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Resonance conditions
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Abstract. Non-linear parametric resonances occur frequently inreatdere we summarize how they can be studied by
means of perturbative methods. We show in particular hoart@sces can affect the motion of a test particle orbitindpén t
vicinity of a compact object. These mathematical toy-msdield application in explaining the structure of the obsdrkidz
Quasi-Periodic Oscillations: we show which aspects of #adity naturally enter in the theory, and which one still eéma
puzzle.
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1. Introduction along the geodesics given by the Schwarzschild metric
A particular_ analytic modgl f(_)r t_he Klqinigk-Abramowiczé ) o+ E? 9Ucs(r,0) + 21“%7‘4(7)9(7) —0, )
resonance idea for Quasiperiodic Oscillations (QPOs) was 2900 o0

developed by Rebusco (2003) and Horak (2004). It describes E? OUeg(r,0)
the QPO phenomenon in terms of two coupled non—Iine5FT + E or
forced oscillators,

+T50(7) + T, (7)2 = 0,

) o é(1) = 0,

or +w2ér = F(0r,0z,0m,62) + Acos (wot) + N,.(t), (1) o . 1 2t is the ff |
IS 2¢ Lo whereU.g = g + lg*? + [“g%? is the effective potentia
02+ w0z = G(Or,02,0r,62) + B cos (wot) + N (¢), andE = —u, is the energy(d, r, ¢) are the spherical com-

whereF andG are polynomials of second or higher degreponents. Let us slightly perturb the orbit of such a particle
(obtained in terms of expansion of the deviations from a Kevhat happens? In first approximation the particle oscilate
plerian flow) andv, andw, are the epicyclic frequencies (sedarmonically in each direction of the perturbation; to l@gh
next section). Theos(wot) terms represent an external forcorders however the different directions are coupled and non
ing: they are mostly important in the case of Neutron Stalisear effects show up. An example of such a perturbation was
(NS), wherev, is the NS spin frequency,. andV, describe studied numerically by Abramowicz et al. (2003) and analyt-
the stochastic noise due to the magneto-rotational inggabiically by Rebusco (2004): these are specific examples (Tay-
(MRI). Till now, solutions of [1) have been studied in detailor expansion to third order plus introduction of an arbigra
in the case of unforced oscillations without noise. In whabnstanty), but they display a behaviour which is common to
follows we describe shortly these solutions, and comment any nearly-Keplerian motion. In general a perturbatiorhia t
astrophysical consequences. radial ¢r) and in the vertical{z) direction can be written in
the form [1). Up to now a study of these equations (without
. . the turbulent noise termd’) have been done by using per-
2. Nearly Keplerian motion turbative methods; among them, we found that the method of

, multiple scales (read Sect. 3) is particularly useful.
2.1. Perturbed test particle

We analyze the case of a single test particle moving in
strong gravitational field. Consider a free test particleiter

ing in the vicinity of a nonrotating compact object it MOV€She radial epicyclic frequency of planar motion and theivert

Correspondence tgpao@mpa-garching.mpg.de cal epicyclic frequency of nearly off-plane motion are r&sp

2?2. Particle motion and Eigenfrequencies
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3 WEAKLY NON-LINEAR OSCILLATORS 3.1 Regions of non-lineaesonance

tively defined as

1 92U,
W = (— _ ;f) , @3)
Grr T £,ro,m/2

9 ( 1 62Ueﬂ‘>
w: = | — 5 .
goo 00 Cro,m)2

They depend only on the metric of the system, hence !
strong gravity itself. Moreover they scale from source t €
source withM —! | giving a unique possibility to fix the mass
M of the central object, once their relation with the observe
QPOs is clarified. For a spherically symmetric gravitatin
fluid body (a better model of the accretion disk) these a
the frequencies at which the center of mass (initially orra ¢
cular geodesic) oscillates (Abramowicz et al. 2005): hen
the toy-model of a single particle is meaningful also for enot 3 5 i 5
complex systems, in which the coupling arises naturally. n

In Newtonian gravity there is degeneracy between thekig. 1. (Figures online colour at www.an-journal.org) Stabil-
eigenfrequencies and the Keplerian frequency: that is why regions for the Mathieu equation: on the horizontal axis
bounded orbits are closed. In general relativity this degethere is the order of resonance, while the vertical axis de-
eracy is broken and as a consequence two (for nonrotatfggibes the strength of the coupliagThe blue region (the
object) or three (for Kerr's BH or NS) characteristic freque external one) is stable, the other colours represent tha-uns
cies are present, opening the possibility of internal rasoes ble solutions; the boundary between the two corresponds to
(see Fig. 2 in Abramowicz et al. 2005). External resonancée combinations of frequencies andhat give the steady-
are likely to occur too: this is the well known case of the gngstate solution (courtesy of V. Karas).
of Saturn, in which the structure of the gaps results frora+es

nance with outer satellites. This could be the case of a pertu . ) ) ) )
bation at the stellar spin frequency in NSs: a nonlinearddrc (€€ Horak 2004 for a review). This method is another vari-

resonance would explain why in many NSs the frequency dﬁzion. of the st.raightforward e_xpansjon, whose fundamental
ference of the two peaks remains cIoséme spin, while the idea is to consider the expansion which represents the g&ppro
position of the two peaks varies in time (van der KIig)0). imate solution to be a function of multiple independent time

The resonant model (see the review by Kluzniak 200§5;ales' mstead ofa5|r_1gle tlme.];l'he new “time-like” indepe
is based on such observations and on the analogy of the _t\{anables are_defmeﬂ}; - e_t for k=0, 1_’ 2.... Bx-
turbed equations with the Mathieu equation, which deseribB€SSINY the solu.t|0n asa function of more varlablgs,erbat
a swing with oscillating point of suspension. In the nextse@S independent, is a trick to remove the terms which would
tion we will see why the : 2 ratio is the most likely to take M2ke the solution unphysically to diverge. By writidig one

place and why the observed frequencies are near the epicyglﬁkes a form?' assumptlo_n of phy5|ca_l phenomer?a which
ones, but not exactly the same. vary at slower time scales: indeed the different nonlinéar e

fects accumulate in slower time scales and with these expan-
_ _ sions we are able to study them separately.
3. Weakly non-linear oscillators The term parametric resonance is used to describe not
) ) ) closed oscillating systems in which the external actiory var
Weakly anharmonic oscillators can be approximated by h@fe parameters of the system itself (e.g. Mathieu equation)
monic oscillators whose frequencies are close to the eigelly autoparametric system is one in which the time variation
frequencies. This fact was already well known by XIX ceryf the system parameters is not explicit, but depends on the
tury astronomers; Henry Poincaré developed a method (&g pling of the non-linear terms in different directionsttiis

Poincare1882) to study these systems, based on the agsntext we will use the term parametric resonance to refer to
sumption that the approximate solution is in the farm= " 5th kind of systems.

a; cosw;t + ¢i—|—2j6-7‘x53) , Wherew; = wi+ew§1)+62w§2)+
e3w§3) + ... andw; are the eigenfrequencies<£ 1, .., n, with
n degrees of freedom). The frequency correctimﬁ‘s) are
found to depend on the amplitudes of the perturbation améle first result which can be derived by using any perturba-
on the constants of the systemis a constant< 1, which tive method is that in the approximate solution there amaser
measures the deviation from the linearity: its value haseto Wwith the denominators of the formw, — mw, (with n and
suitably linked to some physical quantities, but here iuis s m being integers). Theseandm cannot take any value, but
ficient to notice that it is small. they depend on the symmetry of the metric and of the pertur-
Another method was developed more recently (e.g. Modlation: for a plane symmetric configuration one can demon-
& Nayfeh 1976), the so-called method of multiple scalesstrate (e.g. Rebusco 2004) that= 2 p (p integer). Due to
which permits to get more information about such systerttss, the regions wherew, = 2pw, are candidate regions of

3.1. Regions of non-linear resonance



4 QUALITATIVE DISCUSSION ON OTHER EFFECTS

parametric resonance (an analogous reasoning can be dpredratically on the amplitudes and they are due to the non-
for external resonance). These systems are well studiedifrearity. Hence for the observed frequencies we use tlae rel
engineering, where usually the main aim is to control the etien:
cited resonances: one can find examples of such couplings in .
aviation (e.g. the problem of how to reduce the vibratiorns diz — Swr +Q, (5)
to rotor blade flapping motion of helicopters), buildingge. where S depends quadratically on the amplitudes of the
how the elevator ropes respond to high-rise buildings excifperturbation. In the case studied by Abramowicz et al.
tions), electronic circuits, etc. (2003) and Rebusco (20043, = S(rg,0r,d6, ). In the

As it can be seen from Fig. 2 of Abramowicz (2005)above mentioned papers the initial conditions of the per-
in General Relativity the epicyclic frequencies are difer turbed geodesics were found in order to match the observed
(w. > w, Vr) and there are specific radii at which theyrequency-frequency slope of the neutron star source Sco X-
are commensurate: hence at those radii an internal resenahdndeed neutron star sources display different centred f
between the radial and the vertical direction can occur. Thaencies in different observations, but amazingly theyitall
lower order resonance are stronger and more probable: ¢gimethe same line, which is close 80: 2. In the numerical
minimum value forp is p = 1, hence for a particle in a plane-study (Abramowicz et al. 2003) this was obtained by chang-
symmetric strong field the resonance which is most likely iag the initial radiusry and by using thex which gave the
be excited isth8 : 2 (n = 3, because = 1,2 correspond to strongest response. In the analytical study (Rebusco 2004)
w, < w, ). When the excitation of one mode reaches a critihe same result was obtained by fixingind varying the ini-
cal amplitude, then the linear response saturates, loseit-st tial perturbationsdr anddf). The two procedures agree on
ity and the energy is transferred to the other mode and bathe point that a weak perturbation to a free particle leads to
Apart from the distance from the central object, other condjuasi-harmonic oscillations, whose frequencies and eago
tions for the resonance are obviously that the damping da#gse to the eigenfrequencies and3to 2 respectively (see
not avoid the growth of the amplitudes and that the perturbiaig. 2; we refer to the deviation frofh: 2 as the Bursa line).
tion is not too strong (this would lead the system to a chaot@onsider the case of BHs and NSs: the mass of the first is
state): these conditions are natural requirements. greater, hencepn < wns. Moreover, suppose that the entity

In a real accretion disk the perturbation from the wholef the perturbation in the two classes of objects is differen
disk would get excited at the;., radius (radius at which the if it is stronger in NSs than in BHs, then both the frequency
eigenfrequencies are i : 2 ratio) and from there a wave corrections and the observed ratio will be greater in NSsy(th
would propagate through the whole disk (presumably witire proportional to the square of the amplitudes). The weak
lower amplitudes). A3 : 2 resonance was discovered in thgoint in is this model is that it cannot explain why the slope
planet Mercury: however in that case it is an external ress-S = 0.92 for all NS sources, rather than a different value:
nance between the spin of the planet itself and its orbitradouwith our simplifications we cannot discriminate the value of

the Sun (Goldreich & PealE966). S, which depends on our choice concerning the perturbation.
In principle we cannot even justify why the slope-slope+ela
3.2. Frequency correctionsand the Bursa line tion is linear! One may infer that this deals with the struetu

of NSs themselves: in the equations that describe the disk os
The solution which can be obtained with the method @fllations, there must be a limit cycle, such that for diéfiet
Poincaré is a special solution, the so called steady-state initial conditions the frequency range changes, but at each
lution (constant amplitudes and frequencies): this soifuis time the frequencies fall on the same line. Such limit cycle
such that also if the frequencies are corrected, their ratio should be connected to the mass accretion rate in the inner
mains exactly3 : 2 (Horak 2004). On the plane ratio ver-part of the disk.
suse (see Fig. 1) the steady-state solution are the contours we emphasize however that in the non-linear resonance
which divide the stable solutions (outer part) from the BnStmodel the frequencies shift arises naturally, as well as the
ble ones (inner part). In gdimensional system instead of &jeviations from the exact commensurate ratio: this behavio
line, there can exist g-dimensional surface in which the soagrees with the observations. The actual challenge fortheo

lutions are steady-state. More intersetting solutionstasse eticians is a full understanding of the “Bursa line”, botrag
which are steady up to a certain order of approximation, bithtively and quantitatively.

vary at higher order: these would be solutions close to the

stable surface. We contemplated the possibility of a smhuti

which is steady-state up to the third order, but which is af. Qualitative discussion on other effects
lowed to vary starting from the next order. This would mean

that the frequencies: 4.1. Frequency-frequency sope: BHsand NSs

Wi = wy + Ew? 4+ E0® + O(eh)

The strength of the perturbation is greater in NS than in BH
w; = w; + 62‘02:2) + 63‘02:3) +0(e) (4)  sources: as a consequence the observed frequencies wander
and the amplitude of oscillations are constanttfer ¢(=3), much more for NS than in Bw@? > wg% ). However this

but for longer times they change periodically (Horak 2Q04gxplanation is not completely satisfactory. The obserigd s
exchanging energy (amplitudes are anticorrelated, frequ@al is not a direct mirror of the disk oscillation, but one kas

cies are related). The dominant correcti(mg) depend take into account the propagation and emission mechanisms.



References 4.3 MRI Turbulence

the difference of the QPOs peaks remains locked at the spin
frequency itself.

1100
ot
1050 4.3. MRI Turbulence
In the analytical study the turbulence terms were set to:zero
up to now only a numerical study of these stochastic differ-
ential equations (SDEs) have been done. Anyway from the
first experiments (private communication with R. Vio and H.
Madsen) we can already see that if a Gaussian noise is as-
sumed, its standard deviation cannot be too large, or the res

1 onance regime will be disrupted in favour of a chaotic one.
850 . However for small standard deviations the turbulence intro

@ duces new resonances and it drives the system from one sta-

Fig. 2. The dotted line is the least-squares best-fit to the ddi§ resonance to the other. The study of these SDEs is very
points (the observed kHz QPOs frequencies in Sco X-Promising: it is necessary to take into account these temms i
which we call “Bursa line”; the thin solid line correspond@rder to compare our model with observations.
to a slope of3 : 2 (for reference) . The thick solid segment The stochastic terms permit to analyze new behaviours
is the analytic approximation, in which the frequencies asnd hopefully their study will lead to a better understagdin
scaled for comparison with observations. of the MRl itself.
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In black holes the presence of the event horizon avoids asyConclusions

additional modulation: one can assume that the emitting flux

has the characteristic frequencies of the most excited refo weakly non-linear oscillators the leading terms are Jperi
nance {3.2), and that a subsequent modulation is just due ¢alic, with frequencies close to the eigenfrequencies of the
relativistic effects, such as strong gravitational legsamd system: the frequency shift is proportional to the square of
Doppler effect (Bursa et al. 2004). Hence the timing propethe amplitude of the perturbation. The internal coupling of
ties of the observed photons would be essentially dis&ibuttwo or more subsystems introduces the possibility of para-
around the frequency of oscillation of a single particle sitmetric resonances to occur (in the regions where the char-
uated at a distancs;., from the central object. In neutronacteristic frequencies are commensurate). Another featur
stars the modulation, which originates in the disk, prope®anon-linear resonance is the presence of subharmonics.

to the boundary layer (Abramowicz, Horak & Kluzniak 2005; Al this suggests that the observed kHz QPOs are a non-
Gilfanov, Revnivtsev & Molkov 2003) and there the originafinear phenomenon. With the simple toy-model of a perturbed
frequencies of oscillation (the onesrat r3.2) are subject to test particle in the strong gravitational field of compact ob
the influence of the Roche lobe overflow: eventually in thiécts, we can qualitatively explain the position of the twin
case itis difficult to predict how the observed frequencies aQpO peaks in a frequency-frequency plane. However many

related to the original ones (see Horak 2005). puzzles remain to be solved: is there a limit cycle in the sys-
tem? Is the presence of the boundary layer sufficient tayusti
4.2. The effect of a periodic forcing the differences between NSs and BHs? Are the shift and the

slope of the Bursa line related? How does turbulence affect

Itis widely accepted that in NS sources the QPO frequencigs, 1osonance conditions? Attacking these questions fth t
depend on the spin: this indicates that the the NS spin @'recaifferent instruments of theory, computation and obséovat

excites the d's!( oscillations (see Lee 2005 and _Sramk%aotylead to a better understanding of the physics of aceretio
2005 for numerical results). Let us add external forcingier of the mathematics of non-linear systems, and to the test of
to our equationsA cos wot and B coswypt. In order to study strong gravity itself

them with a perturbative method it is convenient to intragluc

A andB such thatd = ¢/ A andB = €*B (j andk are in- AcknowledgementsPragne podziekowac Markowi Abramowicz za
tegers: they can be different to take into account a differegiving me the possibility to work on such a fascinating sabgnd
forcing in the two directions). to meet regularly the research group. | would thank him, Whod

By considering this forcing a new whole range of resc;glu’zniak, Jiri Horak and Roberto Vio for the helpful dissions
nance conditions is possible: and suggestions and Vladimir Karas for the hospitality atAktro-

nomical Institute in Praha and for making the plot in Fig. &nh
nw; £ mw, = quo, (6) grateful to Axel Brandenburg for helping me in the editing.
with n,m,q = 0,1, 2, .... An interesting example was stud-

ied by Kluzniak et al. (2004): indeed the combination of fr

guencies such that the QPOs are separate}ithye spin fre- eReferenceS
quency would explain the recent observations of the madliseapramowicz, M.A., Kluzniak, W.: 2001, A&A 374, L19

ond pulsar SAX J1808.4-3658 (Wijnands et al. 2003). Amxbramowicz, M.A., Karas, V., Kluzniak, W., Lee, W.H., Reiuo,
other possibility in agreement with the data from NS, is that P.: 2003, PASJ 55, 467
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