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Simple Summary: The clinical treatment of acute myeloid leukaemia is still dominated by chemotherapy.
Clinically used anti-leukaemia drugs have shortcomings such as myelosuppression, toxicity and drug
resistance. Therefore, the need to develop other chemotherapeutic drugs to meet more clinical needs is
urgent. Ribonucleotide reductase (RNR) consists of a catalytic large subunit M1 (RRM1) and a regulatory
small subunit M2 (RRM2), which provides dNTPs for DNA synthesis. The rapid proliferation of cancer
cells requires large amounts of dNTPs. Therefore, the use of RNR inhibitors is a promising strategy
for the clinical treatment of various malignancies. Monobenzone is an FDA-approved depigmenting
agent for vitiligo patients. In this study, we demonstrate that monobenzone is a potent inhibitor of RNR
enzyme activity by targeting RRM2 protein, and thus has significant anti-leukaemia efficacy in vitro and
in vivo. This finding suggests that monobenzone has the potential to be optimized as a novel anti-AML
therapeutic drug in the future.

Abstract: Acute myeloid leukaemia (AML) is one of the most common types of haematopoietic malignancy.
Ribonucleotide reductase (RNR) is a key enzyme required for DNA synthesis and cell proliferation, and
its small subunit RRM2 plays a key role for the enzymatic activity. We predicted monobenzone (MB)
as a potential RRM2 target compound based on the crystal structure of RRM2. In vitro, MB inhibited
recombinant RNR activity (IC50 = 0.25 µM). Microscale thermophoresis indicated that MB inhibited RNR
activity by binding to RRM2. MB inhibited cell proliferation (MTT IC50 = 6–18 µM) and caused dose-
dependent DNA synthesis inhibition, cell cycle arrest, and apoptosis in AML cells. The cell cycle arrest
was reversed by the addition of deoxyribonucleoside triphosphates precursors, suggesting that RNR was
the intracellular target of the compound. Moreover, MB overcame drug resistance to the common AML
drugs cytarabine and doxorubicin, and treatment with the combination of MB and the Bcl-2 inhibitor
ABT-737 exerted a synergistic inhibitory effect. Finally, the nude mice xenografts study indicated that MB
administration produced a significant inhibitory effect on AML growth with relatively weak toxicity. Thus,
we propose that MB has the potential as a novel anti-AML therapeutic agent in the future.

Keywords: acute myeloid leukaemia; ribonucleotide reductase; monobenzone; anti-proliferative
activity; combination therapy
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1. Introduction

Acute myeloid leukaemia (AML) is a blood cancer characterized by abnormal pro-
liferation and differentiation arrest of myeloid progenitor cells, and it is one of the most
common types of haematopoietic malignancy. Due to the rapid onset of the pathogenesis of
several subtypes of AML and the lack of specific therapies, patients must undergo treatment
for a long time, and more than half of patients ultimately die from their disease [1–3]. The
current clinical treatment strategies for the disease include chemotherapy, radiotherapy,
immunotherapy, and bone marrow transplantation. Among them, the most common treat-
ment used over the last decades is “7 + 3” standard induction chemotherapy, consisting of
cytarabine and daunorubicin. However, these anti-leukaemia drugs have limitations, such
as low specificity, myelosuppression, hepatotoxicity, nephrotoxicity, and gastrointestinal
toxicity, which may cause intolerance in patients [4–8]. Meanwhile, leukaemia cells tend
to exhibit chemoresistance after a period of treatment due to the abnormal expression of
drug resistance-related proteins, the dysregulation of certain enzyme activities, mutations
in oncogenes and chemo-induced DNA damage repair [9–13]. As a result, patients with
AML usually experience high risks of relapse or developing secondary tumours. There-
fore, developing novel anti-leukaemia agents with high potency and few side effects is
still challenging.

Ribonucleotide reductase (RNR) catalyses the conversion of ribonucleoside diphos-
phates (NDPs) into deoxyribonucleoside diphosphates (dNDPs), which are then phospho-
rylated to become deoxyribonucleoside triphosphates (dNTPs), the building blocks for
DNA synthesis in cells. The RNR holoenzyme consists of the catalytic large subunit M1
(RRM1) and the regulatory small subunit M2 (RRM2) or its homologue RRM2B [14–16].
The fast proliferation of cancer cells requires a large number of dNTPs for DNA replication
and repair. Pan-cancer expression profiling studies have revealed that the expression of
RRM2 and RRM1 is upregulated in multiple types of cancers [17–19]. The use of RNR
inhibitors, either as a single agent or combined with other therapies, has been suggested to
be a promising strategy for the clinical treatment of multiple malignancies [20–22]. Several
RNR inhibitors are also used in anti-leukaemia therapies, such as hydroxyurea (HU) that
targets RRM2 to treat chronic myeloid leukaemia (CML) and AML and the ribonucleoside
analogues cytarabine and clofarabine that target RRM1 to treat acute leukaemia [23–25].
However, these RNR inhibitors still limit their clinical application [22,26,27]. Thus, novel
categories of RNR inhibitors may meet this urgent clinical need.

Monobenzone (monobenzyl ether of hydroquinone, MB) is a depigmenting agent
that was discovered by Oliver et al. in 1939 [28]. It has been approved by the FDA as a
cream formulation for skin depigmentation of patients with vitiligo. The mechanism of
action for depigmentation by MB is correlated with the inhibition of tyrosinase [29–31]. The
compound also is cytotoxic to melanocytes and melanoma cells and increases melanocyte
and melanoma cell immunogenicity [32–36]. In this study, we show that RRM2 expression
is strongly correlated with malignant proliferation in patients with AML and that MB
is a potent inhibitor of RNR enzymatic activity by targeting the RRM2 protein, thereby
possessing significant anti-leukaemia efficacy in vitro and in vivo. The compound may
overcome the resistance to cytarabine (Ara-C) and doxorubicin (DOX), and its combined
use with pro-apoptotic agents significantly enhances inhibitory effects on AML cells. This
finding suggests the potential for MB to be optimized as a novel anti-AML therapeutic
agent in the future.

2. Materials and Methods
2.1. Data Acquisition and Gene Set Enrichment Analysis (GSEA)

All expression datasets for patients with AML were downloaded from the GEO, TCGA
and GTEx databases. The GSE147515 dataset was obtained from GEO, including 198 nor-
mal samples and 1534 samples from patients with AML retrieved from 11 datasets [37].
We also downloaded mRNA expression data and clinical information from 151 samples
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from patients with AML from TCGA (https://portal.gdc.cancer.gov, accessed on 21 Febru-
ary 2022).

GSEA was performed to interpret biological pathways related to RRM2 expression [38].
We divided the AML samples into two groups according to RRM2 expression levels (high-
and low-RRM2 groups) and downloaded the c2.cp.kegg.v7.4.symbols.gmt subsets from
the Molecular Signatures Database (MSigDB) to evaluate relevant pathways and molec-
ular mechanisms. Gene sets with a normalized enrichment score |NES| > 1.0, NOM
p-value < 0.05 and FDR q-value < 0.25 were considered statistically significantly enriched.

2.2. Similarity Search and Molecular Docking

Similarity searching of the approved drug from DrugBank release version 5.1.5 [39]
against osalmid was performed by Open Babel 2.4.0 [40] using FP3 molecular fingerprints.

The crystal structure of the RRM2 protein was retrieved from the RCSB database (PDB
ID: 3OLJ) [41]. The Protein Preparation Wizard in Schrödinger 2020 (www.schrodinger.com,
accessed date: 21 January 2022) was used to remove the water molecules and ions, add
hydrogens and fix bond orders in the crystal structure. The structure of MB was processed
using the LigPrep module in Schrödinger 2020 (www.schrodinger.com, accessed date:
21 January 2022). The docking software Glide [42] was used to generate the RRM2-MB
complex. The binding box with a size of 20 × 20 × 20 Å centred on D271 was generated
using the Receptor Grid Generation component of Glide, and the ligand MB was docked to
the box using the extra precision (XP) scoring function of Glide.

2.3. Compounds, Antibodies and shRNAs

HU and Ara-C were purchased from Sigma-Aldrich (St. Louis, MO, USA). MB, DOX
and ABT-737 were purchased from Selleck (Shanghai, China).

Antibodies against RRM1 (sc-11733), RRM2 (sc-398294) and RRM2B (sc-10840) were
purchased from Santa Cruz Biotech (Dallas, TX, USA). Antibodies against tubulin (ER130905)
and GAPDH (EM1101) were purchased from HuaBio (Hangzhou, China). Antibodies
against r-H2Ax (ab81299) were purchased from Abcam (Cambridge, UK). Antibodies
against H3 (EM30605) were purchased from HuaBio (Hangzhou, China).

Short hairpin RNAs targeting RRM2 (shRRM2) and the negative control (shNC) were
purchased from Huabio (Shanghai, China) and used to establish stably transfected KG-1A
cell lines by applying 2 µg/mL puromycin selection after transfection.

2.4. Preparation of the Recombinant RNR Protein and Activity Assays

The expression and purification of RRM1 and RRM2 proteins and the RNR enzy-
matic activity assays were performed as previously described [15]. Different doses of
compounds were incubated with 1 µM RRM1 and 1 µM RRM2 proteins at 25 ◦C for
30 min and then assayed for the enzymatic activity inhibition rate using the solvent
DMSO as a negative control. The RNR activity was calculated as follows: RNR activ-
ity = dCDP/(CDP + dCDP) × 100%.

2.5. Microscale Thermophoresis (MST) Assays

MST experiments were performed using a Monolith NT.115Pico instrument (Nan-
oTemper Technologies, Munich, Germany), ordinary capillary and 20% LED power. The
data were analysed at medium MST power. All small molecules were stored in pure DMSO
at a concentration of 100 µM at −20 ◦C. For MB, a 2-fold serial dilution was performed in
16 tubes with 10 µL in each tube using assay buffer (50 mM Tris-HCl, 100 mM KCl, 5 mM
DTT, pH 7.6, supplemented with 0.1% Pluronic F-127). The highest concentration of MB
in the first tube was 5 µM in 5% DMSO. Then, 10 µL of lysine-labelled RRM2 (200 nM)
were added to each tube. After mixing and incubating at room temperature for 30 min, the
mixture was transferred to a capillary. MO Control software was used to obtain data in
Binding Check, Binding Affinity or Expert mode. The MST measurement was performed at
25 ◦C for 20 seconds. The KD value was calculated based on the concentration-dependent

https://portal.gdc.cancer.gov
www.schrodinger.com
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change in RRM2 normalized fluorescence (Fnorm) in the presence of the compound after
10 s on time of the MST. The KD value obtained was the average of three independent
measurements. The data were analysed using MO affinity analysis software (NanoTemper
Technologies).

2.6. Cell Lines and Drug Resistance Induction

KG-1A, MOLM13, NB4, U2932, OCI-LY3, Jeko-1, and Ramos cells were kind gifts from
Professor Rongzhen Xu at the Second Affiliated Hospital of Zhejiang University. U2661B
and NCI-H929 cells were purchased from the Cell Bank at the Chinese Academy of Sciences
(Shanghai, China) and National Experimental Cell Resource Sharing Service Platform,
respectively. B16 cells were a kind gift from Professor Jian Sun of Zhejiang University. NB4,
OCI-LY3, and U2661B cells were cultured in IMDM. Other cells were all cultured in RPMI
1640 medium. The complete medium contained 10% foetal bovine serum, 100 units/ml
penicillin, and 100 units/mL streptomycin. All cells were cultured at 37 ◦C in a humidified
atmosphere with 5% CO2.

Ara-C-, DOX-, and HU-resistant KG-1A cell lines (KG-1A-ARAC, KG-1A-DOX, and
KG-1A-HU) were constructed by stepwise incubations with the respective drugs. Briefly,
KG-1A cells in logarithmic growth phase were cultured with different 50% inhibitory
concentrations (IC50s) of Ara-C, DOX, and HU (0.15, 0.05, 100 µM, respectively, diluted with
serum-free RPMI 1640, prepared immediately before use). After the cells were confluent
and stably passaged 4 times, the drug treatment concentration was increased to 1.5 times the
original concentration, which was repeated until drug resistance developed and remained
stable in drug-free culture medium. Drug resistance was determined by performing MTT
assays every 4 weeks. The whole process lasted 6 months.

2.7. MTT Cell Viability Assays and Analyses of the Effects of Drug Combinations

One hundred microliters of cells (5000–30,000 cells) were seeded into each well of 96-
well plates and incubated with 100 µL of different doses of compounds for 72 h. Then, 20 µL
of a 5 mg/mL MTT solution were added. After 4 h of incubation at 37 ◦C, the supernatant
was removed, and 200 µL of solution (10% m/v SDS, 5% v/v isobutanol, and 0.1% 10 M
HCl) were added to the well. After an overnight incubation at 37 ◦C, the absorbance (OD)
of each well was measured at 570 nm using a microplate reader. The cell viabilities and
IC50s were calculated using GraphPad Prism v6 software (GraphPad Software, San Diego,
CA, USA). The cell viability of the solvent control group (0.1% DMSO in complete growth
medium) was set to 100%.

For analyses of the effects of drug combinations, MB was mixed with ABT-737 at ratios
of 20:1 and 5:1 according to their IC50s for MOLM13 and KG-1A cells, respectively, and
two-fold serial dilutions covering their EC90, EC75, EC50 and EC25 values were added to
the cell culture media, with 3 replicate wells analysed for each concentration of each ratio.
On Day 3, cell viability was determined by performing MTT assays. The effects of drug
combinations were determined using the median effect methods reported by Chou and
Talalay with the CalcuSyn program (Biosoft, Cambridge, UK) [43].

2.8. Flow Cytometry Measurements

For the cell cycle analysis, tumour cells were treated with different doses of compounds
for 24 h in 6-well plates. The cells were fixed with 70% ethyl alcohol at 4 ◦C overnight.
Then, the samples were washed with PBS and stained with PI in buffer (2% v/v PI and
0.2% v/v RNase A, MULTI SCIENCES) for 15 min at room temperature. A flow cytometer
(FC500 MPL Beckman Coulter) was used to determine the cell cycle distribution. For the
assessment of the ability of dNTPs precursors deoxyribonucleoside (dNs) to reverse the
effects of drugs, tumour cells were treated with different doses of compounds and dNs at a
1:2 ratio for 24 h in 6-well plates. The detection method is the same as described above.

For cell apoptosis analyses, tumour cells were treated with different doses of com-
pounds for 48 h. The cells were collected and washed with PBS. Then, the cells were stained
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with an Annexin V-FITC solution (1% v/v Annexin V-FITC + 99% binding buffer, Multi
Sciences, Hangzhou, China) for 30 min at room temperature, followed by a propidium
iodide solution (Multi Sciences, Hangzhou, China) addition. Apoptosis was determined
using a flow cytometer (FC500 MPL Beckman Coulter).

For EdU incorporation assays, cells were seeded and treated with several concentra-
tions of compounds for 24 h in 6-well plates. Then, DNA synthesis was measured using
the Click-iT Plus EdU Alexa Fluor 647 Flow Cytometry Assay Kit (Invitrogen, C10634,
Waltham, MA, USA). The EdU incorporation ratio was detected using flow cytometry.

2.9. Quantitative Real-Time PCR and Western Blotting

Using RNAiso Plus (TaKaRa, Kusatsu, Shiga, Japan), PrimeScript RT kit (TaKaRa,
Kusatsu, Shiga, Japan), SYBR® Premix Ex TaqTM (TaKaRa, Kusatsu, Shiga, Japan) and
LightCycler® 480 system (Roche Diagnostics, Basel, Switzerland), the total RNA was
extracted from cells and then reverse transcribed for quantitative real-time PCR (qRT-PCR).
Gene expression was normalised using actin levels as an internal control.

For Western blots, cells were collected by centrifugation after washing twice with
phosphate-buffered saline (PBS) and then lysed in RIPA lysis buffer (Millipore, Darm-
stadt, Germany) containing an intact protease inhibitor (Roche Basel, Switzerland) and
a phosphatase inhibitor (Roche) to obtain whole cell extracts. Protein concentrations
were measured using the Bradford method (Bio-Rad, Hercules, CA, USA). Extracts were
separated on SDS-PAGE gels and transferred to nitrocellulose membranes (Whatman,
Maidstone, UK), followed by incubation with diluted primary antibodies and then with
IRDye 800CW or IRDye 680-conjugated secondary antibodies. The results were visualised
using an Odyssey infrared imaging system (LI-COR Biosciences, Lincoln, NE, USA).

2.10. Tyrosinase Activity Assay

Tyrosinase activity was determined using the method described by Kim et al. [44],
with slight modifications. Briefly, AML cells were plated in 96-well plates at a density
of 15,000–20,000 cells/well. After an incubation with the test substance, the cells were
washed with PBS, lysed with 100 µL of 1% Triton-X/PBS (v/v, 90 Al/well), and then frozen
at −80 ◦C for 1–2 hours. The cells were thawed at room temperature for 40 minutes to
rupture the cells. After thawing and mixing in a 37 ◦C water bath for 1 hour, 100 µL of 0.2%
L-DOPA/PBS (m/v) were added to each well. After an incubation for 4–6 hours at 37 ◦C,
the absorbance was measured at 475 nm.

2.11. Mouse Tumour Xenograft Experiments

Two hundred microlitres of PBS containing 2 × 105 MOLM13 cells were injected sub-
cutaneously into 4-week-old male nude mice (Shanghai SLAC Laboratory Animal Co., Ltd.,
Shanghai, China). After the xenografts were confirmed, the mice were randomly divided
into three groups (N = 8 mice per group) and treated with the solvent (5% DMSO, 8%
Tween 80, and 87% normal saline), 150 or 200 mg/kg MB, respectively, by daily intraperi-
toneal injection. The tumour size and the body weight of each mouse were measured daily.
The tumour volume was calculated as 0.5ab2 (a = long diameter of the tumour, b = short
diameter). After 2 weeks of treatment, the mice were sacrificed, and the tumour weights
were measured. For each mouse, the alanine transaminase (ALT) and glutamic oxaloacetic
transaminase (AST) activities in serum samples were measured, and haematoxylin and
eosin (H&E) staining was performed to examine the liver tissue sections using routine
methods. The animal experiments were approved by the Laboratory Animals Welfare
Ethics Review Committee of Zhejiang University (ZJU20170522).

2.12. Statistical Analysis

GraphPad Prism software and R statistical software (version 4.1.1) were used for
statistical analyses. All data are reported as the means ± SD (standard deviations) of
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at least three independent experiments. The significance of differences in the data was
determined using the 2-tailed Student’s t test. p-values < 0.05 were considered significant.

3. Results
3.1. RRM2 Expression Was Positively Correlated with Malignant Proliferation in Patients with AML

We downloaded the GSE147515 and TCGA datasets to investigate the role of RNR
in patients with AML. The heatmaps depicted the expression profiles of the three RNR
subunits, RRM1, RRM2 and RRM2B (Figure 1A,B). KI67 and PCNA are proliferation-related
genes. Correlation analyses of the expression of these genes showed that RRM2 expression
was significantly correlated not only with RRM1 expression, but also with KI67 and PCNA
expression (Figure 1C,D). As a method to further understand the potential molecular
mechanisms of RRM2 in AML, the AML samples were divided into RRM2 high and low
expression groups, and GSEA was applied to identify the key biological pathways that were
significantly correlated with the RRM2 high expression group. Among them, nine RNR
function- and malignant phenotype-related pathways were highly enriched in the RRM2
high expression group, including the cell cycle, DNA replication, p53 signalling pathway,
homologous recombination, nucleotide excision repair, base excision repair, mismatch
repair, pyrimidine metabolism, and purine metabolism (Figure 1E,F). The results suggest a
positive correlation between the RRM2 expression level and AML malignant proliferation,
and RRM2 might be an important biomarker for risk stratification and therapeutic target
for patients with AML.
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Figure 1. Analyses of RRM2 expression in samples from patients with AML from the GEO and
TCGA databases. (A,B) Heatmaps showing the expression profiles of RRM1, RRM2, and RRM2B in
patients with AML. (C,D) Correlation analyses between the expression of RRM2 and RRM1 with
the cell proliferation biomarkers KI67 and PCNA in patients with AML. (E,F) KEGG enrichment
plots constructed using GSEA for the RRM2 high expression group of patients with AML. Data
in (A,C,E) were obtained from GSE147515 (N = 1534); data in (B,D,F) were obtained from TCGA
(n = 151). **** is a mirror image of the chart and has no special meaning.
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3.2. MB Potently Inhibited RNR Enzymatic Activity by Interacting with the RRM2 Protein

By virtual screening, we previously identified osalmid (Figure 2B) as a RRM2-targeting
compound, which was 10-fold more active in inhibiting RR activity than hydroxyurea [43].
In this study, by performing similarity search, MB, having a 66.7% Tanimoto coefficient to
osalmid was identified as a potential RRM2 inhibitor.
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Figure 2. MB interacted with RRM2 and inhibited the activity of recombinant RNR in vitro. (A) Chem-
ical structure of MB. (B) Chemical structure of osalmid. (C) The 3-dimensional interaction model
between MB and RRM2 generated using molecular docking (Glide SP in Schrodinger/2020) showing
the interaction between MB and key residues of RRM2 (PDB ID: 3OLJ). MB is represented in yellow
sticks. RRM2 helices and residues are presented as a cyan cartoon and cyan sticks, respectively.
Hydrogen bonds are represented as purple dashes. (D) In vitro recombinant RNR enzymatic assays.
HU and MB dose-dependently inhibited the enzyme activity. The solvent DMSO was used as a
negative control. (E,F) The binding between RRM2 protein and MB and the binding between RRM1
protein and MB were determined by MST assay. Fluorescence intensity and trend, and reproducibility
of MST traces were shown. Data shown here are representative of three independent experiments,
and the error is calculated as the standard deviation.

The binding mode of MB was predicted using molecular docking, and the results
suggest that the ligand is a potential inhibitor of RRM2 (Figure 2A,C). By performing an
enzymatic activity assay with recombinant RRM2 and RRM1 proteins, we showed that
MB potently inhibited RNR activity in a dose-dependent manner, and the 50% inhibitory
concentration (IC50) was 0.25 µM, which was approximately 100-fold lower than the IC50
of 29.82 µM for the RRM2-targeted drug HU (Figure 2D). Furthermore, MST analysis
revealed an interaction between MB and RRM2 proteins with a KD value of 22.5 ± 14 µM
(Figure 2E). Additionally, there is no interaction between MB and the large subunit RRM1
of RNR enzyme (Figure 2F). Based on these results, MB inhibits RNR activity by interacting
with the RRM2 protein.
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3.3. MB Effectively Inhibited Cell Growth and DNA Synthesis by Inhibiting RNR Enzymatic
Activity in AML Cells

Cell viability assays were performed to test the inhibitory effect of MB on tumour
cells, including AML (KG-1A, MOLM13 and NB4), lymphoma (Jeko-1, Ramos, OCI-LY3
and U2932), and multiple myeloma (NCI-H929 and U2661B) cells. As shown in Figure 3A
and Table 1, MB exerted a strong, dose-dependent inhibitory effect on the proliferation
of treated AML cells, with IC50 values of approximately 6–18 µM. MOLM13 cells were
the AML cell line most sensitive to MB, with an IC50 of approximately 6 µM, which was
approximately one-tenth the IC50 of HU.
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Figure 3. MB inhibited cell growth and DNA synthesis by inhibiting RNR enzymatic activity in AML
cells. (A) MTT assays were performed on tumour cells treated with different doses of MB or HU
for 72 h, and the solvent was used as negative control. (B) AML cells were treated with different
doses of MB for 24 h or 48 h, and the EdU incorporation was examined with flow cytometry (FCM).
(C,D) AML cells were treated with the indicated concentrations of MB for 24 h and then fixed with
70% ethanol, stained with PI, and subjected to an FCM analysis of the cell cycle distribution. The
quantitative results of the number of cells in S phase are shown in a bar plot. (E,F) AML cells were
treated with different doses of MB for 48 h and then analysed using FCM (PI & Annexin V method).
Quantitative results of apoptotic cells are shown in bar plots. (G) AML cells were treated with MB for
24 h or 48 h. Whole-cell lysates were subjected to Western blotting with anti-γH2AX and anti-H3
antibodies. (H,I) AML cells were treated with MB alone or in combination with dNs for 24 h and then
subjected to FCM analyses. The quantitative results of the numbers of cells in different phases of the
cell cycle are shown in bar plots. (J) KG-1A cells were stably transfected with shRNAs targeting RRM2
(shRRM2-1 and shRRM2-2) or a negative control (shNC). The knockdown effects were measured
with qRT-PCR. (K) The knockdown effects were measured with Western blotting. (L,M) Cells were
treated with different doses of MB for 24 h and then subjected to FCM assays. The relative number of
cells in the S phase is shown in a bar plot. All experiments described above were performed at least
three independent times. Error bars represent the SD. * p < 0.05, ** p < 0.005, *** p < 0.0005 compared
to the control group. Full Western blot images and western blotting gray value analysis can be found
at Supplementary Figures S5 and S6, Tables S1 and S2.
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Table 1. Statistics of MTT IC50 values.

IC50 (µM) MB HU

KG-1A 13.9 ± 1.64 201.05 ± 16.75

MOLM13 6.07 ± 1.55 48.85 ± 3.38

NB4 18.04 ± 3.36 242.6 ± 14.2

Jeko-1 9.6 ± 0.44 192.85 ± 11.45

Ramos 62.95 ± 29.02 715.65 ± 327.35

U2932 302.3 ± 156 1517 ± 309

OCI-LY3 16.96 ± 1.57 249.85 ± 16.55

NCI-H929 42.86 ± 14.68 422.85 ± 67.95

U2661B >100.00 >800.00

AML cells were treated with different concentrations of the compound to elucidate the
mechanisms of action of MB. EdU incorporation analyses showed that MB dose-dependently
inhibited DNA synthesis in MOLM13 and KG-1A cells (Figure 3B). Flow cytometry examina-
tions showed that the compound induced cell cycle is arrested at the S phase (Figure 3C,D) and
apoptosis (Figure 3E,F) in AML cells. Furthermore, Western blotting for r-H2Ax showed that
MB blocked DNA damage repair in the treated cells (Figure 3G). Importantly, the addition of ex-
ogenous dNs (including thymidine, deoxyadenosine, deoxyguanosine, and deoxycytidine) as
dNTP precursors significantly reversed the cell cycle arrest in S phase caused by MB treatment
at a concentration ratio of 2:1 in the AML cells (Figure 3H,I), suggesting that RNR is the active
target of the compound in the treated cells, resulting in the inhibition of DNA synthesis and
cell proliferation. In addition, knockdown of RRM2 alone with specific shRNAs (Figure 3J,K)
enhanced the RNR inhibitory effects of MB, as shown by the S phase arrest analyses in AML
cells (Figure 3L,M), supporting the hypothesis that targeting intracellular RRM2 might inhibit
AML malignant behaviours.

3.4. MB Overcame the Drug Resistance to Ara-C, DOX and HU in AML Cells

Drug resistance is a major problem in clinical AML treatment. We constructed Ara-C-,
DOX-, and HU-resistant KG-1A cell lines (KG-1A-ARAC, KG-1A-DOX, and KG-1A-HU).
The IC50s of these drugs for AML cells were increased at least 7-fold (Figure 4A–C and
Table 2). In comparison, MB inhibited the growth of these drug-resistant cells and their
parental cells with a similar potency in a dose-dependent manner (Figure 4D and Table 3).Cancers 2022, 14, x FOR PEER REVIEW 12 of 19 
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Figure 4. MB overcame drug resistance in AML cells. (A–C) KG-1A cells were treated with different
doses of the compounds for 72 h and then cell viability was measured using MTT assays. (D) The
antiproliferative effects of MB on the parental and resistant KG-1A cells were determined by perform-
ing MTT assays. Error bars represent SD. The resistant ratio = IC50 for resistant cells/IC50 for parent
cells.
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Table 2. Statistics of MTT IC50 values.

IC50 (µM) Parental Resistant Resistant Ratio

Ara-C 0.32 ± 0.03 33.04 ± 14.36 103.25

DOX 0.12 ± 0.02 1.53 ± 0.1 12.64

HU 189.3 ± 34.3 1498 ± 179 7.90

Table 3. Statistics of MTT IC50 values.

IC50 (µM) MB Resistant Ratio

KG-1A 13.9 ± 1.64 1

KG-1A-ARAC 16.88 ± 3.08 1.20

KG-1A-DOX 24.25 ± 3.82 1.74

KG-1A-HU 37.04 ± 4.38 2.68

3.5. Combination of MB with the BCL-2 Inhibitor ABT-737 Resulted in Synergistic Inhibitory
Effects on AML Cells

The anti-apoptotic Bcl-2 gene was expressed at high levels in patients with AML
compared to normal people in the GSE147515 and TCGA databases (Figure S3). The
combination of antiproliferative RNR inhibitors with proapoptotic agents may strengthen
the efficacy against AML. We tested this possibility by mixing MB with the Bcl-2 inhibitor
ABT-737 (at a 20:1 and 5:1 ratio according to their respective IC50s for MOLM13 and KG-1A
cells, respectively) to treat AML cells. The cell viability assays showed that MB and ABT-737
synergistically inhibited the growth of AML cells (Figure 5A–F and Table 4). The IC50s
of MB and ABT-737 decreased from 5.40 µM to 2.52 µM and from 1.41 µM to 0.13 µM,
respectively, in MOLM13 cells, as well as from 13.66 µM to 9.69 µM and from 9.37 µM
to 2.13 µM, respectively, in KG-1A cells. The combination treatments also caused more
significant cell apoptosis than either compound alone in AML cells (Figure 5G–J). Thus, the
combination of MB and ABT-737 exerted a synergistic inhibitory effect on AML cells.

3.6. MB Effectively Inhibited AML Cell Xenograft Growth in Nude Mice with Relatively Low Toxicity

We evaluated the anti-AML activity of MB in vivo by constructing a subcutaneous
xenograft of MOLM13 cells in mice. The mice were treated with two doses of MB by
intraperitoneal injection once a day for two weeks. The measured tumour volumes and
weights showed that MB significantly reduced AML cell growth in nude mice compared
with the solvent control (Figure 6A–C). In contrast, the body weights, serum alanine
transaminase (ALT) and glutamic-pyruvic transaminase (AST) levels, and HE staining of
heart, liver, spleen, lung and kidney tissues were not significantly different between the
MB-treated mice and the solvent control group (Figure 6D–F and Figure S4), except for a
small body weight loss in the group treated with the higher dose (Figure 6D). Although
the weight of the mice in the high-concentration MB treatment group grew a little slower
than that in the control group, it still showed a continuous and steady upward trend. At
the same time, we observed no significant difference in general activity and diet conditions
between the control and treated mice, indicating that the toxic effects of MB on the mice
were within acceptable range. Based on these results, MB effectively inhibited AML cell
growth in vivo with relatively low toxicity.
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Figure 5. Treatment with a combination of MB and the BCL-2 inhibitor ABT-737 resulted in synergistic
inhibition of AML cell growth. (A,D) AML cells were treated with different doses of MB or ABT-737
or their combination for 72 h and analysed with MTT assays. (B,E) The effects of the combination
treatment were assessed using the CalcuSyn program. For the Fractional Effect-Combination Index
plots, the Y-axis represents the combination index (CI), and the X-axis represents the magnitude of
effect (maximum 1.0). The middle line represents a plot of the data and the other two lines show the
confidence intervals. CI <1 indicates a synergistic effect, CI = 1.0 indicates an additive effect, and CI
>1 indicates an antagonistic effect. (C,F) For the isobologram plots, the three diagonal straight lines
connecting the ED50, ED75, and ED90 of MB and ABT-737 represent the theoretical lines of additivity
for a continuum of different fixed dose ratios. The three single points representing the combinations
at ED50, ED75, and ED90 under their respective diagonal straight lines denote synergism. (G–J) AML
cells were treated with different doses of MB for 48 h and then analysed for apoptosis using FCM
(PI and Annexin V method). Results from the quantitative analysis of the percent of apoptotic cells
(Annexin V+) are shown in bar blots. Error bars represent SD. * p < 0.05, ** p < 0.005 compared to the
single agent group.
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Table 4. Synergistic inhibitory effects of MB and ABT-737 on AML cells.

Compound IC50 of Cell Viability Inhibition(µM)

MOLM13 KG-1A

Single MB 5.40 ± 0.22 13.66 ± 1.71
ABT-737 1.41 ± 0.17 9.37 ± 0.97

Combination
MB 2.52 9.69

ABT-737 0.13 2.13Cancers 2022, 14, x FOR PEER REVIEW 15 of 19 
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Figure 6. MB effectively inhibited the growth of AML cell xenografts in nude mice with relatively
low toxicity. (A,B) The sizes and weights of tumour xenografts in nude mice from different treatment
groups (N = 8). (C) Images of the tumour xenografts. (D) The body weights of mice in different
groups. (E,F) Serum AST and ALT levels in each mouse from different groups. IP: Intraperitoneal
injection. Error bars represent SD. ** p < 0.005, *** p < 0.0005 compared to the control group.

4. Discussion

AML is a highly proliferative haematological malignancy and still lacks effective drugs
with low toxicity and high specificity; additionally, drug resistance frequently leads to
treatment failure and recurrence of the disease. RNR is a rate-limiting enzyme required for
DNA synthesis that regulates the supply of dNTPs, thereby controlling cell proliferation
and playing an important role in cancer development. In the present study, the expression
of RNR subunits, especially RRM2, was strongly correlated with malignant proliferation in
a large cohort of patients with AML in the GEO and TCGA databases, suggesting a rationale
for inhibiting RNR to treat AML. Based on the 3D structure of the RRM2 protein, computer-
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assisted molecular docking predicted MB, an FDA-approved external skin medication for
patients with vitiligo, as a potential inhibitor of RNR. Recombinant RNR activity and MST
assays showed that MB potently inhibited the enzyme by interacting with the RRM2 protein
in vitro. The reduced EdU incorporation, upregulated r-H2Ax level, increased cell cycle
arrest in S phase and reversibility by dNTP precursors, the dose-dependent cell viability
inhibition and apoptosis induction together indicated that the compound inhibited DNA
synthesis and thereby cell proliferation by inhibiting RNR activity in treated AML cells.
Furthermore, the compound significantly inhibited the growth of AML cell xenografts in
nude mice with relatively low toxicity in vivo. Thus, this study reveals that MB is a novel
potent anti-AML agent that inhibits RNR.

The skin-depigmenting effect of MB is correlated with the inhibition of tyrosinase, the
rate-limiting enzyme in melanin synthesis, in both melanocytes and melanoma cells [30,31].
The metabolites of MB have been proven to exert toxic effects on melanocytes and increase
melanocyte and melanoma cell immunogenicity [32–35]. In a phase 2 clinical trial, topical
treatment with MB and imiquimod (Toll-like receptor agonist) induced local and systemic
antimelanoma immunity and local regression of inoperable cutaneous metastases in patients
with stage III-IV melanoma, and the treatment was well tolerated [36]. The study by Peizhi
Ma et al. showed that MB can inhibit KDM1A activity and cancer progression in two
LSD1 overexpressed gastric cell lines in vitro [45]. In our study, we demonstrated that MB
potently inhibited RNR enzyme activity by targeting RRM2 and thereby suppressed AML
cell growth in vitro and in a mouse xenograft experiment. As shown by DepMap, our
previous analysis also showed that the expression of RRM2 is abnormally highly increased in
multiple cancers [46], supporting that it is essential for cancer development. Although MB is
a pleiotropic inhibitor, RRM2 is one of the most important targets for the compound’s activity.
In the present study, we examined the activity and expression of tyrosinase in leukaemia
cells [44]. As shown in Supplementary Figures S1 and S2 (Full Western blot images and
western blotting gray value analysis can be found at Supplementary Figure S7 and Table
S3), tyrosinase activity and protein levels were extremely low in the haematological tumour
cells compared with those in the mouse melanoma cell line B16. On the other hand, MB
inhibited RNR activity, AML cell growth, and AML xenografts in immunodeficient nude
mice. Thus, the anti-AML effect of MB is not dependent on tyrosinase expression or the
immune response, but its mechanism of action is to target RNR in AML cells.

Ara-C represents a prototype of the nucleoside analogue class of antineoplastic agents
and remains one of the most effective drugs used to treat AML and other haematopoietic
malignancies. Ara-C is a substrate for deoxycytidine kinase (dCK) and is metabolized into
ara-CDP and ara-CTP in cells. Ara-CDP inhibits RNR activity as a substrate analogue of
RRM1, while ara-CTP inhibits DNA synthesis after it is incorporated into DNA by DNA
polymerase. However, neoplastic cells frequently become resistant to Ara-C through a wide
variety of mechanisms, such as decreased activity of dCK and enhanced deamination or
dephosphorylation [47]. DOX, similar to daunorubicin, inhibits RNA and DNA synthesis
and is often combined with Ara-C for the treatment of AML. DOX exhibits cross drug
resistance with daunorubicin. In this study, MB showed approximately equal efficacy
in overcoming Ara-C and DOX resistance in AML cells, possibly because they belong to
different categories of compounds and possess different targeting mechanisms.

HU is a typical RNR inhibitor that targets RRM2 and has long been used for cancer
therapy in the clinic, including chronic myelogenous leukaemia, AML, and other haemato-
logical malignancies. However, its effectiveness is limited by its low specificity, small size,
short half-life, and development of resistance [23]. Due to the small molecular weight of
HU (MW 76.0547), its binding specificity with RRM2 protein is poor. There is currently no
evidence that HU binds to the E. coli R2 or human RRM2 proteins [48–50]. Previous studies
have shown that HU inactivates RNR by reducing the tyrosyl radical and diiron centre of
RRM2 [22], or by interfering with the interface of RNR small and large subunits [51,52].
From the docking diagram of our experimental results, it can be seen that RRM2 E334 and
MB are bound by a hydrogen bond (represented by black dashed lines), and the D271 forms
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polar interaction with MB and the F240 provides Π-Π conjugation. Other key amino acid
residues involved in non-bonding interactions are represented by rod-like structures, and
the rest of the protein is represented by cartoons. The D271 and E334 are located in the
second half of helix 9 and 12 of RRM2, respectively. The predicted binding site of MB is
adjacent to the active centre of RRM2, i.e., the ferritin-like diiron-binding domain of RRM2,
suggesting that the binding of MB may interfere with electron transport between RRM2
and RRM1 and thereby inhibit RNR activity. In this study, MB showed a much higher RNR
inhibitory and antiproliferative potency than HU and overcame the resistance of AML cells
to HU, suggesting that MB is a new category of RNR inhibitory compounds with potent
activity against AML.

The antiapoptotic BCL-2 family members inhibit apoptosis mainly by binding through
the BH3 domain to and thereby suppressing the activity of the proapoptotic proteins Bax
and Bak. ABT-737 is a small-molecule BH3 mimetic that induces apoptosis by inhibiting
the interaction between some of the antiapoptotic and proapoptotic proteins and has been
reported to possess strong antitumour activities against AML and other tumour cells [53].
In this study, we showed that BCL-2 expression was substantially upregulated in samples
from patients with AML in a public database. Treatment with the combination of MB and
ABT-737 exerted a synergistic inhibitory effect on AML cells. Therefore, the simultaneous
targeting of the pre-proliferative protein RNR and the antiapoptotic protein BCL-2 may
rationally enhance therapeutic efficacy in the clinical treatment of patients with AML.

5. Conclusions

We show a positive correlation between increased RNR expression and proliferative
malignancy in patients with AML in this study, and MB potently inhibits RNR activity
by targeting the RRM2 protein and thereby blocks DNA synthesis and the malignant
proliferation of AML cells in vitro and in vivo. MB overcomes drug resistance to the
common AML drugs Ara-C and DOX and to the representative RRM2 inhibitor HU.
Moreover, the antiproliferative RNR inhibitor MB and the proapoptotic Bcl-2 inhibitor
ABT-737 generate a synergistic therapeutic effect on AML cells, suggesting that rational
combination treatment may also exert synergistic effects on other malignancies. Thus, we
propose that MB represents a new category of RNR inhibitory agents with the potential for
the development of novel anti-AML drugs in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14194710/s1, Figure S1: Tyrosinase activity assays; Figure S2: Western
blot showing tyrosinase protein levels in the indicated cells; Figure S3: BCL-2 expression in samples from
normal persons (N = 198) and patients with AML (N = 1534) in the GSE147515 dataset; Figure S4: HE
staining of mouse hearts, livers, spleens, lungs and kidneys from different groups; Figure S5: original
blots of Figure 3G; Figure S6: original blots of Figure 3K; Figure S7: original blots of Figure S2; Table
S1. Western blotting gray value analysis of Figure 3G; Table S2. Western blotting gray value analysis of
Figure 3K; Table S3. Western blotting gray value analysis of Figure S2.
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