June 2, 2009