Agents and Semantics for Human Decision-Making

PD Dr. Matthias Klusch
Agenda

- Introduction
 - Decision Making and Support Systems
 - Agents and Semantic Technologies
- Agent-Based Semantic Decision Support
 - Showcases
 - Challenges
Recently at the airport…

Cognitive process of an individual, or a group which results in a final choice, or an opinion of choice of a course of action among alternative scenarios to accomplish given objective(s) ….
Decision-Making Model

Since the 1950s

- Detailed in more specific (multi-criteria) models based on perspectives of human decision-making
 - Psychological: Needs, preferences, values
 - Cognitive: Cont. deliberation integrated w/ environment
 - Normative: Rational (logical, utility-driven) vs. Irrational choice
e.g. Recognition Primed Decision Model (Klein, 1989)

- Decision support systems (DSS)

 Early: Medical diagnosis, financial management, ...
 - Mathematical models, Statistical methods, data mining/OLAP, logical rule-based ...
Since late 1970s: Intellige\nt DSS
(Holsapple & Whinston 1977; Turban & Aronson 1998)

- Use of AI techniques to exhibit "intelligent behavior" of DSS

Since 1990s: Use of agents in IDSS

- autonomous, proactive, reactive coordination of data, knowledge, services
- needed for personal and group decision support

In distributed environments: collaborative (MAS)

Examples

Prominent and mature applications of agent-based decision support include:

Manufacturing, Transport & Logistics
- MAS for production and fleet management DS via distributed planning, scheduling, etc.

E-Business
- Negotiation support for online marketplaces, auctions
- Product recommendation
- Service brokerage, matchmaking

E-Health
- MAS for clinical decision support

Virtual Worlds
- User avatars for group decision support in virtual team meetings

To better cope with problems of **semantic interoperation and reuse** of decision support data, services and knowledge ...
Since 2001: Intelligent DSS also use semantic Web technologies

- Modelling of decision domain semantics with W3C standardized and formal ontology and rule languages (OWL2, RDF/S, OWL-S, SA-WSDL, RuleML, SWRL)
- Supported with methods for ontology selection, evaluation, and alignment
Examples

Prominent and standard models of semantic decision domains include:

Domain ontologies (OWL)
- Negotiation [W3C]
- Medical [SNOMED, NIST]
- Sensor Networks [W3C SSN]
- Provenance [W3C PROV-O]
- etc.

User profile / context ontologies
- GUMO (OWL), schema.org, ODP
- AmbiSense

Semantic service collections
- OWLS-TC, SAWSDL-TC, hRESTS-TC
 @semwebcentral.org, >3k services

Various domains: Linked data sets (RDF/S)

More than 30 billion RDF triples as linked factual knowledge available
Semantic Decision Support

... and a large number of methods for ontology-based querying and reasoning:

- Semantic data
 - Facetted, Link-Traversal, P2P, Federated search (e.g. with SPARQL1.1)
 - Stream reasoning (e.g. with C-SPARQL)
 - Hybrid semantic and statistical analysis
 - Explanation of results

- Semantic services
 - Discovery, Selection (Matchmaking)
 - Composition planning

Depending on
- Application
 - Environment
 - Semantic model

Agent-Based Semantic Decision Support

SHOWCASES IN INFOTAINMENT
Recommender Agents in the Web

Provide personal decision support:

What, where, why to buy, watch, read, listen to, etc.?

by recommending relevant items to the user

- pull and/or push mode
- content-based, social, or hybrid (profile, text similarity-based relevance)
- user/item context-sensitive (time, season, location, companion, etc.)

How can semantics help here?
Semantic Recommender Agents

Use of semantic model of decision domain

- User profile and domain ontologies (OWL)
- Knowledge graph with linked data sources (RDF/S)

To compute semantic relevance of items

- Logical (item) concept subsumption relations
- Knowledge graph analytical heuristics, etc.

✓ Improved accuracy compared to non-semantic approaches
✓ Better explanation of recommendations

- J Pazos Arias et al. (2012): Recommender systems for the social Web. Springer
- R De Virgilio et al. (2012): Semantic search over the Web. Springer
Example: Semantic Relevance

Path-based item relevance heuristic SPrank:

Frequency of different user-item path types (features) \(j \)

Semantic model of decision domain:
Knowledge graph

User profile \(\hat{S} \)

<table>
<thead>
<tr>
<th></th>
<th>(i_1)</th>
<th>(i_2)</th>
<th>(i_3)</th>
<th>(i_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(u_2)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(u_3)</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(u_4)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\text{u: user, } i: \text{ item } \)
\(\text{e: entity (new user/item) } \)
\(\text{p: property} \)

\(\hat{S} \)

Regression-based learning of rank \(f(x_{ui}) \): **Higher accuracy than common standards**

(up to 0.6 recall >> BPRLin, SLIM, SMRMF with test data from MovieLens, Last.fm)

\(\hat{x}_{ui}(j) = \frac{\# \text{path}_{ui}(j)}{\sum_{d \in D} \# \text{path}_{ui}(d)} \in R^D \)

Semantic relevance feature vector of item \(i_1 \) for user \(u_3 \):

\(x_{31} = (2/5, 2/5, 1/5), \ |p| < 5 \)

- **collaborative**
 \(\# \text{path(1)} = (\text{likes,likes,likes}) \): 2

- **content-based**
 \(\# \text{path(2)} = (\text{likes}, p_2, p_1) \): 2
 \(\# \text{path(3)} = (\text{likes}, p_2, p_3, p_1) \): 1

- **hybrid**, \(|p| \geq 5 \)
 \(\# \text{path(4)} = (\text{likes}, p_2, p_1, \text{likes}, \text{likes}) \)

For Best Performance: Semantic or Non-Semantic?

Fixed combination of non-semantic predictors of movie ratings

- Won the contest but with **low precision** (accuracy RMSE \(_n\) 0.8567)
- Not suitable for top-N recommendation

Since 2011: Open contest on learning the best combinations

(Corr.: multi-armed bayesian bandit problem solving)

Current research and development of recommenders:

Make **use of semantic** relations to **avoid cold start** problem, and to **compensate** for **non-semantic misclassifications**.

Search for best **hybrid recommender** for given context is still ongoing ...

- R Yan et al. (2013): Using semantic technology to improve recommender systems based on Slope One. Springer
- JW Ha et al. (2014): EPE – An embedded personalization engine for mobile users. IEEE Internet Computing, 18(1)
Example: Semantic Explanation

Use of semantic relevance methods to summarize the most relevant properties of top-ranked items in multimedia panel...

...as you know it also from e.g. dbpedia, Google or Facebook knowledge graph search.
Example: Semantic Explanation (2)

For N-Item relational queries:
Display the shortest item-item paths in the knowledge graph
(Corr. NP-hard Steiner tree problem solution)

.... and learn to improve accuracy based on implicit/explicit user feedback:

Please give Horst a thumb for this path - he is willing to learn!
Example: Context-Sensitive

BMW SmartCarAgent provides personal decision support to a driver based on his current context:

That looks nice, is it worth to visit?

Yes, this church can be of interest to you. Here is why: [facts].

- Recognize object, cognitive activity: Eye tracking system eye-viu, Semantic image retrieval
- Semantic fact search in associated knowledge graph (profile, LD sources)

- Cognitive activity level constrains presentation (voice, text on panel, extent of information): Reduced distraction, cognitive overload in driving situation

We Have That Already in Practice?

State of the art example for in-car entertainment, since mid 2013

Apple’s Siri Eyes Free system allows drivers “to make calls, dictate text messages, play music or podcasts, and access everything else the voice-controlled virtual assistant has control over.”

Uses semantic knowledge graph search for selection of registered data and services .. but no personal context-sensitive action, no explanation of results ..
Example: TIFF MyMedia Agent

Provides **personal** and **group decision support** in social media

(1) **Semantic P2P search** of annotated media data and services
(2) Network-adaptive **real P2P live streaming** of videos

(1) *Any SciFi movies on play?*

- Movie „Gravity“ [Trailer].
 Playing next @CinemaZ

(2) *Shall we all go watch it at CinemaZ?*

- Share & jointly watch trailer with buddies Sheila and Carl

 So, yes, we like to - but only in a nice cinema

EU IP SocialSensor 2011 – 2014 (WP Semantic Middleware; DFKI & U Klagenfurt)
Semantic P2P Search in MyMedia

- Each peer **observes** semantics of query q and traversing items during **k-walker search**

- **Semantic routing** of item query q:
 - **Shortest** path (within TTL) with **maximal** # of peers with **semantic expertise** for the topic of q
 - *Logic-based* semantic relevance of media data (OWL)
 - *Hybrid semantic* media service selection (OWL-S)

- **Dynamic semantic replication** of items (optional)
 - Demand-driven in query topic-based peer groups
 - Maximized utility of replication (semantic gain vs. traffic costs)

- Avg. Precision: **0.82** (1M peers, RPLG networks, random/Zipf), robust
- Real **P2P live streaming** with MPEG-DASH: **4s** latency (4 Nexus7, G2)

Example: Semantic Service Mashup

TIFF-MyMedia Agent 2.0 with personal action planner:

Where to best have lunch on my way to watch movie A in which cinema in time?

- Uses profile, context and mobile semantic service planner OWLS-Xplan 2.2
- KPI-driven offloading of planning processes to (private/TIFF) cloud

Other examples @aimashup.org

2013: 50,000 web services [sousuo 4/2013]
2017: 10 billion mobile connected devices
2050: 50 billion things as services [CISCO 2013, W3C XG SSN]
Selected Challenges

- **Usability & Scalability**: Multimodal, contextual user interaction for dynamic, energy-efficient service selection/planning on mobiles
 - HCI, Mobile cloud computing [Fernando+ 2013; Ha+ 2014]

- **Interoperability** across mobile telco providers
 - WebRTC (W3C, IETF) e.g. for web-based (mobile) P2P apps

- **Security & privacy** of data, processes, user/group profiles that are offloaded to cloud or distributed in peer group:
 - Semantic inference problem + technical security threats

- Semantic-empowered **trusted recommendation**
 - Semantic item/user relevance for (social) trust computation
 - [Martin-Vicente et al., 2012]
Agent-Based Semantic Decision Support

SHOWCASES IN MANUFACTURING
ISReal Framework for Web-Based Virtual Engineering

Provides **personal decision support** for the commissioning or revision of (parts of) a production line before or during its physical development:

- Functional simulation of physical line in its **annotated virtual 3D model**
- Representation of user as intelligent **avatar** (BDI agent) in 3D scene
Integrated Technologies

Web-based 3D visualization of scenes in XML3D

Verification of time-/space-based object properties (safety)

3D Web

Formal Verification

Semantic Web & Services

Intelligent Agents

Semantic annotation of 3D scene objects with facts, services
(Common scene ontology in OWL, Object services in OWL-S)

Hybrid BDI action planning on perceived 3D scene semantics
(e.g. for 3D object service composition in functional simulations)

Q/A-based interaction with user

Example: Decision Support Scenario

Interactive **query-answering on functionality** of machines:

Can I produce 20 pills with this machine within 30 secs?

→ **Planning** of machine **services** to reach goal

→ **Time verification** of plan

→ Plan **execution** (functional simulation)

→ **Explanation** (text2speech, animate plan execution)

Yes, this pill filling station can do it. I show you how to do it.
Agent identifies and **explains failures of machines or their handling**, and **creates alternative(s)** for its user:

Why did my handling of this machine fail?

→ Time-based **verification** of plan execution
→ Visualization of failure trace (**explanation**)
→ Building of **alternative plan** with revised state

You lifted the carriage stopper too late (11s > 2.5s).

Here is your updated control plan for handling this machine.
C3D Framework for Web-Based Collaborative Engineering

Provides **group decision support** for the design of virtual production lines. **Multiple** designers represented by avatars in **shared**, annotated XML3D scene.

- High-precision local and P2P search of 3D models
- Synchronized **joint view and design** of 3D objects
- Functional **verification** of designed objects

BMBF project Collaborate3D (2011 – 2015): c3d.dfki.de

Selected Challenges

- **Scalability**
 - Web-based simulation of very large-sized, annotated 3D scenes (>>20 interacting user agents)

- **Collaborative** hybrid BDI planning agents under uncertainty

- **Virtual** condition monitoring of (designed) machines
 - Semantic *stream reasoning* with CEP and verification of real-world sensor data for fault detection/diagnosis in virtual world

Agent-Based Semantic Decision Support

SHOWCASES IN SMART RETAIL
CARAMEL: Virtual 3D Design of Store Layouts

Provides **personal decision support** for choosing the right layout of retail stores: **How to best position the shelves to increase sales for which types of customers?**

Simulation of preset types of **customers** in **annotated 3D layout** as **avatars** (BDI agents) with type-specific capabilities and goals:

- different perception and wayfinding strategies
- different goals: max duration of visit, path length to, max price of preferred products

Based on C3D Framework, ongoing.
ADIGE: Smart Re-Ordering of Goods

Provides **personal decision support** for manager for re-ordering of goods:

When to re-order from which provider?

Problem: Service-based **process model** for re-ordering can **change** or become **invalid** at any time due to changes in services performance, availability, prices

- ADIGE agent adapts the **annotated** process model (OWL) to these changes by **semantic selection** and **re-planning** of actual process services (OWL-S)

CeBIT 2014
Take-Home Messages

For decision support, agents can make use of semantics to

✓ facilitate semantic data and service interoperation
✓ perform more precise search for relevant items
✓ create and recommend more accurate alternatives
in a more context-sensitive, explanatory way.

Many agent-based semantic decision support apps
in various domains already available or in development.

Main challenges: Scalability, usability, privacy and trust
Special Thanks

Intelligent Information Systems (I2S)
Research Team

@ DFKI Agents and Simulated Reality Department, Saarbrücken

Manuel Anglet Patrick Kapahnke
Bastian Blankenburg Christian Mathieu
Xiaoqi Cao Ankush Meshram
Josenildo Costa Da Silva Prashant Rao
Andreas Frische Felix Standke
Mostafa Hosseini Ingo Zinnikus
Matthias Klusch (Head)

Visit us at www.dfki.de/~klusch/i2s
Thank you for your attention!

Questions?

klusch@dfki.de
www.dfki.de/~klusch