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Abstract

Neutrosophic set theory is a generalization of the intuitionistic fuzzy set which can be

considered as a powerful tool to express the indeterminacy and inconsistent information that

exist commonly in engineering applications and real meaningful science activities. In this

paper an interval neutrosophic linear programming (INLP) model will be presented, where

its parameters are represented by triangular interval neutrosophic numbers (TINNs) and call it

INLP problem. Afterward, by using a ranking function we present a technique to convert the

INLP problem into a crisp model and then solve it by standard methods.
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1 Introduction
A differential equation is a mathematical equation that relates some function

with its derivatives. In applications, the functions generally represent physical
quantities, the derivatives represent their rates of change, and the differential equation
defines a relationship between the two. Because such relations are extremely common,
differential equations play a prominent role in many disciplines including engineering,
physics, economics, and biology. In pure mathematics, differential equations are
studied from several different perspectives, mostly concerned with their solutions the
set of functions that satisfy the equation. Only the simplest differential equations
are solvable by explicit formulas; however, some properties of solutions of a given
differential equation may be determined without finding their exact form. If a closed
form expression for the solution is not available, the solution may be numerically
approximated using computers. The theory of dynamical systems puts emphasis
on qualitative analysis of systems described by differential equations, while many
numerical methods have been developed to determine solutions with a given degree
of accuracy.
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2 Preliminaries
This section recalls the necessary notions and definitions of NS theory on

the real numbers line that can be used in this research.

Definition 2.1 A Neutrosophic Set (NS) N in a domain X (finite universe of
objectives) can be represented by TN : X →]0−, 1+[, IN : X →]0−, 1+[ and
FN : X →]0−, 1+[ such that 0− ≤ TN(x) + IN(x) + FN(x) ≤ 3+ ∀x ∈ X, where
TN(x), IN(x) and FN(x) denote the truth, indeterminacy, and falsity membership
functions, respectively.

Definition 2.2 A single-valued neutrosophic set (SVNS) N in a domain X (finite
universe of objectives) can be denoted as N = {x, TN(x), IN(x), FN(x);x ∈ X}, where
TN : X → [0, 1], IN : X → [0, 1] and FN : X → [0, 1] are three maps in X that satisfy
the condition 0 ≤ TN(x)+IN(x)+FN(x) ≤ 3 ∀x ∈ X. The numbers TN(x), IN(x) and
FN(x), are respectively the degrees of truth, indeterminacy and falsity membership
of element x to N.

Definition 2.3 A neutrosophic number (NN) N is an extension of the fuzzy set on R
such that the truth, indeterminacy and falsity membership functions could be defined
as follows:

TN(x) =


x−al

am−al
, al ≤ x ≤ am,

au−am

au−x
, am. ≤ x ≤ au,

0, otherwise,

IN(x) =


am−x
am−al

, δal + (1− δ)am ≤ x ≤ am,

x−am

au−am
, am ≤ x ≤ (1− δ)am + δau,

δ, otherwise,

FN(x) =


am−x
am−al

, al ≤ x ≤ am,

x−am

au−am
, am ≤ x ≤ au,

1, otherwise,

where δ ∈ (0, 1) is the maximum degree of indeterminacy and al ≤ am ≤ au.

The various functions of the single-valued neutrosophic number (SVNN) N are shown
in Figure 1. Truth, indeterminacy andfalsity membership functions of N.
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Definition 2.4 The addition and subtraction operations between two SVNNs such
as N = [(al, am, au);αN , δN , βN ] and M = [(bl, bm, bu);αM , δM , βM ] could be defined
as:

N +M = [(al + bl, am + bm, au + bu);αN ∧ αM , δN ∨ δM , βN ∨ βM ],

N −M = [(al − bl, am − bm, au − bu);αN ∧ αM , δN ∨ δM , βN ∨ βM ],

furthermore, the scalar multiplication is defined as:

kN =

{[
(kaT , kam, kau);αN , δN , βN

]
,k > 0,[

(kau, kam, kaT );αN , δN , βN
]
,k < 0.

Definition 2.5 Let N and M are two NNs The ranking orders of these two numbers
will be as:

• If L(N) > L(M) then N is bigger than M,
• If L(N) < L(M) then N is smaller than M ,
• If L(N) = L(M) then N is equal to M.

Definition 2.6 Let X be a space of discourse, an interval neutrosophic set (INS)
N through X taking the form N = {x, TN(x), IN(x), FN(x);x ∈ X} where
TN(x), IN(x), FN(x) ⊆ [0, 1] and 0 ≤ Sup TN(x) + Sup IN(x) + Sup FN(x) ≤ 3
for all x ∈ X. TN(x), IN(x) and FN(x) represent truth membership, indeterminacy
membership, and falsity membership of x to N , respectively.

Definition 2.7 An interval neutrosophic number (INN) N is an extended version of
the fuzzy set on R whose the truth, indeterminacy and falsity membership functions
are given as follows:

TL
N(x) =


x−aT+hN (aT−x)

am−aT
, aT ≤ x ≤ am,

au−x+hN (x−au)
au−am

, am ≤ x ≤ au,

0, otherwise,

TU
N (x) =


x−al+hN (am−x)

am−al
, al ≤ x ≤ am,

au−x+hN (x−am)
au−am

, am ≤ x ≤ au,

hN , otherwise,
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where TN(x) = [TL
N(x), TU

N (x)],

ILN(x) =


am−x+hN (x−am)

am−al
, δal + (1− δ)am ≤ x ≤ am,

x−am+hN (am−x)
au−am

, am ≤ x ≤ (1− δ)am + δau,

δ, otherwise,

IUN(x) =


am−x+hN (x−al)

am−al
, δal + (1− δ)am ≤ x ≤ am,

x−am+hN (au−x)
au−am

, am ≤ x ≤ (1− δ)am + δau,

1− δ, otherwise,

where IN(x) = [ILN(x), IUN(x)],

FL
N(x) =


am−x+hN (x−am)

am−al
, al ≤ x ≤ am

x−am+hN (am−x)
au−am

, am ≤ x ≤ au

1− hN , otherwise,

FU
N (x) =


am−x+hN (x−al)

am−aT
, aT ≤ x ≤ am,

x−am+hN (au−x)
au−am

, am ≤ x ≤ au,

1, otherwise,

where FN(x) = [FL
N(x), FU

N (x)] and hN = TU
N (x) − TL

N(x) such that δ ∈ (0, 1) and
hN ≤ δ.

Definition 2.8 An INS N = [(al, am, au); [αl
N , αu

N ], [δlN , δuN ], [βl
N , βu

N ]] will be
reduced to the NS if αl

N = αu
N , δ

l
N = δuN and βl

N = βu
N .

Definition 2.9 Let N = [(al, am, au); [αl
N , α

u
N ], [δlN , δ

u
N ], [βl

N , β
u
N ]] and

M = [(bl, bm, bu); [αl
M , α

u
M ], [δlM , δ

u
M ], [βl

M , β
u
M ]] are two INNs. The addition and

subtraction operations for these two INNs are defined as follows:

N +M =[(al + bl, am + bm, au + bu); [αl
N + αl

M − αl
Nα

l
M , α

u
N + αu

M − αu
Nα

u
M ],

[δlNδ
l
M , δ

u
Nδ

u
M ], [βl

Nβ
l
M , β

u
Nβ

u
M ]],

N −M =[(al − bl, am − bm, au − bu); [αl
N + αl

M − αl
Nα

l
M , α

u
N + αu

M − αu
Nα

u
M ],

[δlNδ
l
M , δ

u
Nδ

u
M ], [βl

Nβ
l
M , β

u
Nβ

u
M ]].

Journal of Computational Mathematica Page 51 of 54



2456-8686, 5(2), 2021:048-054
https://doi.org/10.26524/cm106

3 Proposed Interval Neutrosophic Linear Programming Method
In this section, by using a new ranking function for interval neutrosophic numbers

we suggest a new method for solving INLP problems. The basis of our work will be
presented as follows:

Step 1. Insert the INLP problem with triangular interval neutrosophic numbers.
Step 2. By using the following method convert the INLP problem to the crisp

model. In order to compare any two triangular INNs based on the proposed
ranking function, let N = [(al, am, au); [αl

N , α
u
N ], [δlN , δuN ], [βl

N , βu
N ]] be a

symmetric interval neutrosophic number, where [αl
N , α

u
N ], [δlN , δ

u
N ] and [βl

N , β
u
N ]

are respectively the truth, indeterminacy, and falsity membership degrees of N .
Also al, am and au are respectively the lower, median, and upper bounds for N .
The ranking function for the interval neutrosophic number N will be defined as
follows:

L(N) =
1

4
[al + au + 2am] + (αN − δN − βN), (1)

where αN =
αl
N + αu

N

2
, δN =

δlN + δuN
2

and βN =
βl
N + βu

N

2
.

Moreover, we have : N ≥ 0̃ if
al + au + 2am

4
≥ 0.

Step 3. By applying the previous ranking function, convert each triangular INN to a
crisp number. This leads to convert the INLP problem to the crisp model.

Step 4. Solve the crisp model using the standard simplex method to achieve the optimal
solution.

4 Conclusion
In this paper, by considering an LP problem based on INNs we have presented

a new linear programming model. In this model in view of considering the
truthiness, indeterminacy, and falsity degrees we can cover all aspects of real daily life
circumstances. It should be noticed there is no necessity the values of these degrees
be crisp values. In this respect, we proposed a ranking function that is capable of
converting every triangular interval neutrosophic number to its equivalent crisp value.
Subsequently, every INLP problem could be converted to the crisp model where can
be solved by standard methods easily. The proposed model indicates more simplicity
applicability and more efficiency in comparison with other existing models.
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