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Abstract. Non-linear parametric resonances occur frequently in nature. Here we summarize how they can be studied by
means of perturbative methods. We show in particular how resonances can affect the motion of a test particle orbiting in the
vicinity of a compact object. These mathematical toy-models find application in explaining the structure of the observed kHz
Quasi-Periodic Oscillations: we show which aspects of the reality naturally enter in the theory, and which one still remain a
puzzle.
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1. Introduction

A particular analytic model for the Kluźniak-Abramowicz
resonance idea for Quasiperiodic Oscillations (QPOs) was
developed by Rebusco (2003) and Horák (2004). It describes
the QPO phenomenon in terms of two coupled non-linear
forced oscillators,

δ̈r + ω2
rδr = F (δr, δz, δ̇r, δ̇z) + A cos (ω0t) + Nr(t), (1)

δ̈z + ω2
zδz = G(δr, δz, δ̇r, δ̇z) + B cos (ω0t) + Nz(t),

whereF andG are polynomials of second or higher degree
(obtained in terms of expansion of the deviations from a Ke-
plerian flow) andωr andωz are the epicyclic frequencies (see
next section). Thecos(ω0t) terms represent an external forc-
ing: they are mostly important in the case of Neutron Stars
(NS), whereω0 is the NS spin frequency.Nr andNz describe
the stochastic noise due to the magneto-rotational instability
(MRI). Till now, solutions of (1) have been studied in detail
in the case of unforced oscillations without noise. In what
follows we describe shortly these solutions, and comment on
astrophysical consequences.

2. Nearly Keplerian motion

2.1. Perturbed test particle

We analyze the case of a single test particle moving in a
strong gravitational field. Consider a free test particle orbit-
ing in the vicinity of a nonrotating compact object: it moves
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along the geodesics given by the Schwarzschild metric

θ̈(τ) +
E2

2gθθ

∂Ueff(r, θ)

∂θ
+ 2Γθ

rθṙ(τ)θ̇(τ) = 0 , (2)

r̈(τ) +
E2

2grr

∂Ueff(r, θ)

∂r
+ Γr

θθθ̇(τ)
2

+ Γr
rrṙ(τ)

2
= 0 ,

φ̈(τ) = 0 ,

whereUeff = gtt + lgtφ + l2gφφ is the effective potential
andE = −ut is the energy,(θ, r, φ) are the spherical com-
ponents. Let us slightly perturb the orbit of such a particle:
what happens? In first approximation the particle oscillates
harmonically in each direction of the perturbation; to higher
orders however the different directions are coupled and non-
linear effects show up. An example of such a perturbation was
studied numerically by Abramowicz et al. (2003) and analyt-
ically by Rebusco (2004): these are specific examples (Tay-
lor expansion to third order plus introduction of an arbitrary
constantα), but they display a behaviour which is common to
any nearly-Keplerian motion. In general a perturbation in the
radial (δr) and in the vertical (δz) direction can be written in
the form (1). Up to now a study of these equations (without
the turbulent noise termsN ) have been done by using per-
turbative methods; among them, we found that the method of
multiple scales (read Sect. 3) is particularly useful.

2.2. Particle motion and Eigenfrequencies

The radial epicyclic frequency of planar motion and the verti-
cal epicyclic frequency of nearly off-plane motion are respec-
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tively defined as

ω2
r =

(

1

grr

∂2Ueff

∂r2

)

ℓ,r0,π/2

, (3)

ω2
z =

(

1

gθθ

∂2Ueff

∂θ2

)

ℓ,r0,π/2

.

They depend only on the metric of the system, hence on
strong gravity itself. Moreover they scale from source to
source withM−1 , giving a unique possibility to fix the mass
M of the central object, once their relation with the observed
QPOs is clarified. For a spherically symmetric gravitating
fluid body (a better model of the accretion disk) these are
the frequencies at which the center of mass (initially on a cir-
cular geodesic) oscillates (Abramowicz et al. 2005): hence
the toy-model of a single particle is meaningful also for more
complex systems, in which the coupling arises naturally.

In Newtonian gravity there is degeneracy between these
eigenfrequencies and the Keplerian frequency: that is why
bounded orbits are closed. In general relativity this degen-
eracy is broken and as a consequence two (for nonrotating
object) or three (for Kerr’s BH or NS) characteristic frequen-
cies are present, opening the possibility of internal resonances
(see Fig. 2 in Abramowicz et al. 2005). External resonances
are likely to occur too: this is the well known case of the rings
of Saturn, in which the structure of the gaps results from reso-
nance with outer satellites. This could be the case of a pertur-
bation at the stellar spin frequency in NSs: a nonlinear forced
resonance would explain why in many NSs the frequency dif-
ference of the two peaks remains close to1

2 the spin, while the
position of the two peaks varies in time (van der Klis2000).

The resonant model (see the review by Kluźniak 2005)
is based on such observations and on the analogy of the per-
turbed equations with the Mathieu equation, which describes
a swing with oscillating point of suspension. In the next sec-
tion we will see why the3 : 2 ratio is the most likely to take
place and why the observed frequencies are near the epicyclic
ones, but not exactly the same.

3. Weakly non-linear oscillators

Weakly anharmonic oscillators can be approximated by har-
monic oscillators whose frequencies are close to the eigen-
frequencies. This fact was already well known by XIX cen-
tury astronomers; Henry Poincaré developed a method (e.g.
Poincaré1882) to study these systems, based on the as-
sumption that the approximate solution is in the formxi =

ai cosω∗
i t + φi+Σjǫ

jx
(j)
i , whereω∗

i = ωi+ǫω
(1)
i +ǫ2ω

(2)
i +

ǫ3ω
(3)
i + ... andωi are the eigenfrequencies (i = 1, .., n, with

n degrees of freedom). The frequency correctionsω
(j)
i are

found to depend on the amplitudes of the perturbation and
on the constants of the system.ǫ is a constant≪ 1, which
measures the deviation from the linearity: its value has to be
suitably linked to some physical quantities, but here it is suf-
ficient to notice that it is small.

Another method was developed more recently (e.g. Mook
& Nayfeh 1976), the so-called method of multiple scales,
which permits to get more information about such systems

Fig. 1. (Figures online colour at www.an-journal.org) Stabil-
ity regions for the Mathieu equation: on the horizontal axis
there is the order of resonance, while the vertical axis de-
scribes the strength of the couplingǫ. The blue region (the
external one) is stable, the other colours represent the unsta-
ble solutions; the boundary between the two corresponds to
the combinations of frequencies andǫ that give the steady-
state solution (courtesy of V. Karas).

(see Horák 2004 for a review). This method is another vari-
ation of the straightforward expansion, whose fundamental
idea is to consider the expansion which represents the approx-
imate solution to be a function of multiple independent time
scales, instead of a single time. The new “time-like” indepen-
dent variables are defined:Tk = ǫkt for k = 0, 1, 2... . Ex-
pressing the solution as a function of more variables, treated
as independent, is a trick to remove the terms which would
make the solution unphysically to diverge. By writingTk one
makes a formal assumption of physical phenomena which
vary at slower time scales: indeed the different nonlinear ef-
fects accumulate in slower time scales and with these expan-
sions we are able to study them separately.

The term parametric resonance is used to describe not
closed oscillating systems in which the external action vary
the parameters of the system itself (e.g. Mathieu equation).
An autoparametric system is one in which the time variation
of the system parameters is not explicit, but depends on the
coupling of the non-linear terms in different directions. In this
context we will use the term parametric resonance to refer to
both kind of systems.

3.1. Regions of non-linear resonance

The first result which can be derived by using any perturba-
tive method is that in the approximate solution there are terms
with the denominators of the formnωr − mωz (with n and
m being integers). Thesen andm cannot take any value, but
they depend on the symmetry of the metric and of the pertur-
bation: for a plane symmetric configuration one can demon-
strate (e.g. Rebusco 2004) thatm = 2 p (p integer). Due to
this, the regions wherenωr = 2pωz are candidate regions of
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parametric resonance (an analogous reasoning can be done
for external resonance). These systems are well studied in
engineering, where usually the main aim is to control the ex-
cited resonances: one can find examples of such couplings in
aviation (e.g. the problem of how to reduce the vibrations due
to rotor blade flapping motion of helicopters), building (e.g.
how the elevator ropes respond to high-rise buildings excita-
tions), electronic circuits, etc.

As it can be seen from Fig. 2 of Abramowicz (2005),
in General Relativity the epicyclic frequencies are different
(ωz > ωr ∀r) and there are specific radii at which they
are commensurate: hence at those radii an internal resonance
between the radial and the vertical direction can occur. The
lower order resonance are stronger and more probable: the
minimum value forp is p = 1, hence for a particle in a plane-
symmetric strong field the resonance which is most likely to
be excited is the3 : 2 (n = 3, becausen = 1, 2 correspond to
ωz ≤ ωr ). When the excitation of one mode reaches a criti-
cal amplitude, then the linear response saturates, loses stabil-
ity and the energy is transferred to the other mode and back.
Apart from the distance from the central object, other condi-
tions for the resonance are obviously that the damping does
not avoid the growth of the amplitudes and that the perturba-
tion is not too strong (this would lead the system to a chaotic
state): these conditions are natural requirements.

In a real accretion disk the perturbation from the whole
disk would get excited at ther3:2 radius (radius at which the
eigenfrequencies are in3 : 2 ratio) and from there a wave
would propagate through the whole disk (presumably with
lower amplitudes). A3 : 2 resonance was discovered in the
planet Mercury: however in that case it is an external reso-
nance between the spin of the planet itself and its orbit around
the Sun (Goldreich & Peale1966).

3.2. Frequency corrections and the Bursa line

The solution which can be obtained with the method of
Poincaré is a special solution, the so called steady-stateso-
lution (constant amplitudes and frequencies): this solution is
such that also if the frequencies are corrected, their ratiore-
mains exactly3 : 2 (Horák 2004). On the plane ratio ver-
susǫ (see Fig. 1) the steady-state solution are the contours
which divide the stable solutions (outer part) from the unsta-
ble ones (inner part). In aj-dimensional system instead of a
line, there can exist aj-dimensional surface in which the so-
lutions are steady-state. More intersetting solutions arethose
which are steady up to a certain order of approximation, but
vary at higher order: these would be solutions close to the
stable surface. We contemplated the possibility of a solution
which is steady-state up to the third order, but which is al-
lowed to vary starting from the next order. This would mean
that the frequencies:

ω∗
r = ωr + ǫ2ω(2)

r + ǫ3ω(3)
r + O(ǫ4) ,

ω∗
z = ωz + ǫ2ω(2)

z + ǫ3ω(3)
z + O(ǫ4) (4)

and the amplitude of oscillations are constant fort ∼ ǫ(−3),
but for longer times they change periodically (Horák 2004),
exchanging energy (amplitudes are anticorrelated, frequen-
cies are related). The dominant correctionsω

(2)
i depend

quadratically on the amplitudes and they are due to the non-
linearity. Hence for the observed frequencies we use the rela-
tion:

ω∗
z = Sω∗

r + Q, (5)

where S depends quadratically on the amplitudes of the
perturbation. In the case studied by Abramowicz et al.
(2003) and Rebusco (2004),S = S(r0, δr, δθ, α). In the
above mentioned papers the initial conditions of the per-
turbed geodesics were found in order to match the observed
frequency-frequency slope of the neutron star source Sco X-
1. Indeed neutron star sources display different centroid fre-
quencies in different observations, but amazingly they allfit
on the same line, which is close to3 : 2. In the numerical
study (Abramowicz et al. 2003) this was obtained by chang-
ing the initial radiusr0 and by using theα which gave the
strongest response. In the analytical study (Rebusco 2004)
the same result was obtained by fixingα and varying the ini-
tial perturbations (δr andδθ). The two procedures agree on
the point that a weak perturbation to a free particle leads to
quasi-harmonic oscillations, whose frequencies and ratioare
close to the eigenfrequencies and to3 : 2 respectively (see
Fig. 2; we refer to the deviation from3 : 2 as the Bursa line).
Consider the case of BHs and NSs: the mass of the first is
greater, henceωBH < ωNS. Moreover, suppose that the entity
of the perturbation in the two classes of objects is different:
if it is stronger in NSs than in BHs, then both the frequency
corrections and the observed ratio will be greater in NSs (they
are proportional to the square of the amplitudes). The weak
point in is this model is that it cannot explain why the slope
is S = 0.92 for all NS sources, rather than a different value:
with our simplifications we cannot discriminate the value of
S, which depends on our choice concerning the perturbation.
In principle we cannot even justify why the slope-slope rela-
tion is linear! One may infer that this deals with the structure
of NSs themselves: in the equations that describe the disk os-
cillations, there must be a limit cycle, such that for different
initial conditions the frequency range changes, but at each
time the frequencies fall on the same line. Such limit cycle
should be connected to the mass accretion rate in the inner
part of the disk.

We emphasize however that in the non-linear resonance
model the frequencies shift arises naturally, as well as the
deviations from the exact commensurate ratio: this behaviour
agrees with the observations. The actual challenge for theo-
reticians is a full understanding of the “Bursa line”, both qua-
litatively and quantitatively.

4. Qualitative discussion on other effects

4.1. Frequency-frequency slope: BHs and NSs

The strength of the perturbation is greater in NS than in BH
sources: as a consequence the observed frequencies wander
much more for NS than in BH (ω(2)

NS > ω
(2)
BH ). However this

explanation is not completely satisfactory. The observed sig-
nal is not a direct mirror of the disk oscillation, but one hasto
take into account the propagation and emission mechanisms.
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Fig. 2. The dotted line is the least-squares best-fit to the data
points (the observed kHz QPOs frequencies in Sco X-1),
which we call “Bursa line”; the thin solid line corresponds
to a slope of3 : 2 (for reference) . The thick solid segment
is the analytic approximation, in which the frequencies are
scaled for comparison with observations.

In black holes the presence of the event horizon avoids any
additional modulation: one can assume that the emitting flux
has the characteristic frequencies of the most excited reso-
nance (r3:2), and that a subsequent modulation is just due to
relativistic effects, such as strong gravitational lensing and
Doppler effect (Bursa et al. 2004). Hence the timing proper-
ties of the observed photons would be essentially distributed
around the frequency of oscillation of a single particle sit-
uated at a distancer3:2 from the central object. In neutron
stars the modulation, which originates in the disk, propagates
to the boundary layer (Abramowicz, Horák & Kluźniak 2005;
Gilfanov, Revnivtsev & Molkov 2003) and there the original
frequencies of oscillation (the ones atr = r3:2) are subject to
the influence of the Roche lobe overflow: eventually in this
case it is difficult to predict how the observed frequencies are
related to the original ones (see Horák 2005).

4.2. The effect of a periodic forcing

It is widely accepted that in NS sources the QPO frequencies
depend on the spin: this indicates that the the NS spin directly
excites the disk oscillations (see Lee 2005 and Sramkova
2005 for numerical results). Let us add external forcing terms
to our equations:A cosω0t andB cosω0t. In order to study
them with a perturbative method it is convenient to introduce
Ã andB̃ such thatA = ǫjÃ andB = ǫkB̃ (j andk are in-
tegers: they can be different to take into account a different
forcing in the two directions).

By considering this forcing a new whole range of reso-
nance conditions is possible:
nωz ± mωr = qω0, (6)
with n, m, q = 0, 1, 2, ... . An interesting example was stud-
ied by Kluźniak et al. (2004): indeed the combination of fre-
quencies such that the QPOs are separated by1

2 the spin fre-
quency would explain the recent observations of the millisec-
ond pulsar SAX J1808.4-3658 (Wijnands et al. 2003). An-
other possibility in agreement with the data from NS, is that

the difference of the QPOs peaks remains locked at the spin
frequency itself.

4.3. MRI Turbulence

In the analytical study the turbulence terms were set to zero:
up to now only a numerical study of these stochastic differ-
ential equations (SDEs) have been done. Anyway from the
first experiments (private communication with R. Vio and H.
Madsen) we can already see that if a Gaussian noise is as-
sumed, its standard deviation cannot be too large, or the res-
onance regime will be disrupted in favour of a chaotic one.
However for small standard deviations the turbulence intro-
duces new resonances and it drives the system from one sta-
ble resonance to the other. The study of these SDEs is very
promising: it is necessary to take into account these terms in
order to compare our model with observations.

The stochastic terms permit to analyze new behaviours
and hopefully their study will lead to a better understanding
of the MRI itself.

5. Conclusions

In weakly non-linear oscillators the leading terms are peri-
odic, with frequencies close to the eigenfrequencies of the
system: the frequency shift is proportional to the square of
the amplitude of the perturbation. The internal coupling of
two or more subsystems introduces the possibility of para-
metric resonances to occur (in the regions where the char-
acteristic frequencies are commensurate). Another feature of
non-linear resonance is the presence of subharmonics.

All this suggests that the observed kHz QPOs are a non-
linear phenomenon. With the simple toy-model of a perturbed
test particle in the strong gravitational field of compact ob-
jects, we can qualitatively explain the position of the twin
QPO peaks in a frequency-frequency plane. However many
puzzles remain to be solved: is there a limit cycle in the sys-
tem? Is the presence of the boundary layer sufficient to justify
the differences between NSs and BHs? Are the shift and the
slope of the Bursa line related? How does turbulence affect
the resonance conditions? Attacking these questions with the
different instruments of theory, computation and observations
may lead to a better understanding of the physics of accretion,
of the mathematics of non-linear systems, and to the test of
strong gravity itself.
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