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ABSTRACT

Cotton is an important economic crop, and many
loci for important traits have been identified, but it
remains challenging and time-consuming to iden-
tify candidate or causal genes/variants and clar-
ify their roles in phenotype formation and regu-
lation. Here, we first collected and integrated the
multi-omics datasets including 25 genomes, tran-
scriptomes in 76 tissue samples, epigenome data of
five species and metabolome data of 768 metabo-
lites from four tissues, and genetic variation, trait
and transcriptome datasets from 4180 cotton acces-
sions. Then, a cotton multi-omics database (Cot-
tonMD, http://yanglab.hzau.edu.cn/CottonMD/) was
constructed. In CottonMD, multiple statistical meth-
ods were applied to identify the associations be-
tween variations and phenotypes, and many easy-to-
use analysis tools were provided to help researchers
quickly acquire the related omics information and
perform multi-omics data analysis. Two case stud-
ies demonstrated the power of CottonMD for iden-
tifying and analyzing the candidate genes, as well
as the great potential of integrating multi-omics data
for cotton genetic breeding and functional genomics
research.

INTRODUCTION

Cotton is an important economic crop in the world. More
than 50 species have been found in the cotton genus

(Gossypium), among which upland cotton (G. hirsutum,
AADD, 2n = 4x = 52) accounts for over 90% of the
world’s cotton lint production (1). With the great advances
in genome sequencing technology and computing power,
many studies of genome assembly and population genet-
ics in cotton have been carried out, resulting in the iden-
tification of numerous variations associated with impor-
tant traits using the statistical methods, such as genome-
wide associated study (GWAS) (2–11). However, the ma-
jority of these associations cannot be reasonably explained.
Currently, rapid advances in transcriptomics, epigenomics
and metabolomics of cotton have led to the accumulation of
large amounts of high-dimensional ‘omics’ biological data,
making it possible to uncover the functions of these variants
(12,13). Several genomic, transcriptomic, genetic variation,
epigenetic databases have been constructed and released
in the cotton genus, such as CottonGen (14), CottonFGD
(15), ccNET (16), and MaGenDB (17), CottonGVD (18)
and GRAND (19). CottonGen provides genomics, genetic
and breeding data including genome sequences, genes, uni-
genes, markers, trait loci, genetic maps and germplasm re-
sources (14). CottonFGD integrates genome sequences and
annotations, genetic markers, and gene expression and se-
quence variation data for four sequenced Gossypium species
(15). ccNET contains multi-dimensional co-expression net-
works across mutiple Gossypium species (16). MaGenDB
contains functional annotations and genome browser of di-
verse omics datasets for 13 Malvaceae species (17). Cot-
tonGVD contains the genomic information, population
variations, and the visualized tools of GWAS results from
three cultivated cotton species (18). GRAND integrates 18
cotton genome sequences, genome annotations, two cotton
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genome variations information and four transcriptomes for
Gossypium species (19). These databases provide abundant
cotton multi-omics data sources, but there is a lack of com-
prehensive integration and platform of multi-layer omics
datasets to facilitate more systematic analyses, sophisticated
understanding of the interesting genes and genetic breeding
without switching to different databases.

In this study, we constructed a cotton multi-omics
database (designated as CottonMD, http://yanglab.hzau.
edu.cn/CottonMD/) by mining and integrating the data of
25 genomes, transcriptomes (from 76 different tissue sam-
ples), genetic variations (from 4180 accessions), phenotypic
data (from 20 phenotypes), epigenomes (from five species)
and 768 metabolites (from four tissues). CottonMD pro-
vides a large amount of multi-omics data and easy-to-use
tools, which will be a valuable database for future cotton
genetic breeding and functional genomics research.

MATERIALS AND METHODS

Data sources

To construct a comprehensive cotton multi-layer omics
platform, we mined and integrated the data from genomics,
transcriptomics, genetic variation, phenotypic data, epi-
genetics and metabolomics (Figure 1; Supplementary
Tables S1–S4). In total, 25 genome assemblies and 1 826
891 genes of 16 germplasms including the diploids A1-,
A2-, D1-, D5-, D10-genomes and allopolyploids (AD)1-,
(AD)2-, (AD)3-, (AD)4- and (AD)5-genomes were collected
from public databases (Supplementary Table S1). As for
phenotypic data, 20 phenotypes were collected from six
studies (2,4,5,20–22) (Figure 2; Supplementary Table S2).
Transcriptome data from different tissues and individuals
was listed in Supplementary Table S3. Epigenetics data
are summarized in Supplementary Table S4. Metabolome
datasets were retrieved from two previous studies (23,24).
Genome resequencing data from a total of 4180 accessions
including 3743 G. hirsutum, 393 G. barbadense, seven G.
tomentosum, six G. darwinii, six G. mustelinum and 25 other
accessions were mainly collected from previously pub-
lished studies (2,4,5,20,25–31) (NCBI BioProject accession
number: PRJNA257154, PRJNA336461, PRJNA375965,
PRJNA399050, PRJNA414461, PRJNA473334, PR-
JNA530048, PRJNA576032 and PRJNA605345) (Supple-
mentary Table S5).

Comparative genome analysis

Genome sequences were compared between TM-1 refer-
ence genome and other 25 genome assemblies using the
NUCmer program (v.4.0.0beta2) with parameters ‘nucmer
– maxmatch –noextend’ in MUMmer4 (32). After filtering
of the one-to-one alignments with a minimum alignment
length of 50 bp using the show-diff program from MUM-
mer4, the remaining alignment blocks were used for genome
browser visualization (32). For genome browser visualiza-
tion, dotplot module in JBrowse2 and Genome synteny
module in Gbrowser were embedded in CottonMD (33,34).

A total of 1 826 981 genes from 25 genome assem-
blies were used to construct the gene clusters. Firstly, pro-
tein sequences of every pair from 25 genome assemblies

were aligned using diamond (v.0.9.14.115, http://github.
com/bbuchfink/diamond). Then, gene synteny was detected
by McScan (python version) (35). The genes with gene syn-
teny were grouped to one cluster. Finally, 1 521 966 genes
were grouped to 146,881 gene clusters.

SNP and InDel calling

The genome resequencing data of each accession were
mapped to the TM-1 reference genome using BWA-MEM
with default parameters (11,36). Then, the reads with the
mapping quality value <20 were removed by SAMtools
(v.1.6) (37). SNPs and small InDels were identified using
Sentieon DNAseq pipeline for each accession (38). SNPs
with low mapping quality were filtered out by GATK Vari-
antFiltration with parameters ‘QUAL < 30.0 || MQ < 50.0
|| QD < 2’ (39). All SNPs and InDels with minor allele fre-
quencies (MAF) <0.01 or missing rate >0.1 were discarded
by VCFtools (v.0.1.16) (40). As for the remaining SNPs and
InDels, genotype imputation was performed using beagle
(v.5.1) (41).

Transcriptome analysis

After clipping the adaptor sequences and removing the low-
quality reads by Trimmomatic software (v.0.36) (42), the
RNA-seq clean data from accessions were mapped to the
TM-1 reference genome using Hisat2 (v.2.1.2) with default
parameters (43). Gene expression level was normalized us-
ing the number of transcripts per kilobase million reads
(TPM) by StringTie software (v.1.3.5) with default settings
(44). The co-expression network was obtained by calculat-
ing the Pearson correlation coefficient of pairwise gene ex-
pression levels, and the gene modules including the gene
pairs with a Pearson correlation coefficient of larger than
0.8 were retained as a co-expression network.

Epigenome analysis

The adaptor sequences were removed and the low-quality
reads were filtered out using Trimmomatic (v.0.36). As
for ChIP-seq and ATAC-seq, the clean data from acces-
sions were mapped to the TM-1 reference genome using
bowtie2 (v.2.3.2) with default parameters (45). PCR du-
plicated reads were removed using Picard tools (v.2.19).
Peaks were called using the callpeak module of MACS2
software (v.2.1.2) with the parameters ‘ –broad -f BAM -g
2290000000 -B -p 0.00001 –nomodel –extsize 147 ’ (46).

As for Hi-C, the clean reads of each accession were
mapped to the TM-1 reference genome using BWA-MEM
with default parameters (11,36). Then, the Hi-C interac-
tion matrix was created using Juicer pipeline (47). KR nor-
malized matrix was extracted from Hi-C format files at the
resolutions of 10 kb, 50 kb and 100 kb using Juicer tools
(v.1.7.6) for JBrowser (34,48).

As for BS-seq data, clean data of each accession were
mapped to the TM-1 reference genome using Bismark
(v.0.13.0) with parameter settings ‘-N 1, -L 30’ (49). Big-
wig files of all epigenome data analysis can be visited by
JBrowser in the Tools portal (34).

http://yanglab.hzau.edu.cn/CottonMD/
http://github.com/bbuchfink/diamond
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Figure 1. Overview of CottonMD. Construction pipeline of CottonMD through integration of multi-omics data.

Population genetic analysis

SNPs and InDels were filtered based on linkage disequi-
librium (LD) using PLINK (v.1.90b4.4) with the param-
eters ‘–indep-pairwise 100 50 0.8’ (50). Variations passing
filtering were used for the downstream analysis. Phyloge-
netic tree of 4180 cotton accessions was constructed using
FastTreeMP (v.2.1) with the default parameters (51). Pop-
ulation structure of all accessions was analyzed using fast-
Structure with K from 2 to 10 (52). Principal component
analysis (PCA) was performed using GCTA (v.1.92.4 beta2)
(53).

For each subpopulation, we calculated the level of genetic
diversity (�) and Tajima’s D statistic in each 100-kb inter-
val across the cotton genome by VCFtools (40). We calcu-
lated the level of population differentiation between culti-
vated populations and landraces, wild varieties and island
cotton populations using FST with 100-kb windows sliding
20 kb by VCFtools (40). We also used the XP–CLR method
to scan for domestication-sweep regions (–maxsnps 600 –
size 50000 –step 10000) (54).

Genome-wide association study (GWAS)

The SNPs and InDels with a minor allele frequency (MAF)
of lower than 5% were filtered for genome-wide association
study (GWAS). GWAS was performed for six traits using
the GEMMA (v.0.98.1) (55). The population structure was
controlled by including the first two principal components
as covariates, as well as an IBS kinship matrix derived from
all variants (SNPs and InDels) calculated by GEMMA. The
cutoff for determining significant associations was set as

–log10(1/n), where n represents the total number of varia-
tions.

Expression quantitative trait loci (eQTL) mapping

The gene expression values were taken as the values of
the phenotype for eQTL mapping. Only those genes ex-
pressed in more than 95% of the accessions were defined
as expressed genes for eQTL mapping. Variations with
MAF >5% were used to perform GWAS for each gene by
using GEMMA to detect the associations for variations and
genes (55). The cutoff for determining significant associ-
ations was set as –log10(1/n), where n represents the total
number of variations. Then, eQTL mapping was performed
as previously described (56). Based on the distance between
eQTL and targeted-genes, we subdivided all eQTL into cis-
eQTL if the variation was found within 1 Mb of the tran-
scription start site or transcription end site of the target
gene, otherwise as trans-eQTL. In CottonMD, the regula-
tory relationship of trans-eQTL was visualized using Bio-
Circos.js (57).

Transcriptome-wide association studies (TWAS)

TWAS was used to integrate GWAS and gene expression
datasets to identify gene-trait associations. TWAS was con-
ducted by the EMMAX module using the gene expression
data of fiber at 20 DAP with the data of six phenotypes
from cis-eQTL in the region of 1 Mb upstream to 1 Mb
downstream of target genes to compute the gene expression
weights (58,59). Models were considered as ‘transcriptome-
wide significant’ if they passed the Bonferroni correction for
all genes.
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Colocalization analysis

Colocalization of GWAS and eQTL results was performed
to generate posterior causal probabilities for each of the
variants in the GWAS and eQTL analyses. All variations
within 1 Mb flanking region around the gene were tested for
colocalization using the ‘COLOC’ R package with default
parameters (60). The variants in cis-eQTLs of genes and
QTLs of phenotypes were defined as colocalized when the
posterior probability of a colocalized signal (PPH4) value
was larger than 0.5 and there is at least one shared signifi-
cant variation.

SMR analysis

SMR analysis integrated the summary-level data from
GWAS with eQTL data to identify genes associated with

a complex trait because of pleiotropy. The cis-eQTL sig-
nals of expressed genes and GWAS signals of the pheno-
type were used to perform SMR analysis and HEIDI test by
SMR software (v.1.03) (58). Then, the gene was defined to
be a candidate gene of the phenotype when –log10(P-value)
of SMR was <3.77 (1/n, n is the number of all expressed
protein-coding genes) and P-value of HEIDI test was larger
than 0.01.

Implementation

CottonMD (http://yanglab.hzau.edu.cn/CottonMD) was
constructed based on the Flask (v.1.1.1) framework with
AngularJS (v.1.6.1) as the JavaScript library, and runs on
the Apache 2 web server (v.2.4.18) with MongoDB (v.3.4.2)
as its database engine. The database is available online with-
out registration and optimized for Chrome (recommended),

http://yanglab.hzau.edu.cn/CottonMD
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Internet Explorer, Opera, Firefox, Windows Edge and ma-
cOS Safari.

DATABASE CONTENT AND USAGE

Overview of CottonMD

CottonMD is a multi-omics database which integrates
genome, transcriptome, genetic variation, phenotype,
epigenome and metabolite datasets and provides many
easy-to-use analysis tools. CottonMD comprises eight
portals: Genomics, Transcriptomics, Population, Vari-
ation, Epigenetics, Metabolome, Multiomics and Tools
(Figure 2). These portals all provide the abundant and
convenient visual tools for users to browse and compare
the genome sequences, gene structures, epigenetic signals
and metabolite contents and understand the mechanism of
gene regulatory and evolution.

Mining and browsing of omics data

In Genomics portal, sequences, transposons and genes from
25 genome assemblies were aligned and annotated. Users
can visually browse global genome alignments by Dot-
plot and local alignments by GBrowse, which can help the
genome-wide identification and analysis of structural varia-
tions (SVs). The gene structure and function description of
homologous genes can be acquired in the Gene search and
Gene cluster modules (Case study 1). In the Transcriptomics
portal, the expression patterns of paralogs in different tis-
sues and populations or under different treatment condi-
tions and the co-expression network of genes can be queried
(Case study 1). As for Epigenetics portal, chromatin in-
teraction, chromatin accessibility, histone modification and
DNA methylation of six germplasms were collected and an-
alyzed. Users can browse the peaks of chromatin accessi-
bility and histone modification, methylation levels of genes
and chromatin interaction features in the corresponding
modules of Epigenetics portal. As for Metabolome portal,
metabolite content and differentially accumulated metabo-
lites can be browsed by selecting the metabolite category in
Metabolome portal.

Case study 1: Explore the gene structures and expres-
sion patterns of ATAF1 paralogs. ATAF1 encodes an
Arabidopsis thaliana NAC transcription factor and plays
important roles in plant adaptation to environmental
stress and development (61). Currently, Ghi A06G02411,
an ortholog in G. hirsutum, has been validated to play
a role in cotton adaptation to drought and salt stress
(61). Using the Genomics and Transcriptomics por-
tals of CottonMD, four ATAF1 paralogs show simi-
lar gene structures and expression patterns (Figure 3A,
B). Ghi A06G02411 and Ghi D06G02306 have higher
expression than Ghi A02G03216 and Ghi D02G03756.
Among them, Ghi A06G02411 has the highest expres-
sion level, especially in flowers and seeds (Figure 3B), and
Ghi A06G02411 has higher expression under drought and
salt stress than that of the control (Figure 3C). The above
results suggest that Ghi A06G02411 plays important roles
in plant adaptation to drought and salt stress, which indi-
cates that CottonMD can help researchers to understand
the features and function of the interested genes.

At the population level, we collected whole genome se-
quencing (WGS) datasets of 4180 cotton accessions from
previously published studies (Supplementary Table S5). Af-
ter genotype imputation and filtering, a genetic variation
panel including 12 903 345 SNPs and 1 381 741 InDels
of 4180 cotton accessions was constructed (Supplementary
Figure S1A). The information of genetic variations in this
panel can be browsed in the Variation portal by the genomic
region or gene ID. Based on this panel, the 4180 cotton
accessions can be divided into eight groups, designated as
G0–G7, which is similar to a previous study (Supplemen-
tary Figure S1B, C). To identify genomic regions during
the domestication and selection process, four signals among
subpopulations including genetic diversity (�), Tajima’s D
pairwise fixation statistic (FST) and XP-CLR values were
calculated. Sample information, population structure and
selection signals can be acquired in the Population portal
(Figure 2).

Integration and association analysis of multi-omics data

Integration of genomic, transcriptomic and phenotypic in-
formation offers great opportunities of mapping candidate
genes in loci associated with important traits and elucidat-
ing complex relationships across multiple genes and traits.
In order to take full advantage of the genetic variations in
CottonMD and reveal their effects on phenotypes and gene
expression, we developed two modules, Single-locus and
Multi-locus modules, in the Variation portal. The Single-
locus module can provide detailed information of the vari-
ations including genomic distribution, variation type and
allele frequency in a subpopulation based on the given ge-
nomic region or gene. More importantly, CottonMD asso-
ciates the variations with traits and gene expression, which
can greatly help understand the functional effects of alleles
and genes. The Multi-locus module allows the joint analysis
of two and more genes simultaneously to observe the effects
of different loci on phenotypes, which can facilitate the un-
derstanding of interactions among different loci and dissec-
tion of the genetic basis for complex traits (Case study 2).

To identify the associations between variations and phe-
notypes and uncover their molecular mechanisms, we per-
formed a joint analysis of multi-omics data with multiple
statistical methods, including GWAS, eQTL mapping and
TWAS. By an eQTL mapping of 44 616 expressed genes,
41 176 eQTLs were associated with 14 263 genes (eGenes),
including 12 244 cis-eQTL and 28 932 trans-eQTL (Sup-
plementary Table S6). GWAS of 20 phenotypes identified
totally 27 loci with 1215 unique candidate variations sig-
nificantly associated with 13 phenotypes, including 20 re-
ported loci (55), suggesting a high repeatability of these loci
and reliability of the method (Supplementary Table S7).
Six fiber-related phenotypes were identified to be associ-
ated with the expression levels of 483 genes by TWAS (62)
(Supplementary Table S8). In addition, SMR (Summary
data–based Mendelian randomization analysis) and colo-
calization analysis were performed to detect the candidate
genes associated with seven traits by integrating the GWAS
and eQTL results. Totally, 23 candidate genes were associ-
ated with six phenotypes by SMR (Supplementary Table
S9). Cis-eQTLs of 206 candidate genes were co-localized
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Figure 3. Usage of genomics and transcriptomics portals in CottonMD. (A and B) Gene structures (A) and expression patterns (B) of four ATAF1 paralogs.
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with the QTLs of 16 phenotypes by colocalization analysis
(Supplementary Table S10). All variation-phenotype and
gene-phenotype associations could be queried and visually
browsed in CottonMD (Case study 2).

Case study 2: Analyze the effects on the cotton fiber elon-
gation rate of FE1 loci. We take the fiber elongation rate
(FE) as an example to show how CottonMD facilitates sys-
tematic identification and analysis of the candidate genes.
FE can represent the elongation ability of mature fiber
cells (5), and three previously reported loci-FE1, FE2 and
FE3 were significantly identified (Supplementary Figure S2;
Supplementary Table S7). FE1 on chromosome D04 ex-
plains the most phenotypic variance (5), and two candi-
date genes (Ghi D04G09121 and Ghi D04G09151) were
identified by SMR (Figure 4A). Ghi D04G09121 encodes
pentatricopeptide repeat (PPR), which has been proved
to be related to the development of cotton organs (63),

and is mainly expressed in both the fiber and ovule us-
ing Transcriptomics portal (Supplementary Figure S3).
Ghi D04G09151 encodes tubulin alpha 2 (GhTUA2), which
participates in several important cellular processes (64,65),
and is mainly expressed in the fiber at 15 and 20 days post
anthesis (DPA) (Supplementary Figure S4). Notably, two
non-synonymous SNPs in Ghi D04G09151 are not signif-
icantly associated with the trait (Supplementary Table S7);
while 63 significant variations are enriched in the neighbor
or 25–48 kb upstream region of Ghi D04G09151 in a strong
linkage disequilibrium (Figure 4A, B). Colocalization anal-
ysis indicates that eQTL of Ghi D04G09151 and GWAS of
FE shares the same causal variations (PPH4 = 0.99, Figure
4C). By using the Multi-locus module in the variation portal
(Figure 4D, E), we grouped these variations into two hap-
lotypes (the favorable FE1 and unfavorable fe1) and the ac-
cessions with fe1 haplotype showed the significantly higher
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Figure 5. Summary of features distinguishing CottonMD from the published cotton database. Green regions indicate the omics data integrated in the
corresponding database.

FE and gene expression level (Figure 4F, G). Next, by com-
bining the epigenetic data from CottonMD, we found that
active histone signals (such as H3K4me1 and H3K4me3)
were enriched in gene body as well as the 3-kb and 25–48
kb upstream regions of Ghi D04G09151; the Pol II signal
was enriched in the 3-kb upstream region; and the enrich-
ment of DNase I signal was found in the 25–48 kb upstream
region (Figure 4H), suggesting that these regions are likely
the promoter and enhancer regions, correspondingly. The
strong chromosomal interaction between the two regions
indicates their regulatory relationship (Figure 4H). There-
fore, we deduced that the variations in two regions affect the
gene regulatory elements, leading to changes in gene expres-
sion and ultimately affecting the phenotype.

Multi-omics analysis tools in CottonMD

We provided 10 common bioinformatic tools for 25 pub-
lished cotton genomes in Tools portal of CottonMD, such
as Blast (66) and GO/KEGG enrichment analysis (67,68),

which can help quick analyses without switching between
different databases or modules. In addition, we integrated
the SNPmatch based on variations of 4180 accessions to
facilitate the identification and management of germplasm
resources (69).

SUMMARY AND FUTURE DIRECTIONS

In this study, we mined and integrated the data of genomics,
transcriptomics, genetic variation, phenotype, epigenome
and metabonomics data in cotton. Subsequently, a multi-
omics database for cotton biological study-CottonMD
was constructed. Compared with other published cotton
databases including CottonGen, CottonFGD, ccNET, Ma-
GenDB, CottonGVD and GRAND, CottonMD has some
attractive advantages as follows: (i) CottonMD is the first
database to provide genome-wide variation-expression as-
sociations and variation-phenotype associations, which is
important to mine the candidate variants or genes (Fig-
ure 5); (ii) CottonMD is the first database to provide on-
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line multi-omics analysis platform including SMR and colo-
calization analysis; (iii) CottonMD integrates and links the
most comprehensive multi omics data at present and pro-
vides convenient searching tools (Figure 5), which can help
researchers quickly acquire the related omics information;
(iv) it provides multiple common bioinformatic analysis
tools for 25 published cotton genomes, and all portals of
the database support searching by gene name and gene ID
of 25 published cotton and Arabidopsis genomes. There is
no need to switch between different databases or modules.

In summary, CottonMD can provide an important re-
source and tools for the rapid identification of the candidate
genes in the locus and to assist functional validation, as well
as help to understand the mechanisms through which ge-
netic variations affect gene expression and phenotype and
to choose the optimal breeding strategy.

In the future, further development and advance of tech-
nologies will make more datasets available. Hence, integra-
tion of multi-omics data will be critical for genetic research.
We will be integrating omics data from more accessions,
more tissues and more omics and applying more powerful
statistical methods to improve CottonMD.
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