Boosting collaborative ontology building with key-concept extraction

Marco Rospocher
Fondazione Bruno Kessler (FBK) - Trento, Italy

Joint work with:
Sara Tonelli, Emanuele Pianta, Luciano Serafini

IEEE ICSC 2011
Stanford, USA – September 19-21, 2011
Automatic Concept Extraction

• Support ontology modeling by **extracting concepts** characterizing a domain from a **reference text corpus**.

• Automatic concepts extraction plays an important role in ontology modeling:
 – To boost the ontology **construction/extension** phase;
 – To “**validate**” an ontology against a domain corpus.
Our Contribution

• A framework for supporting ontology building/validation by automatic concept extraction from a reference text corpus

• A fully-working and publicly available implementation of the proposed framework
Outline

• The Framework

• Implementation of the Framework

• Evaluation

• Application Scenarios

• Concluding Remarks
The Framework

Domain corpus

Corpus collection

Key-concepts extraction

Manual validation

Alignment with external resources

Extended ontology

Candidate key-concepts list

Current ontology

External resources (e.g. Wordnet)

Enriched key-concepts list

External resources

(e.g. Wordnet)
Corpus Selection

- The corpus can be **manually** or **automatically** selected (e.g. crawling web pages).

- Corpus could consist of:
 - (large) **collection** of documents
 - e.g. pollen bulletins crawled on-line
 - A **single** big document
 - e.g. the BPMN specification.
Key-concept extraction

- Performed by **KX (Keyphrase eXtraction)** tool.
 - exploits **linguistic** information and **statistical** measures to select a list of **weighted keywords** from documents;
 - handles **multi-words**;
 - flexible **parameters** configuration;
 - easily adaptable to **new languages**;
 - ranked 2nd (out of 20) at SemEval2010, task on “*Automatic Keyphrase Extraction from Scientific Articles*”.
Alignment with external resources

• Extracted key-concepts aligned and enriched with additional resources:
 – WordNet (& WN domains): synonyms, definitions, SUMO labels;
 – Wikipedia: link to the Wikipedia page corresponding to the term (exploiting BabelNet);
 – Other external resources (e.g. dictionary).

• Enriched key-concepts list matched against the ontology under development (to detect already defined key-concepts).
Manual Validation

• The user **decides** which of the extracted key-concepts to add to the ontology;

• The additional details provided in the enriched list may **guide the formalization**;
 - e.g. is-a related synsets, definitions, …
• **Collaborative** wiki-based tool for modeling (integrated) ontologies and business processes;

• Supports an agile collaboration between domain experts and knowledge engineers via **multi-mode knowledge access modalities**;

• Offers several different functionalities:
 – **Import/export** of formal models;
 – **Views** on the is-a hierarchy and processes decomposition;
 – **Graphical editing**.

• **Available @** http://moki.fbk.eu
DEMO
Evaluation

- Applied in **PESCaDO** (EU FP7 2010-2012) for building an ontology describing the environmental domain.

- Corpus: plain text corpus composed of **390 pollen bulletins** (541,000 tokens).

- The system outputted **91 key-concepts**:
 - 26 pollen names (further validated against the Pollen Atlas);
 - 38 key-concepts **enriched** with additional information;
 - Extracted key-concepts having up to **4 tokens**:
 - e.g. “oil seed rape pollen”.
Application Scenarios

The proposed approach can support several different ontology modeling tasks:

– **Ontology construction boosting**: building an ontology from scratch;
– **Ontology extension**: adding new concepts to an existing ontology;
– **Ontology validation**: terminologically validating an ontology against a domain corpus;
– **Ontology ranking**: ranking candidate ontologies wrt a given domain corpus;
– **Ranking of ontology concepts**: determining which are the domain-wise most relevant concepts defined in an ontology.
Concluding Remarks

• We presented a framework for ontology building/validation based on automatic concept extraction;

• Fully-implemented in a working system;

• Several application scenarios;

• Current/Future works:
 – Implementing specific support for ontology validation/ranking (e.g. computation of ontology metrics);
 – Extend for extraction of structural information (e.g. is-a relations defined in the corpus).
Thank You!

Questions?

MoKi
http://moki.fbk.eu

Marco Rospocher
http://dkm.fbk.eu/rospocher
rospocher@fbk.eu