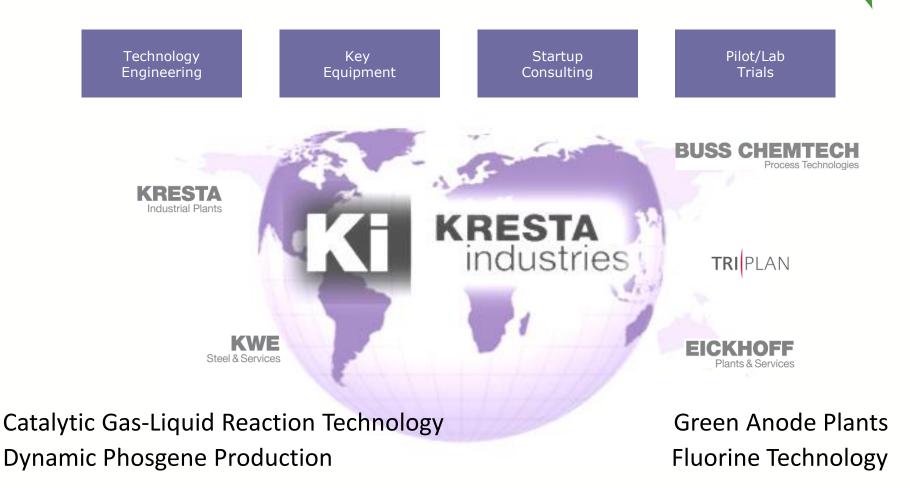
Co-organised by:

CRU

14-16 September 2015 • InterContinental Dubai - Festival City, UAE

Innovating for growth: Ensuring an efficient, sustainable future

Production of HF from H₂SiF₆


Thomas Dahlke *Technology Manager Fluorine* Buss ChemTech AG, Pratteln (Switzerland)

Who We Are

BUSS CHEMTECH Process Technologies

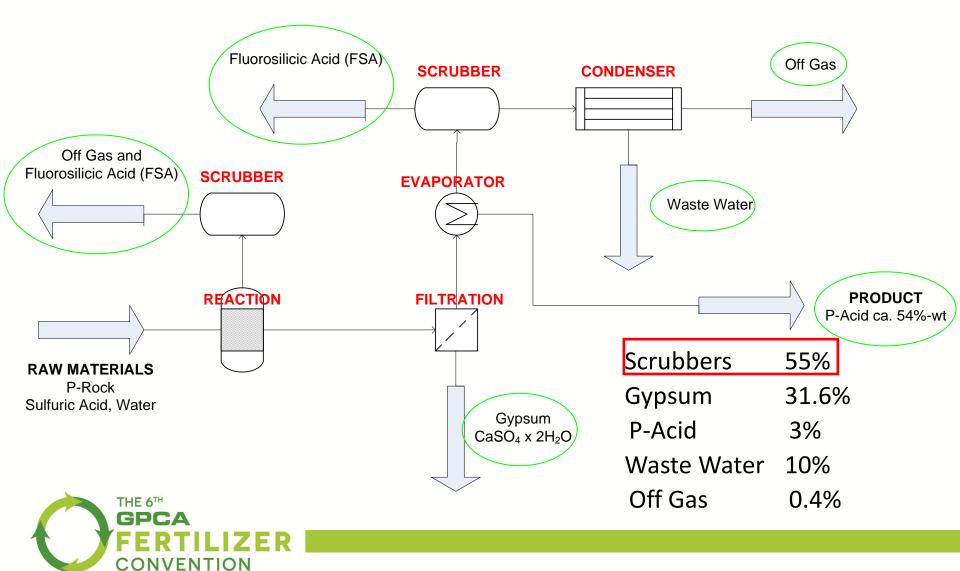
Why use (FSA) to produce HF?

- Processing costs and investment costs of fluorspar processing plants will increase with decreasing fluorspar quality (Particle size and impurities are linked to each other)
- Lower fluorspar exports from China
- Producers with own high quality fluorspar sources and written off plants can continue to operate economically
- Investors in new plants should seriously consider the route from FSA

Fluorosilicic Acid – Potential for Anhydrous HF (AHF) Production

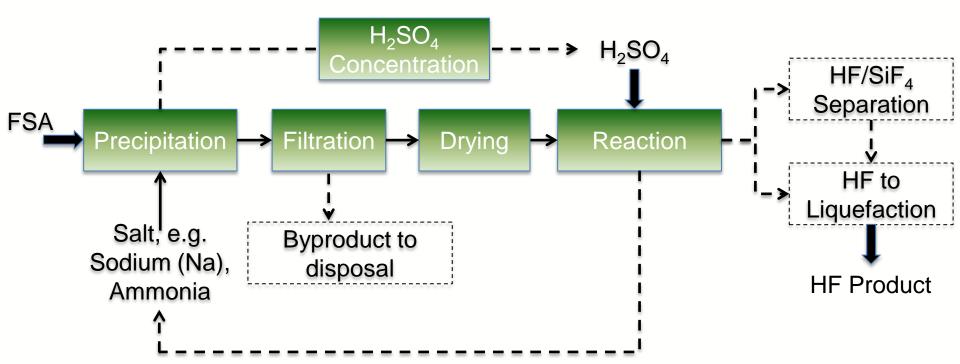
- Waste from the production of Phosphoric Acid (PA)
- Available in large amounts in PA producing plants
- Cheap raw material for production of fluorochemicals (It's a waste!)
- Theoretically, the current production of AHF worldwide (approx. 2 mio t/a, almost entirely from fluorspar) could be produced with FSA as raw material

BUSS C


- Aluminium Fluoride (AlF₃), LBD ۲
- Metal Fluorosilicates ٠
- **Drinking Water Fluorination** ٠
- Preservation of Timber ٠
- **Disinfection of brewery equipment** ۲
- Concrete Hardening (Magnesium Salt) ٠
- Insecticide •

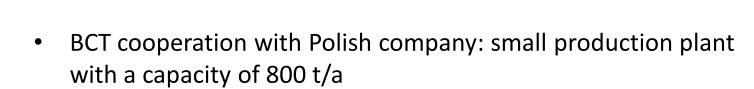
Typical F Distribution in the Dihydrate Phosphoric Acid Process

Two ways have been researched within the last six decades and have led to numerous patents


DIRECT REACTION WITH SULPHURIC ACID

REACTION WITH INTERMEDIATE SALT PRECIPITATION

Reaction with Salt Precipitation



The BCT Process of AHF from FSA

- Direct scale-up and process improvement lead to the first full scale industrial plant in China with 20,000 t/a HF production, Startup in 2008
- Two more industrial plants operating in China at capacities of 12,000 t/a and 20,000 t/a
- More plants in project status (worldwide incl. China)

BCT process – block diagram

CONVE

TION

N

The BCT process – specs

- + Simple and robust process
- + Gas/Liquid reaction and process allows a very efficient purification section and thus high acid quality
- Silica quality not as good as with intermediate salt process.
 Usage: quality improvement for food grade phosphoric acid
- Quality can be improved by production of waterglass
- **±** Has to be erected adjacent to a phosphoric acid plant
- Diluted sulphuric acid pumped back to phosphoric acid plant

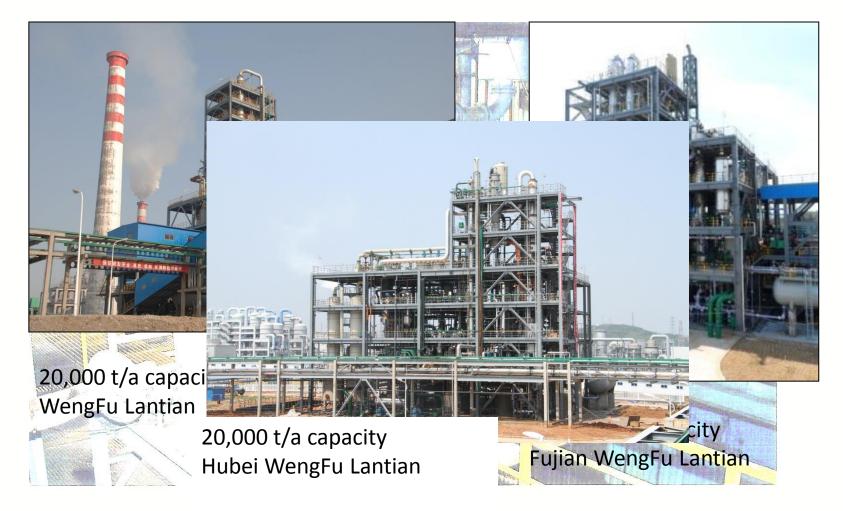
Scaling up from 800 to 20,000 t/a

- Mass balance of existing small plant by BCT
- Identification of bottlenecks in the existing plant

<u>Results:</u>

- Fluorine recovery found to be 60% of entire F
- SiF₄ losses were found to be too high and were reduced
- Absorption columns were optimised

Requirements for new design:


- H₂SO₄ flows re-routed to achieve better absorption
- Absorption columns interconnected differently, design changed
- Fluorine recovery 90%, SiF₄ losses 0.5% of SiF₄ produced

BCT Operating Full Scale Plants

Mass Fraction, %-wt AHF ex FSA (BCT Reference Plant)		Reference, %-wt AHF from Fluorspar ¹
HF	99.96	99.95
H ₂ SO ₄	0.001 max.	0.01 max.
H ₂ O	0.005 max.	0.02 max.
H ₂ SiF ₆	0.001 max.	0.01 max.
SO ₂	0.001 max.	0.005 max.
P ₂ O ₅	0.001 max.	0.001 max.
As	0.0005 max.	0.0025 max.

¹From Website of International Manufacturer

Summary



- BCT has successfully scaled up a process to manufacture Anhydrous Hydrogen Fluoride from FSA
- Process efficiency has been improved with regards to the highest possible fluorine recovery
- Plants in industrial scale operate successfully since 2008
- Quality of AHF is equal to that manufactured from fluorspar
- The process is cheaper in operation (Raw material costs) compared to the traditional process using fluorspar
- Make money with your waste

THANK YOU!

Dr. Thomas Dahlke – Technology Manager Fluorine Buss ChemTech AG – thomas.dahlke@buss-ct.com

