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Abstract 

Medical images are very useful in diagnosis and treatment. The low quality medical image will be difficult for the doctor to 

find abnormalities in the image. One of the difficulties for the doctor is how to clarify parts of the medical image, especially 

the pancreas. In this paper, we propose the new method for object contour detection based on context awareness in low 

quality medical images in shearlet domain. The object in medical images which detect contour here is pancreas object. The 

proposed method includes two periods: improving the medical image quality and detecting pancreas contour. To evaluate 

the results of the proposed method, we compared the result with the recent methods. 
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1. Introduction

Medical images are useful for diagnosing and treating 

diseases. Some diseases are detected through medical images. 

One of the difficulties for the doctor is how to clarify parts of 

the medical image, especially the pancreas. The internal 

organs in the body are often overlapped and obscured. 

Therefore, the problem of finding the boundary of the object 

in the medical image has many challenges. 

For edge detection, there are many methods which are 

proposed such as: Canny [1, 2, 3], Sobel [4], B-spline [5, 6, 

7, 8, 9] and many methods using the generation types of 

wavelet transform [5, 10, 14, 22] for edge detection. Patrick 

[6] was proposed to be B-spline snakes by multi-scale to

apply for contour detection and continued development with

Brigger [9]. On the other hand, many previous methods for

edge detection are done in transforms as Wang [5], Lei [10],

etc. Shimizu [11] proposed pancreas segmentation method

from contrast-enhanced multiphase computed tomography

(CT). Marius [12] used liver and spleen as starting points for

detection of splenic. Shimizu [13] used atlas-guided

segmentation and level-sets for pancreas segmentation.
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Bagci [15] proposed a hybrid segmentation method using 

the region-based combined with shape-based methods. The 

method not only works well with CT images but also MR 

images. Chen [16] segmented multiple organs by combining 

the active shape modeling and graph cut algorithm. Laishram 

[17] proposed an edge detection method using Particle Swar

Optimization and Fuzzy C means to segment Canny

algorithm to detect edges in input image. Samit [18] proposed

an edge detection using ant colony optimization and F ratio.

The method used F ratio technique to determine the optimum

threshold value. Wenshuo [19] proposed an improved Sobel

edge detection. The method combined Sobel operator and

sof-threshold wavelet de-noising. However, each method has

strengths and weaknesses [14].

With low quality medical images, we want to improve   the 

quality of medical images before we detect object contour. In 

the part time, there are many methods for improving the 

quality of medical images [25]. The quality of medical images 

affects to detect edges of the object. When the quality of 

medical images is not good, the edge detection is hard. Canny 

[1] proposes a method for edge detection included as removed

noise by Gaussian filter and all steps do not include

deblurring images to prepare for edge detection.

In this paper, we propose the new method for object 

contour detection based on context awareness in low quality 

medical images in shearlet domain. The object in medical 

images which detect contour here is pancreas object. The 

proposed method includes two periods: improving the 

medical image quality and detecting pancreas contour. The 

rest of the paper is organized as follows: in section 2, we 

described shearlet transform and its usefulness for pancreas 

detection. The details of the proposed method are explained 

in section 3. The experiment results and conclusion are 

presented in section 4 and section 5.  

2. Shearlet transform background for
object detection

Shearlets are one of the types of new generation wavelets 

transforms. It is similar to curvelets. Both of them perform a 

multiscale and multidirectional analysis. Shearlet transforms 

have two different types of shearlet systems: band-limited 

shearlet system and compactly supported shearlet system 

[20]. Computational complexity of the band-limited shearlet 

is high.  

The digitization of discrete shearlet transform is 

performed in the frequency domain.  The discrete shearlet 

transform is of the form [21]: 
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where, n = (j, k, m, i) are indexes - scale j, orientation k, 

position m and cone i.  

If f(x) is piecewise C2, the approximation error of 

reconstruction with N-largest coefficients fN(x) in the shearlet 

expansion is given by [22]: 
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2
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We have chosen shearlet transform because of its high 

directionality and representation of salient features (edges, 

curves and contours) of the image in a better way compared 

with the other wavelet transform.  

Shearlet transform is useful for object detection due to its 

following properties [23]: 

(i) Frame property: It is helpful for stable reconstruction of

image.

(ii) Localization: Each of the shearlet frame elements need to

be localized in both space and frequency domain.

(iii) Sparse approximation: It is useful for providing sparse

approximation comparable to the band-limited shearlets.

Similar to the curverlet transform, the most essential

information of the image is compressed into relatively few 

large coefficients, which coincides with the area of major 

spatial activity in shearlet domain. 

3. Object contour detection in low quality
medical images

In this section, we propose a method to detect object contour 

in low quality medical images. The low quality medical 

images are the medical images which consist of noise or blur 

or the both. The proposed method is presented as figure 1 and 

it includes two periods as: (i) improving the medical image 

quality and (ii) detecting object contour. 

 

 

Figure 1. The proposed method for object contour 

We increase the sharpness of edge of objects in images by 

denoising and debluring. The result of this period is the 

medical images which consist of strong objects. The output 

of this period is the input of object contour period. 
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The medical image may be consisting of noise or blur or both. 

The aim of this period is to improve the quality of image but 

keep the information in the image, avoid loss data in the 

image. The process of this period is presented in [24].  

The shearlet transform is useful for denoising or debluring 

due to its properties. Firstly, we use cycle spinning for 

denoising. Secondly, we use Kernels for deblurring in 

shearlet domain. In here, we summary the steps of this period 

as [24]: 

(i) Define type of shearlet (filter bank) and number of scales

in shearlet domain.

(ii) Shearlet decomposition, applying cycle spinning in each

direction of shearlet decomposition.

(iii) Denoising processes by threshold:

1

1
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

−

 
=  

     (4)

where, j is the number of level at which thresholding is 

applied. M is absolute median of shearlet coefficients, 
and  are standard deviation and absolute mean of 

shearlet coefficients at j-th level. 

(iv) Compare the detail coefficients with threshold values

given and make the coefficient values closer to 0.

(v) Continue with the new novel Kernels set, deblurring

medical image does not require to determine the PSF

(point spread function). We use the new Kernels set to

remove blur out of denoising image by apply matrix 3x3:

{0 -1 0, -1 5 -1, 0 -1 0}.

The output images of the above steps are removed noise and 

blur. 

3.2 Object contour detection in low quality 
medical images. 

The aim of this period is to detect object contour (pancreas 

object). The period includes three steps as: smoothing by B-

spline curves, using K-means to specify candidate pixels in 

the object and context awareness to connect potential edges. 

(i) Smoothing by B-spline curves

We use a B-spline curve to smooth the image as [25]. A 

B-spline curve gives more information than Bézier curve. A

Bézier curve is a parametric curve. From the set of (n + 1)

control points (P0, P1, …, Pn), satisfy: m = n + p + 1, a degree

p and knot vector U = {u0, u1, …, um}. The B-spline curve of

degree p (Ni, u(u)) defined by [25]:

𝐶(𝑢) = ∑ 𝑁𝑖,𝑝
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where, n is the order of wavelet transform. 

The desirable geometric characteristics of B-Spline curves 

and surfaces of degree p are defined as: 
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To determine gradients of the medical images after the 

smoothing step, we use the Kernel. The value of gradients 

(known as the edge strengths) is calculated by Euclidean 

distance measure.  

(ii) Using K-means to specify candidate pixels in the object

In here, we used the k-means clustering to decide that the 

pixel in the search region belongs to the object which we find 

or not [26]. The boundary of the object in the next slice is near 

its border in the previous slice. We divided all pixels in the 

search region into two groups: group A and group B. The 

group A includes the pixel near based on a distance transform 

feature and otherwise assigned as B. The pixels in the group 

A are assigned to the pancreas. 

(iii) Context awareness to connect potential edges

In image processing, if a piece of information can be used 

to characterize the situation of a participant in an interaction, 

then that information is context [27]. We can define that the 

context is any information as: pixel, noise, strong edge, and 

weak edge in a medical image that is considered relevant to 

the interaction between pixels and pixels including noise, 

weak and strong edge themselves [27]. 

After the above section, the problem is how to connect the 

strong points in object boundary together. Our aim is to 

connect two points which the distance between them is 

shortest based on context awareness. 

For a set of node points n(k), where k = 0, 1, …., (N-1), 

we require that n(N) = n(0) and n(-1) = n(N-1). 

The corresponding boundary conditions are periodic. The 

extended signal ns(k) of infinite length can be described [27] 

as 

( ) ( mod )sn k n k N=
    (9) 

The different choices can be implemented for the open 

snake such as mirror or anti-mirror boundary conditions. In 

this application, the anti-mirror conditions with a pivot at the 

boundary value are the most suitable choice because they 

allow us to lock the end points of the curve [28]. 

4. Experimental and evaluation

In this section, we present the experiments and the results of 

the proposed method for pancreas contour detection. 

Experiments are run in Matlab 2013a and on computer 

hardware of Intel core i7, 3.2 GHz CPU, 16 GB DDR3 

memory. Our dataset has 200 medical images (include 100 

low quality and 100 strong low quality medical images) with 

the sizes 256 x 256 and 512 x 512 in dataset.  

We computed the Jaccard Index (JI) between an extracted 

region and a true one [31, 32], which were manually defined 

by a medical expert to evaluate the results. The JI value is 

calculated the follow as: 
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𝐽𝐼(𝑋, 𝑌) =  
|X ∩𝑌|

|X ∪Y|
× 100     (10) 

where, X is extracted region, Y is true region. If X and Y are 

both empty, we define JI (X, Y) = 100. The index ranges from 

0 to 100%, with higher values representing better 

performance [31].  

The strong and weak objects in medical images are 

defined in [27] as: “the strong object is an object of which 

boundaries are clear and the weak object is defined as an 

object of which boundaries are blurred”. In here, we base on 

the concept from [25]: “the blur details include noise details”. 

Consequently, the weak object is an object of which 

boundaries are blurred and noised.  

We test the proposed method and compare the result with 

other methods such as: Shimizu method [29], Marius method 

[30] and Nguyen method [14] in the above dataset.  In here,

we only present two cases as figure 2 and figure 3.

 (a)  (b) 

(c)  (d) 

 (e) 

Figure 2. Results of pancreas detection by proposed 
method and the other methods in case the low quality 

medical images. 
(a) The original medical image.

(b) Pancreas detection by Shimizu method [29], (JI = 72.71)

(c) Pancreas detection by Marius method [30], (JI = 74.15)

(d) Pancreas detection by Nguyen method [14], (JI = 74.92)

(e) Pancreas detection by the proposed method, (JI = 75.16)

The results of the proposed method with the other methods 

are presented as figure 2. Figure 2(a) is the original medical 

image. The result of Shimizu method [29] for pancreas 

detection is figure 2(b), Marius method [30] is figure 2(c), 

Nguyen method [14] is figure 2(d) and the proposed method 

is figure 2(e). 

The JI value in figure 2(e) is higher than the JI value in 

figure 2(b), figure 2(c) and figure 2(d). Therefore, the result 

of the proposed method is better than the other methods. 

(a)  (b) 

(c)  (d) 

 (e) 

Figure 3. Results of pancreas detection by proposed 
method and the other methods in case the strong low 

quality medical images. 
(a) The original medical image.

(b) Pancreas detection by Shimizu method [29], (JI = 52.21)

(c) Pancreas detection by Marius method [30], (JI = 53.82)

(d) Pancreas detection by Nguyen method [14], (JI = 54.73)

(e) Pancreas detection by the proposed method, (JI = 55.16)

The other experiment is presented as figure 3. The original 

medical image is presented as figure 3(a). The result of 

Shimizu method [29] for pancreas detection is figure 3(b), 

Marius method [30] is figure 3(c), Nguyen method [14] is 

figure 3(d) and the proposed method is figure 3(e). 

In figure 3, the JI value in figure 3(e) is also higher than 

the JI value in the other figures. Therefore, the result of the 

proposed method is better than the other methods. The 

average JI value of all images in dataset is presented in table 

1. 

Table 1. The average JI value of the methods. 

The 

number of 

pancreas 

images 

Average JI 

value of 

Shimizu 

method 

[29] 

Average 

JI value 

of Marius 

method 

[30] 

Average JI 

value of 

Nguyen 

method 

[14] 

Average JI 

value of 

proposed 

method 

100 images 

with low 

quality 
71.127 

72.043 72.411 
73.312 

100 images 

with strong 

low quality 
51.841 

51.946 52.024 
52.927 
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The results of the proposed method are better than the 

other methods in the table 1. As we present in section 2, the 

shearlet transform perform a multiscale and multidirectional 

analysis. Shearlet transform is high directionality and 

representation of salient features (edges, curves and contours) 

of the image in a better way compared with wavelet 

transform. Therefore, the medical image quality in shearlet 

domain is improved. Moreover, the object contour detection 

period, we use context awareness to connect potential edges. 

So, these are the reasons of the results of the proposed method 

which are better than those of the other methods. 

5. Conclusions

Object contour in the high quality medical images is hard 

work. With the low quality of medical images, it is more 

challenging. In the previous object detection algorithms, 

weak objects detection are a challenge. In this paper, we 

propose the new method for object contour detection based 

on context awareness in low quality medical images in 

shearlet domain. The object in medical images which detect 

contour here is pancreas object. The proposed method 

includes two periods: improving the medical image quality 

and detecting pancreas contour. We test with the dataset 

which is collected from many hospitals include 200 medical 

images. We test the proposed method with the above dataset 

and compare the results with other methods such as: Shimizu 

method [29], Marius method [30] and Nguyen method [14]. 

The results of the proposed method are better than the other 

methods. In the case that the quality of medical images is 

extremely low quality, then the work of the pancreas contour 

detection has challenges. Because the information of the 

image gets lost, image reconstruction is required. In the future 

works, we extend this proposed method for the extremely low 

quality medical image case. 
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