Semantics-Aware Android Malware Classification Using Weighted Contextual API Dependency Graphs

Mu Zhang, Yue Duan, Heng Yin, Zhirou Zhao
Department of EECS, Syracuse University, Syracuse, NY, USA

ACM CCS'14

Presented by:
Chih-Wen Ou
ADLab
2014/10/21
Outline

- Introduction
- Overview
- Weighted Contextual API Dependency Graph
- Android Malware Classification
- Evaluation
- Discussion
- Related Work
- Conclusion
Introduction

• Signature-based detection
 – Look for specific patterns in the bytecode and API calls
 – Easily evaded by bytecode-level transformation attacks

• Machine learning-based detection
 – Extract features from an application's behavior
 – Associated with application syntax, rather than program semantics.

• Graph representation
 – Control-flow graph, Data dependency graph, permission event graph
 – Potentially evaded by polymorphic variants.
 – Cannot be used to battle zero-days
Introduction

- Semantics-based approach
 - Weighted contextual API dependency graph
 - Use program semantics to construct feature sets
 - Semantic-level behavior rather than program syntax
 - Graph similarity metrics
 - Homogeneous essential application behaviors while tolerating minor implementation differences.
 - Malware variants and zero-day malware.
Introduction

- DroidSIFT
 - Soot: dependency graph generation
 - Similarity query: a graph matching toolkit to compute graph edit distance
 - 2200 malware samples
 - 13500 benign samples
 - 93% detection rate
 - False negative rate 2%
 - False positive rate 5.15%
Overview

• Problem statement

• Architecture overview
 – Behavior graph generation
 – Scalable graph similarity query
 – Graph-based feature vector extraction
 – Anomaly & signature detection
Problem statement

- Official Google Play vetting system: Bouncer
 - Evaded by emulator detection
 - Evaded by bytecode-level transformation

- Design goals
 - Semantic-based detection
 - High scalability
 - Scalable to cope with millions of app samples
 - Variant resiliency
 - Similarity of app behaviors
 - Implementation variants toleration
 - Similarity scores

Figure 1: Deployment of DroidSIFT
Architecture Overview

Figure 2: Overview of DroidSIFT
Architecture overview

- Behavior graph generation
 - Consider graph similarity as the feature vector
 - Static program analysis
 - Bytecode programs => graph representations
 - Entry point discovery and Call graph analysis => API calling context
 - Forward and backward dataflow analysis => API dependencies
 - Weighted Contextual API Dependency Graph
Architecture overview

- **Scalable graph similarity query**
 - Able to query the graph database for the one graph most similar to a given graph

- **Graph-based feature vector extraction**
 - Attempting to find the best match for each of its graphs from the database
 - Each element of the vector associates with an existing graph in the database

- **Anomaly & signature detection**
 - A signature classifier and an anomaly detector
 - Feature vectors used for training the classifier for signature detection
 - The anomaly detector discovers zero-day malware.
 - The signature uncovers the type (family) of the malware
Weighted Contextual API Dependency Graph

• Key Behavioral Aspects
• Formal Definition
• A Real Example
• Graph Generation
Key Behavioral Aspects

- **API Dependency**
 - API calls indicate how an app interacts with the Android framework

- **Context**
 - An entry point of an API call is a program entry point that direct or indirectly triggers the call.
 - User interfaces and background callbacks.

- **Constant**
 - Conveying semantic information by revealing the values of critical parameters and uncovering fine-grained API semantics.
 - Analysis disclose the data dependencies of some certain security sensitive APIs whose benignness is dependent upon whether an input is constant.
Formal Definition

- **WC-ADG**
 - Two kinds of labeling
 - API operations
 - API prototype
 - Entry point
 - Constant parameter
 - Weights
 - Real numbers
 - Both all labeling on vertexes.

Definition 1. A Weighted Contextual API Dependency Graph is a directed graph \(G = (V, E, \alpha, \beta) \) over a set of API operations \(\Sigma \) and a weight space \(W \), where:
 - The set of vertices \(V \) corresponds to the contextual API operations in \(\Sigma \);
 - The set of edges \(E \subseteq V \times V \) corresponds to the data dependencies between operations;
 - The labeling function \(\alpha : V \rightarrow \Sigma \) associates nodes with the labels of corresponding contextual API operations, where each label is comprised of 3 elements: API prototype, entry point and constant parameter;
 - The labeling function \(\beta : V \rightarrow W \) associates nodes with their corresponding weights, where \(\forall w \in W, w \in R \), and \(R \) represents the space of real numbers.
A Real Example

- Zitmo: A class of banking Trojan malware that steals a user's SMS messages to discover banking information.

Figure 3: WC-ADG of Zitmo
Graph Generation

- Entry point discovery
 - Entry point discovery is essential to revealing whether the user is **aware** that a certain API call has been made
 - The prior work CHEX does not consider this below:

> Figure 4: Callgraph for asynchronously sending an SMS message. “e” and “a” stand for “event handler” and “action” respectively.
Graph Generation

- Entry point discovery

<table>
<thead>
<tr>
<th>Top-level Class</th>
<th>Run Method</th>
<th>Start Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runnable</td>
<td>run()</td>
<td>start()</td>
</tr>
<tr>
<td>AsyncTask</td>
<td>onPreExecute()</td>
<td>execute()</td>
</tr>
<tr>
<td>AsyncTask</td>
<td>doInBackground()</td>
<td>onPreExecute()</td>
</tr>
<tr>
<td>AsyncTask</td>
<td>onPostExecute()</td>
<td>doInBackground()</td>
</tr>
<tr>
<td>Message</td>
<td>handleMessage()</td>
<td>sendMessage()</td>
</tr>
</tbody>
</table>

Table 1: Calling Convention of Asynchronous Calls

```java
public class AsyncTask{
    public AsyncTask execute(Params... params){
        executeStub(params);
    }
    public AsyncTask executeStub(Params...params){
        onPreExecute();
        Result result = doInBackground(params);
        onPostExecuteStub(result);
    }
    public void onPostExecuteStub(Result result){
        onPostExecute(result);
    }
}
```

Figure 5: Stub code for dataflow of AsyncTask.execute
Graph Generation

- Constant analysis
 - These calls may expose security-related behaviors depending upon the values of their constant parameters.
 - Performing backward dataflow analysis on selected parameters and collect all possible constant values on the backward trace
 - Generating a constant set.
Graph Generation

• API Dependency Construction
 - Performing global dataflow analysis to discover data dependencies between API nodes
 - Building edges on WC-ADG
 - Analyzing only security-related API calls
 - Split-based approach
 • Each program split includes all code reachable from a single entry point.
 • Performing dataflow analysis on each split
Android Malware Classification

• Graph Matching Score
• Weight Assignment
• Implementation
• Graph Database Query
• Malware Classification
Graph Matching Score

- Graph Edit Distance
 - The dissimilarity of two graphs
- Weighted Graph Edit Distance (WGED)

Definition 2. The Weighted Graph Edit Distance (WGED) of two Weighted Contextual API Dependency Graphs G and G', with a uniform weight function β, is the minimum cost to transform G to G':

$$
wged(G, G', \beta) = \min \left(\sum_{v_I \in \{V'-V\}} \beta(v_I) + \sum_{v_D \in \{V-V'\}} \beta(v_D) + |E_I| + |E_D| \right)$$

(1)
Graph Matching Score

• Weighted Graph Similarity
 – Normalization of WEDG

Definition 3. The Weighted Graph Similarity of two Weighted Contextual API Dependency Graphs G and G', with a weight function β, is,

$$wgs(G, G', \beta) = 1 - \frac{wged(G, G', \beta)}{wged(G, \emptyset, \beta) + wged(\emptyset, G', \beta)}$$

where \emptyset is an empty graph. $wged(G, \emptyset, \beta) + wged(\emptyset, G', \beta)$ then equates the maximum possible edit cost to transform G to G'.
Weight Assignment

• Selection of Critical API Labels
 – API labels: unique combinations of APIs and attributes.
 – Only assign weights on security-sensitive APIs and critical combinations of their attributes
 – Performing concept learning
 • Concept learning: the search for and listing of attributes that can be used to distinguish exemplars from non exemplars of various categories
 – 108 critical API labels selected consequently
Weight Assignment

- **Weight Assignment**
 - Maximize the similarity: homogeneous pair
 - Same malware family
 - Sharing one or more critical API labels
 - Minimize the similarity: heterogeneous pair
 - One is benign and the other is malicious
 - Sharing one or more critical API labels
 - An optimization problem to maximize the result of an objective function for a given set of graph pairs \(\{<G,G'>\} \)
Weight Assignment

- Beta is the weight function that requires optimization
- Theta is the upper bound of a weight, set to 20.
- Use Hill Climbing Algorithm implement a feedback loop that gradually improves the quality of weight assignment

Definition 4. The Weight Assignment is an optimization problem to maximize the result of an objective function for a given set of graph pairs \(\{G, G'\} \):

\[
\max f(\{G, G'\}, \beta) = \sum_{G, G'} wgs(G, G', \beta) - \sum_{G, G'} wgs(G, G', \beta)
\]

\(s.t. \)

\[
1 \leq \beta(v) \leq \theta, \text{if } v \text{ is a critical node;}
\]

\[
\beta(v) = 1, \text{otherwise.}
\]

(3)

Figure 6: A Feedback Loop to Solve the Optimization Problem
Malware Classification

• Anomaly detection
 – Given an app, providing a binary result that indicates whether the app is abnormal or not.
 – Matching the WC-ADGs of the given app against the ones in the database.
 – Report anomaly if no similar one found
Evaluation

- Data set & Experiment Setup
- Summary of Graph Generation
- Classification Results
- Runtime Performance
- Effectiveness of Weight Generation and Weighted Graph Matching
Data Set & Experiment Setup

- 2200 malware samples from AMGP and McAfee
- Benign dataset consisted of 13500 samples
 - Download from Google Play
 - Inspected by VirusTotal
- Ubuntu 64 bit
 - Intel Xeon CPU(20M cache, 2GHz)
 - 128GB physical memory
 - Behavior graph generation, graph database creation, graph similarity query and feature vector extraction.
Summary of Graph Generation

- 9a. 9b. Illustrating the number of graphs generated from sample apps
 - On average, 7.8 graphs from each benign app. 9.8 graphs from malicious one.
 - 92% of benign samples and 98% of malicious ones, no more than 20 graphs are produced from an individual app.

- 9c. 9d. Present the number of nodes of benign and malicious behavior graphs
 - On average, 15 nodes for benign graph. 16.4 nodes for malicious graph.
 - 94% of benign graphs and 91% of malicious graphs carry less than 50 nodes

Figure 9: Graph Generation Summary.
Classification Results

- Anomaly Detection
 - Different benign apps may share the same behaviors.
 - Unique graphs are generated and the curve begins to flatten.
 - 10420 unique graphs from 11400 benign apps.
 - False positive rate is 2% when using 2200 malware samples against the benign classifier.
 - False negative rate is 5.15% when using 2100 benign samples against anomaly detector.
Classification Results

Figure 10: Convergence of Unique Graphs in Benign Apps
Classification Results

• Detection of Transformation Attack
 – 23 DroidDream samples
 – 2 benign apps applying the same technique
 – All identified correctly.
 – Comparing to AVs

![Image showing detection ratio for obfuscated malware](Figure 11: Detection Ratio for Obfuscated Malware)
Runtime Performance

- Graph generation, anomaly detection signature detection for 3000 apps.
- The average for an app is 175.8 seconds.

Figure 12: Detection Runtime (s) for 3000 Benign and Malicious Apps
Discussion

• Native Code & HTML5-based Apps
 – Not handled

• Evasion
 – Learn-based detection is subject to poisoning attack
Related Work

• Android malware classification
 – Juxtapp:
 • feature hashing on opcode sequence
 • Detecting malicious code use
 – DroidAPIMiner:
 • API level malware feature
 – DREBIN
 • Permissions and sensitive APIs as features
Related Work

- Android malware detection & program analysis
 - DroidRanger, Kirin, WHYPER
 - TaintDroid, DroidScope, VetDroid
 - Ded, CHEX, AppSealer, Capper, PEG, FlowDroid

- Graph-based code analysis
 - Function call graph
 - CPG (my last presentation)
 - HI-CFG
 - Embedded call graph
Conclusion

- Weighted contextual API dependency graph
- DroidSIFT
- 13500 benign and 2200 malicious samples
- Signature detection correctly label 93% malware instance
- Anomaly detector's false negative rate is 2%, and the false positive rate is 5.15%