Domination subdivision numbers of trees

H. Arama, S.M. Sheikholeslamia,*, O. Favaronb

aDepartment of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I.R., Iran
bL.R.I., UMR 8623, Université Paris-Sud, 91405 Orsay Cedex, France

Received 18 October 2006; received in revised form 5 October 2007; accepted 26 December 2007
Available online 5 February 2008

Abstract

A set S of vertices of a graph $G = (V, E)$ is a dominating set if every vertex of $V(G) \setminus S$ is adjacent to some vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. The domination subdivision number $sd_{\gamma}(G)$ is the minimum number of edges that must be subdivided in order to increase the domination number. Velammal showed that for any tree T of order at least 3, $1 \leq sd_{\gamma}(T) \leq 3$. In this paper, we give two characterizations of trees whose domination subdivision number is 3 and a linear algorithm for recognizing them.

*Corresponding author.

E-mail addresses: s.m.sheikholeslami@azaruniv.edu (S.M. Sheikholeslami), of@lri.fr (O. Favaron).

\textcopyright{} 2007 Elsevier B.V. All rights reserved.

Keywords: Trees; Domination number; Domination subdivision number

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For every vertex $v \in V(G)$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood is the set $N[v] = N(v) \cup \{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S] = N(S) \cup S$. Let S be a set of vertices, and let $u \in S$. A vertex v is a private neighbor of u (with respect to S) if $N[v] \cap S = \{u\}$. The private neighbor set of u, with respect to S, is $pn[u, S] = \{v \mid N[v] \cap S = \{u\}\}$. A subset S of vertices of G is a dominating set if $N[S] = V$ and a total dominating set if $N[S] = V$. The (total) domination number $\gamma(G)$ ($\gamma_t(G)$) is the minimum cardinality of a (total) dominating set of G. A dominating set of minimum cardinality of G is called a γ-set of G or $\gamma(G)$-set.

The domination subdivision number $sd_{\gamma}(G)$ of a graph G is the minimum number of edges that must be subdivided, where each edge in G can be subdivided at most once, in order to increase the domination number. (An edge $uv \in E(G)$ is subdivided if the edge uv is deleted, but a new vertex x is added, along with two new edges ux and vx. The vertex x is called a subdivision vertex.) Since the domination number of the graph K_2 does not change when its only edge is subdivided, we assume that the graph is of order $n \geq 3$. The domination subdivision number, defined in Velammal’s thesis [9], has been studied in [1–3]. A similar concept related to total domination was defined in [4].

*Corresponding author.

E-mail addresses: s.m.sheikholeslami@azaruniv.edu (S.M. Sheikholeslami), of@lri.fr (O. Favaron).

0012-365X/S - see front matter \textcopyright{} 2007 Elsevier B.V. All rights reserved.
In general, for notation and graph theory terminology we follow [5]. A leaf of a graph G is a vertex of degree 1, while a support vertex of G is a vertex adjacent to a leaf. A support vertex is strong if it is adjacent to at least two leaves. Note that every graph has a $γ$-set containing all of its support vertices. A path on n vertices is denoted by P_n. For $t ≥ 1$, a subdivided star $SK_{1,t}$ is obtained by subdividing the t edges of a star $K_{1,t}$. Its domination number is equal to t. For $t = 1$, $SK_{1,1} = P_3$.

Here are some well-known results on $γ(G)$ and $sd_G(G)$.

Theorem A. For $n ≥ 3$, $γ(P_n) = ⌊\frac{n}{3}\rfloor$.

An immediate consequence of Theorem A now follows.

Proposition 1. For a path on $n ≥ 3$ vertices,

$$sd_G = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{3} \\ 2 & \text{if } n \equiv 2 \pmod{3} \\ 3 & \text{if } n \equiv 1 \pmod{3}. \end{cases}$$

It is shown in [9] that the domination subdivision number of a tree is either 1, 2, or 3, and so trees can be classified as class 1, class 2, or class 3 depending on whether their domination subdivision number is 1, 2 or 3, respectively. Similarly, the authors of [4] showed that the total domination subdivision number of a tree is 1, 2 or 3. A constructive characterization of trees such that $sd_T(T) = 3$ is given in [6].

Our purpose in this paper is to characterize the trees such that $sd_T(T) = 3$. We first give a constructive characterization similar to that one in [6] for $sd_T(T) = 3$, and then a structural one. We begin with two lemmas, the proof of the first one is straightforward.

Lemma 2. If the graph G has a strong support vertex then $sd_T(G) = 1$, and if G is a subdivided star $SK_{1,t}$ with $t ≥ 2$ then $sd_T(G) = 2$.

Lemma 3. (1) If G is a graph obtained from a graph G' of order at least 2 by adding a subdivided star $SK_{1,t}$ with $t ≥ 1$ and adding an edge joining the center c of the star to a vertex y of G', then $γ(G) = γ(G') + t$. Moreover, if G' has order at least 3, then $sd_T(G) ≤ sd_T(G')$.

(2) If G is a graph obtained from a graph G' containing a pendant edge ya or a pendant path ybc by adding a path xz and an edge joining x to the vertex y, then $γ(G) = γ(G') + 1$. Moreover, if y is a support vertex of G' and G' has order at least 3, then $sd_T(G) ≤ sd_T(G')$.

Proof. (1) Let $V(SK_{1,t}) = \{c, x_1, w_1, \ldots, x_t, w_t\}$ with $d(x_i) = 2$ and $d(w_i) = 1$ for $1 ≤ i ≤ t$. Clearly every $γ(G)$-set S exactly contains t vertices in $\{x_1, \ldots, x_t, w_1, \ldots, w_t\}$. Moreover, $S \setminus V(SK_{1,t})$ if $c ∉ S$ and $(S \setminus V(SK_{1,t})) \cup \{y\}$ if $c ∈ S$ is a $γ(G)$-set of order $γ(G) - t$.

If $sd_T(G') = k$, consider k edges $e_j ∈ E(G')$ such that their subdivision yields a graph G'' satisfying $γ(G'') > γ(G')$. Let G'' be obtained from G' by subdividing the k edges e_j and let S' be a $γ(G'')$-set. Then $S' \cup \{x_1, \ldots, x_t\}$ is a $γ(G''-set$ and so $γ(G'') = γ(G'') + t > γ(G') + t = γ(G')$. Therefore $sd_T(G) ≤ k$.

(2) If S' is a $γ(G')$-set, then $S' \cup \{x\}$ is a dominating set of G and so $γ(G) ≤ γ(G') + 1$. Conversely, if S is a $γ(G)$-set containing all the support vertices of G and in particular y or one of its neighbors in G', then $S \setminus \{x\}$ is a dominating set of G and so $γ(G) ≤ γ(G') - 1$. The same argument as in (1) proves that $sd_T(G) ≤ sd_T(G')$.

2. A constructive characterization of trees in class 3

In this section we provide a constructive characterization of all trees in class 3. For this purpose we describe a procedure for building a family F of labeled trees that are of class 3 as follows. The label of a vertex is also called its status, denoted as $sta(v)$.

Definition. Let F be the family of labeled trees that:

(1) contains P_4 where the two leaves have status A, and the two support vertices have status B, and
shows that if a tree T has been obtained from T_1 and T_2 by successive operations, all the sequences have the same length $m = \gamma(T) - 2$.

Lemma 6. Let $T \in \mathcal{F}$ and $z \in A(T)$. There is a γ-set of T, say S, such that $z \in S$ and $pn[z, S] = \{z\}$.

Proof. Note that $pn[z, S] = \{z\}$ means that z is isolated in S and has no other S private neighbor. Let $T_0 = P_4$ and T be obtained from P_4 by successive operations $\mathcal{S}_1, \ldots, \mathcal{S}_m$. The proof is by induction on m. If $m = 0$ then clearly the statement is true. Assume $m \geq 1$ and that the statement holds for all trees which are obtained from P_4 with at most $m - 1$ operations. Let T_{m-1} be obtained from P_4 by successive operations $\mathcal{S}_1, \ldots, \mathcal{S}_{m-1}$. By Lemma 5, $\gamma(T) = m + 2 = \gamma(T_{m-1}) + 1$. We consider two cases.

Case 1. $\mathcal{S}_m = \mathcal{S}_1$. Then T has been obtained from T_{m-1} by adding a path xwv and an edge xy with $y \in A(T_{m-1})$. Moreover, $\text{sta}(x) = \text{sta}(w) = B$, and $\text{sta}(v) = A$. Let $z \in A(T)$. If $z \in A(T_{m-1})$ then by the inductive hypothesis, there is a $\gamma(T_{m-1})$-set, say S, such that $z \in S$ and $pn[z, S] = \{z\}$. Then $S' = S \cup \{w\}$ is a γ-set of T and $pn[z, S'] = \{z\}$. Now let $z = v$. By the inductive hypothesis there is a $\gamma(T_{m-1})$-set, say S, such that $y \in S$ and $pn[y, S] = \{y\}$. Then $S' = (S \setminus \{y\}) \cup \{x, v\}$ is a γ-set of T and $pn[v, S'] = \{v\}$.

Case 2. $\mathcal{S}_m = \mathcal{S}_2$. Then T has been obtained from T_{m-1} by adding a path xw and an edge xy with $y \in B(T_{m-1})$. Moreover, $\text{sta}(x) = B$ and $\text{sta}(w) = A$. Let $z \in A(T)$. If $z \in A(T_{m-1})$ then an argument similar to that described
for case 1 shows that the statement holds. So let $z = w$. By Observation 4(4), y has exactly one neighbor in $A(T_{m-1})$, say v. By the inductive hypothesis there is a $\gamma(T_{m-1})$-set, say S, such that $v \in S$ and $pn[v, S] = \{v\}$. Then $S' = (S \setminus \{v\}) \cup \{y, w\}$ is a γ-set of T and $pn[w, S'] = \{w\}$. This completes the proof. □

Lemma 7. Let us have $T \in \mathcal{F}$, T^* obtained from T by subdividing one edge of T, and $z \in A(T)$. Then $\gamma(T^*) = \gamma(T)$ and there is a γ-set of T^* containing z.

Proof. Let $T \in \mathcal{F}$. Note first that $\gamma(T^*) \geq \gamma(T)$ and that any dominating set of T^* of order $\gamma(T)$ is a $\gamma(T^*)$-set. Let us have $e \in E(T)$ and let T^* be obtained from T by adding a new vertex e subdividing the edge e. The proof is by induction on the number m of operations used to construct T from P_k. If $m = 0$ then the statement is true since $\gamma(P_2) = \gamma(P_4) = 2$ and P_5 admits a γ-set containing an endvertex. Assume that $m \geq 1$ and that the statement holds for all trees which are obtained from P_k with at most $m - 1$ operations. Let T be obtained from P_k by the m operations $\gamma^1, \ldots, \gamma^{m-1}, \gamma^m$ and let T_{m-1} be the tree obtained after the $m - 1$ first operations $\gamma^1, \ldots, \gamma^{m-1}$. When $e \in E(T_{m-1})$, let T_{m-1}^* be obtained from T_{m-1} by subdividing the edge e. We consider two cases.

Case 1. $\gamma^m = \gamma_1$. Then T has been obtained from T_{m-1} by adding a path xwv and the edge xy such that $y \in A(T_{m-1})$ and $st(a) = st(w) = B$, $st(v) = A$.

Suppose first that $e \in E(T_{m-1})$. By the inductive hypothesis, $\gamma(T^*_{m-1}) = \gamma(T_{m-1}) = \gamma(T) - 1$ and for any vertex $t \in A(T_{m-1})$ there is a $\gamma(T_{m-1})$-set S_t containing t. Let $S_1 = S_2 \cup \{w\}$ if $z \in A(T_{m-1})$, $S_1 = S_2 \cup \{v\}$ if $z = v$. In both cases, S_1 is a dominating set of T^* containing z and of order $\gamma(T)$.

Suppose now that we subdivide an edge e of the path xwv, say without loss of generality, $e = xw$. By Lemma 6, there exists a $\gamma(T)$-set S such that $v \in S$ and $pn[v, S] = \{v\}$. Necessarily, $x \in S$. If $z \in A(T_{m-1})$, let $S_1 = A(T_{m-1}) \cup \{w\}$. If $z = v$, let $S_1 = S$. In both cases, S_1 is a dominating set of T^* containing z and of order $\gamma(T)$.

Case 2. $\gamma^m = \gamma_2$. Then T has been obtained from T_{m-1} by adding a path xw and the edge xy such that $y \in B(T_{m-1})$ and $st(a) = st(w) = A$.

Suppose first that $e \in E(T_{m-1})$. By the inductive hypothesis, $\gamma(T^*_{m-1}) = \gamma(T_{m-1}) = \gamma(T) - 1$ and if $z \in A(T_{m-1})$, there is a $\gamma(T_{m-1})$-set S containing z. When $z = w$, take for S any γ-set of T_{m-1}. Let $S_1 = S \cup \{w\}$.

Suppose now that we subdivide an edge e of the path xwv, say without loss of generality, $e = xy$. By Lemma 6, there exists a $\gamma(T)$-set S such that $w \in S$ and $pn[w, S] = \{w\}$. Necessarily, $y \in S$. If $z \in A(T_{m-1})$, let $S_1 = A(T_{m-1}) \cup \{x\}$. If $z = w$, let $S_1 = S$.

In all cases, S_1 is a dominating set of T^* containing z and of order $\gamma(T)$. □

Theorem 8. Each tree in family \mathcal{F} is in class 3.

Proof. The proof is by induction on the length m of the sequence of operations needed to construct the tree T. When $m = 0$, then $T = P_3$ and by Theorem A, T is in class 3. Assume $m \geq 1$ and the result holds for all trees in \mathcal{F} that can be constructed from P_k by a sequence of less than m operations. Let $T \in \mathcal{F}$ be obtained by \mathcal{F} from \mathcal{F} by the inductive hypothesis, T_{m-1} is in class 3.

Let T^* be obtained from T by subdividing any two edges, say e and f of T. Clearly $\gamma(T^*) \geq \gamma(T)$. To show that T is in class 3, it is sufficient to show that $\gamma(T^*) \leq \gamma(T)$. We consider two cases.

Case 1. T is obtained from T_{m-1} by operation \mathcal{F}_1, that is by adding a path xwv and an edge xy with $y \in A(T_{m-1})$.

Consider three subcases.

Subcase 1.1. $e, f \in E(T_{m-1})$. Let T^*_{m-1} be obtained from T_{m-1} by subdividing the edges e, f. Then T^* is obtained from T^*_{m-1} by adding the path $yvuv$ to the vertex $y \in V(T^*_{m-1})$. By the inductive hypothesis and by Lemma 5, $\gamma(T^*_{m-1}) = \gamma(T_{m-1}) = \gamma(T) - 1$. Let S be a $\gamma(T_{m-1})$-set. Then $S_1 = S \cup \{w\}$ is a dominating set of T^* and so $\gamma(T^*) \leq \gamma(T)$.

Subcase 1.2. $\{(e, f) \cap E(T_{m-1})\} = 1$. We may assume that $e \in E(T_{m-1})$ and, without loss of generality, $f = xw$. Let T^*_{m-1} be obtained from T_{m-1} by subdividing e. By the inductive hypothesis and by Lemma 5, $\gamma(T^*_{m-1}) = \gamma(T_{m-1}) = \gamma(T) - 1$. By Lemma 7, there exists a $\gamma(T^*_{m-1})$-set S containing y. Then $S_1 = S \cup \{w\}$ is a dominating set of T^* and so $\gamma(T^*) \leq \gamma(T)$.

Subcase 1.3. $e, f \in E(T) \setminus E(T_{m-1})$. We may assume without loss of generality that $e = xw$ and $f = yw$. Let w' be the new vertex subdividing uv. Since $y \in A(T_{m-1})$ and by Lemma 6, there exists a $\gamma(T_{m-1})$-set S such that $y \in S$ and $pn[y, S] = \{y\}$. Then $S_1 = (S \setminus \{y\}) \cup \{x, w'\}$ is a dominating set of T^* and so $\gamma(T^*) \leq \gamma(T_{m-1}) + 1 = \gamma(T)$. H. Aram et al. / Discrete Mathematics 309 (2009) 622–628
Lemma 6

Observation 4

Lemma 2

Observation 4

Lemma 2

Proof. Theorem 10.

Case 2. \(T \) is obtained from \(T_{m-1} \) by operation \(\Sigma_2 \), that is by adding a path \(xw \) and an edge \(xy \) with \(y \in B(T_{m-1}) \). We proceed as in case 1, with the small modifications indicated below.

Subcase 2.2. \(|\{e, f\} \cap E(T_{m-1})| = 1 \). Without loss of generality, \(f = xy \). Take for \(S \) any \(\gamma(T_{m-1}) \)-set and \(S_1 = S \cup \{x\} \).

Subcase 2.3. \(e, f \in E(T - E(T_{m-1})) \). Necessarily, \(e = xy \) and \(f = xw \). Let \(w' \) be the new vertex subdividing \(xw \) and \(y' \) the unique neighbor of status \(A \) of \(y \) in \(T_{m-1} \). By Lemma 6, there exists a \(\gamma(T_{m-1}) \)-set \(S \) such that \(y' \in S \) and \(pn[y', S] = \{y'\} \). Take \(S_1 = (S \setminus \{y'\}) \cup \{y, w'\} \).

In all cases, \(S_1 \) is a dominating set of \(T^* \) of order \(\gamma(T) \), which completes the proof. \[\Box \]

We now present our first characterization.

Theorem 9. A tree \(T \) of order \(n \geq 3 \) is in class 3 if and only if \(T \in \mathcal{F} \).

Proof. By Theorem 8, it is sufficient to prove that the condition is necessary. The proof is by induction on the order \(n \) of \(T \). By Lemma 2, the only tree \(T \) of order 3 or 4 and \(sd_T(T) = 3 \) is \(P_4 \), which belongs to \(\mathcal{F} \). Let \(n \geq 5 \) and suppose that the statement holds for every tree in class 3 and order less than \(n \). Let \(T \) be a tree of order \(n \) and \(sd_T(T) = 3 \). By Lemma 2, the support vertices of \(T \) are not strong. Let \(P : v_1 v_2 \ldots v_\ell \) be a longest path in \(T \). Obviously \(\deg(v_1) = \deg(v_\ell) = 1 \) and \(\deg(v_2) = \deg(v_{\ell-1}) = 2 \). Hence \(\ell \geq 5 \). We consider two cases.

Case 1. \(v_3 \) is a support vertex.

Let \(T' = T \setminus \{v_1, v_2\} \). By Lemma 3(2), \(T' \) is in class 3 and so belongs to \(\mathcal{F} \) by the inductive hypothesis. By Observation 4(2), \(v_3 \in B(T') \). Hence \(T \) is obtained from \(T' \) with one operation \(\Sigma_2 \) and belongs to \(\mathcal{F} \).

Case 2. \(v_3 \) is not a support vertex.

Let \(T' \) and \(T'' \) be the components of \(T - v_1 v_4 \) respectively containing \(v_4 \) and \(v_3 \). Since \(P \) is a longest path of \(T \), all the neighbors of \(v_3 \) different from \(v_4 \) are support vertices. Hence \(T'' \) is a subdivided star \(SK_{1,t+1} \) with \(t \geq 1 \).

Moreover \(|V(T')| \geq 3 \) for otherwise \(T \) is a subdivided star \(SK_{1,t+1} \) which contradicts \(sd_T(T) = 3 \) by Lemma 2.

By Lemma 3(1), \(T' \) is in class 3 and so belongs to \(\mathcal{F} \) by the inductive hypothesis. If \(v_4 \) is a support vertex or has a neighbor which is a support vertex, let \(T^* \) (\(T''^* \) respectively) be obtained from \(T \) (\(T'' \) respectively) by subdividing the two edges \(v_1 v_2 \) and \(v_2 v_3 \). Let \(S \) be a \(\gamma(T) \)-set and \(S^* \) be a \(\gamma(T^*) \)-set. The set \(S \) contains \(v_4 \) or one of its neighbors in \(T' \), and does not contain \(v_3 \). Hence, \(|S^* \cap V(T''^*)| = t + 1 = |S \cap V(T'')| + 1 \) and \(|S^* \cap V(T')| = |S \cap V(T')| \).

Therefore \(\gamma(T^*) > \gamma(T) \), in contradiction to \(sd_T(T) = 3 \). Hence either \(\deg(v_4) = 2 \) and \(v_4 \) is a leaf of \(T' \), or \(\deg(v_4) \geq 3 \) and all the neighbors of \(v_4 \) in \(T' - v_5 \) are at distance exactly 2 (since \(P \) is a longest path) from a leaf of \(T' \). In the first case \(v_4 \in A(T') \) by Observation 4(1). In the second one, all the neighbors of \(v_4 \) in \(T' - v_5 \) are in \(B(T') \) by Observation 4(1) and (5), and have no neighbors in \(A(T') \) except possibly \(v_4 \). By Observation 4(4), \(v_4 \in A(T') \).

Then \(T \) can be obtained from \(T' \) with one operation \(\Sigma_1 \) and \(t - 1 \) operations \(\Sigma_2 \), which completes the proof. \[\Box \]

3. A structural characterization of trees in class 3

We first recall two classical definitions. An independent set (respectively 2-packing or, for short, packing) of a graph \(G \) is a subset of vertices mutually at distance more than 1 (respectively 2). Clearly every packing is independent. The minimum cardinality of a maximal independent set, or equivalently of a dominating independent set, of \(G \) is denoted \(i(G) \) and the maximum cardinality of a packing of \(G \) is denoted \(\rho(G) \). It is well known that \(\rho(G) \leq \gamma(G) \leq i(G) \) for every graph and that \(\rho(T) = \gamma(T) \) for every tree \(T \) [8].

We will say that a tree \(T \) has Property \(\mathcal{P} \) if it admits a packing which is dominating and contains all its leaves.

Theorem 10. A tree \(T \) contains at most one dominating packing containing all its leaves.

Proof. Let \(S \) and \(S' \) be two different dominating packings containing the set \(L \) of leaves of \(T \) and let \(R = V(T) \setminus S, R' = V(T) \setminus S' \). Since \(\rho(T) = \gamma(T), |S| = |S'| = \gamma(T) \).

Let \(S' \setminus S = \{v_1, v_2, \ldots, v_p\} \subseteq R' \) and \(S \setminus S = \{w_1, w_2, \ldots, w_p\} \subseteq R \). Each vertex \(v_i \) belongs to \(R' \cap S \). Hence, since \(S' \) is a dominating packing and \(S \) is independent, each \(v_i \) is adjacent to exactly one vertex of \(S \setminus S \). Without loss of generality we may suppose that the edges between \(\{v_1, v_2, \ldots, v_p\} \) and \(\{w_1, w_2, \ldots, w_p\} \) form a matching \(\{v_1w_1, \ldots, v_pw_p\} \). For \(1 \leq i \leq p \), the vertex \(v_i \) is not a leaf since \(L \subseteq S \), and has no neighbor in \(N[S \cap S'] \cup S' \) since \(S' \) is a packing. Hence each \(w_i \) has at least one neighbor in \(N[v_1] \cup \cdots \cup N[v_p] \setminus \{w_1, \ldots, w_p\} \). Therefore the subgraph induced in \(T \) by \(N[v_1] \cup \cdots \cup N[v_p] \) contains a cycle, a contradiction which completes the proof. \[\Box \]
Let T be a tree of \mathcal{F} obtained from an initial P_4 by a sequence of operations Ξ_1 or Ξ_2, and let $A(T)$ and $B(T)$ be the vertices of respective status A and B in the corresponding construction of T. By Observation 4(1, 4, 5), the set $A(T)$ is a dominating packing containing all the leaves of T. In particular, the minimum dominating set $A(T)$ is independent which proves that \mathcal{F} is a subclass of the class of $(\gamma - i)$-trees, which are trees for which $\gamma(T) = i(T)$. Moreover every tree in \mathcal{F} has Property \mathcal{P} and the following result is a consequence of Theorem 10.

Theorem 11. The set of vertices with status A of a tree T in \mathcal{F} does not depend on the construction of T and is its unique dominating packing containing all the leaves.

We can now give a second characterization of the trees in class 3.

Theorem 12. A tree T of order $n \geq 3$ is in class 3 if and only if it has Property \mathcal{P}.

Proof. By Theorem 9, we have to show that T is in \mathcal{F} if and only if it has Property \mathcal{P}. Since every tree in \mathcal{F} has Property \mathcal{P}, we prove by induction on n that every tree with Property \mathcal{P} is in \mathcal{F}. A tree with Property \mathcal{P} has order at least 4 and if $n = 4$, then the only tree with \mathcal{P} is P_4 which belongs to \mathcal{F}. For $n \geq 5$, suppose that every tree having \mathcal{P} and of order less than n is in \mathcal{F} and let T be a tree of order n with Property \mathcal{P}. Let S be the unique dominating packing of T containing all its leaves and let $P = v_1v_2 \cdots v_p$ be a longest path of T. The leaves v_1 and v_p belong to S. The vertices v_2 and v_{p-1} have degree 2 since all the leaves are in the packing S. Hence $p \geq 5$. By the definition of a packing, v_2 and v_3 are not in S and so if $d(v_3) = 2$, then $v_4 \notin S$. Let $T' = T - \{v_1, v_2, v_3\}$ if $d(v_3) = 2$, and let $S' = S \cap V(T')$. In both cases the set S' is a dominating packing of the tree T' containing all its leaves. By the inductive hypothesis and Theorem 11, $T' \in \mathcal{F}$ and $A(T') = S'$. If $d(v_3) = 2$, then $v_4 \in S$ and hence $v_4 \in A(T') = S' = S \cap V(T')$. If $d(v_3) \geq 3$ then, since $v_3 \notin S$, $v_3 \notin S' = A(T')$ and thus $v_3 \in B(T')$. Therefore T can be obtained from T' by an operation Ξ_1 when $d(v_3) = 2$, Ξ_2 when $d(v_3) \geq 3$. Hence $T \in \mathcal{F}$, which completes the proof. □

We finish the paper with the informal description of a linear algorithm for deciding whether a given tree T is in class 3 and if it is, getting the unique partition $V(T) = A \cup B$ such that

- every leaf is in A,
- every neighbor of a vertex in A is in B,
- exactly one neighbor of a vertex in B is in A.

We proceed by a DFS from a leaf x. Each vertex is examined once, either because it is a leaf different from x or after all its children have been examined. Every vertex v receives a mark A, B or C and a label (a, b, c) where a, b, c are non-negative integers. A mark A or B is definitive. A mark C at v is temporary and either it will be transformed into B, if the father of v later receives the mark A, or we will stop the algorithm with FALSE, i.e., T is not in class 3, otherwise. The label (a, b, c) of a vertex indicates the number of its children respectively marked A, B or C. When we mark a vertex with A, B or C, we increase by 1 the corresponding term a, b or c of its father’s label. For the initialization, all the labels are $(0, 0, 0)$ and no vertex is marked. The rule for marking a vertex v labelled (a, b, c) or stopping the algorithm with FALSE is as follows (we leave the reader to check that these rules correspond to the three properties on A and B recalled above):

- if $a \geq 1$ then FALSE,
- if $(a = 1$ and $c \geq 1$) then FALSE,
- if $(a = 1$ and $c = 0$) then mark(v) = B,
- if $(a = 0$ and $b \geq 1$ and $c \geq 1$) then FALSE,
- if $(a = 0$ and $b \geq 1$ and $c = 0$) then mark(v) = C,
- if $(a = 0$ and $b = 0$) then mark(v) = A

(hence the first marked vertex, a leaf different from x, receives the mark A).

The algorithm either stops with FALSE somewhere, or runs until every vertex is marked.

- If mark(x) $\neq A$, then FALSE; otherwise T is in class 3 and changing all the marks C into B gives the unique partition $V = A \cup B$.

Now that trees in class 3 can be easily recognized, the question is how to decide when a tree not in \mathcal{F} is in class 1 or 2. This problem is more difficult. In [7], the authors give a characterization of the trees in class 1 by the means of three tree properties which are not easy to check.
References