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ABSTRACT Pangong is a brackish water lake having environmental conditions that
are hostile to supporting life. This is the first report unveiling the microbial diversity
of sediment from Pangong Lake, Ladakh, India, using a high-throughput metag-
enomic approach. Metagenomic data analysis revealed a community structure of mi-
crobes in which functional genetic diversity facilitates their survival.

Sediments are rich sources of microbial diversity and represent a special realm in
aquatic environments (1). To overcome the limitations of the culture approach in

studying these organisms, culture-independent approaches like metagenomics are
applied to characterize microbial communities, discover novel genes, and analyze
metabolic pathways directly from the environment (2, 3). There is very limited infor-
mation available on the microbial diversity present at high-altitude cold habitats of the
Himalayas (4). The present study investigates, through a metagenomic approach, the
functional genetic diversity of microbes present in Pangong Lake, a large brackish water
lake situated at a height of 4,250 m above mean sea level in the Himalayas. The
microbes present there are halotolerant and cold adapted, and identifying the diversity
of the novel cold-active enzymes and secondary metabolites assisting in the survival of
these microbes may have great biotechnological potential.

The sediment samples were obtained from Pangong Lake (33°43=04.59�N:
78°53=48.48�E), Ladakh, J&K (Jammu and Kashmir) India, in September 2016 and stored
at 4°C until further analysis. The DNA was extracted using the Exgene soil DNA kit
(GeneAll Biotechnology Co., Ltd.), and sequencing was performed on the Illumina
platform. The paired-end sequencing libraries (2 � 150 bp) were prepared using the
Illumina TruSeq Nano DNA library prep kit and were sequenced on the Illumina
NextSeq500 platform. The raw data were processed to obtain high-quality clean reads
(quality value �20) using Trimmomatic version 0.35 (5). The filtered high-quality reads
of the sample were assembled into scaffolds using CLC Genomics Workbench, and
genes were predicted using Prodigal version 2.6.3 with default parameters (6). Taxo-
nomic analysis of the predicted genes was carried out using Kaiju (7), a program for
sensitive taxonomic classification of high-throughput metagenomics sequencing data.
Cognizer (8), which is a comprehensive stand-alone framework that simultaneously
provides COG (9), KEGG (10), Pfam (11), GO (12), and SEED (13) subsystem annotations
to individual sequences constituting metagenomics data sets, was used for performing
the functional analysis of the genes.

The mean of the library fragment size distribution was 486 bp, and �3 Gb of
high-quality data were obtained, with 10,386,213 reads assembled into scaffolds. After
assembly, the total size of the scaffolds was 248,068 bp, with an N50 value of 635 bp,
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and 337,527 genes, with an average gene length of 401 bp, were predicted. The
predicted genes having a length of �300 bp were discarded from taxonomical analysis
and functional classification. Taxonomical classification was as follows: bacteria
(83.86%), archaea (0.24%), eukaryotes (0.42%), viruses (0.41%), and unclassified
(15.02%). The major phyla represented were Proteobacteria (54.36%), Bacteroidetes
(24.01%), Firmicutes (1.14%), Actinobacteria (0.85%), Balneolaeota (0.79%), Cyanobacteria
(0.59%), Verrucomicrobia (0.47%), Euryarchaeota (0.21%), Planctomycetes (0.19%), and
Ascomycota (0.10%). At the genus level, Methylophaga (10.19%) was found to be the
most abundant. Functional analysis of the sequence classified most of the data as being
related to carbohydrate metabolism, energy metabolism, lipid metabolism, and nucle-
otide metabolism.

Metagenomic analysis revealed a diverse domain of microbial communities thriving
in harsh conditions, creating a base for further microbial exploration to improve the
efficacy of bioprospecting metagenomics of soil and sediment, which may lead to the
discovery of novel enzymes and bioactivities.

Accession number(s). The nucleotide sequences reported here have been submit-
ted to the NCBI Sequence Read Archive (SRA) under accession number SRX2861366.
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