Applications of Elliptic Curves in Cryptography

William King

What do these have in common?

What Are Elliptic Curves?

Equations of the form:
$y^{2}=x^{3}+a x+b$
such that:
$4 a^{3}+27 b^{2} \neq 0$

$$
y^{2}=x^{3}+5 x+7
$$

$4 a^{3}+27 b^{2} \neq 0$

Points on Elliptic Curves

The set of all (x, y) such that:
$y^{2}=x^{3}+a x+b$

For example: $(2,5)$
$5^{2}=2^{3}+5(2)+7$

$$
y^{2}=x^{3}+5 x+7
$$

Adding Points of Elliptic Curves!

Point Addition (Continued)

The Point at Infinity

$P+(-P)=\infty$
We define ∞, the point at infinity, as the point where vertical lines meet.

We include the point at infinity with elliptic curves to achieve algebraic closure.

Point Addition: Algebraic Interpretation

Four Cases:

1. For distinct points $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, such that Q is not the elliptic inverse of P, then $P+Q=(r, s)$ such that

- $r=\left(\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)^{-1}\right)^{2}-x_{1}-x_{2}$
- $s=\left(\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)^{-1}\right)\left(x_{1}-r\right)-y_{1}$

Point Addition: Algebraic Interpretation (Continued)

2. For a point, $P=\left(x_{1}, y_{1}\right)$, then $2 P=(r, s)$ such that

- $r=\left(\left(3 x_{1}^{2}+a\right)\left(2 y_{1}\right)^{-1}\right)^{2}-2 x_{1}$
- $s=\left(\left(3 x_{1}^{2}+a\right)\left(2 y_{1}\right)^{-1}\right)\left(x_{1}-r\right)-y_{1}$

3. For elliptic inverses P and $-P, P+(-P)=\infty$

- This relationship also allows us to define
- $P+\infty=P$

4. For ∞, we define $\infty+\infty=\infty$

Elliptic Curves Over Finite Fields

$y^{2}=x^{3}+5 x+7$
$y^{2}=x^{3}+5 x+7(\bmod 23)$

Point Addition on Elliptic Curves over Finite Fields

Point Addition on Elliptic Curves over Finite Fields

$$
\begin{aligned}
& 2 P=(3,7)+(3,7)=(r, s) \\
& r=\left(\left(3(3)^{2}+5\right)(2(7))^{-1}\right)^{2}-2(3) \\
& =\left((3(9)+5)(14)^{-1}\right)^{2}-6(\bmod 23) \\
& =((9)(5))^{2}+17(\bmod 23) \\
& =501(\bmod 23) \\
& =18 \\
& s=\left(\left(3(3)^{2}+5\right)(2(7))^{-1}\right)((3)-18)-7 \\
& =\left((3(9)+5)(14)^{-1}\right)(8)+16 \\
& =\left(9^{*} 5\right)(8)+16(\bmod 23) \\
& =376(\bmod 23) \\
& =8
\end{aligned}
$$

The Discrete Logarithm Problem (DLP)

Given:

- a prime integer p
- a cyclic group $Z_{p}=\{0,1,2, \ldots, p-1\}$
- a generator $g_{\text {, of }} Z_{p}$
- a non-zero element of $Z_{p \prime} a$

This discrete logarithm d, of a to the base g is given by

$$
\mathrm{a} \equiv \mathrm{~g}^{\mathrm{d}}(\text { modulo } \mathrm{p})
$$

DLP Example

Consider $p=23$, then $Z_{23}=\{0,1,2, \ldots, 22\}$, and note that $\langle 11\rangle=Z_{23}$

Solve $15 \equiv 11^{\mathrm{d}}(\bmod 23)$ for d

Answer: 19
$\bmod \left(\operatorname{seq}\left(11^{\wedge} x, x, 0,22\right), 23\right)=$
$\{1,11,6,20,13,5,9,7,8,19,2,22,12,17,3,10,18,14,16,15,4,21,1\}$
$\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22\}$

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given:

- an elliptic curve: $y^{2}=x^{3}+a x+b$
- a prime, p
- a field, F_{p}
- points P, Q on the elliptic curve such that Q is some multiple of P

This discrete logarithm k, of Q to the base P is given by

$$
\mathrm{Q}=\mathrm{kP}
$$

ECDLP Example

Consider the elliptic curve $y^{2}=x^{3}+9 x+17$ over
F_{23}
What is the discrete logarithm of $\mathrm{Q}=(4,5)$ to the base $P=(16,5)$? I.e., solve
$(4,5)=k *(16,5)$ for k.
Answer: 9

$$
\begin{aligned}
& 1 \mathrm{P}=(16,5), 2 \mathrm{P}=(20,20), 3 \mathrm{P}=(14,14), 4 \mathrm{P}=(19,20), 5 \mathrm{P}=(13,10), 6 \mathrm{P}=(7,3), 7 \mathrm{P}=(8,7), \\
& 8 \mathrm{P}=(12,17), 9 \mathrm{P}=(4,5), \ldots
\end{aligned}
$$

SoOooOOoOoOoOOoOOOo

Given $\mathrm{Q}=\mathrm{kP}$ and P , it's difficult to find k; how does this relate to public key cryptography?

Elliptic Curve Cryptography! (ECC)

- Applications:
- Asymmetric (Public) Key

Cryptography

- Digital Signatures
- Secure Key Generation

Elliptic Curve Cryptography Broadcast Parameters

(p,a,b,G,q)

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)
Elliptic Curve Digital Signature Algorithm (ECDSA)

Meet the Players

Alice
Bob
Eve

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Key Agreement Protocol

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Alice randomly chooses an integer
$k_{A} \in\{1,2, \ldots, q-1\}$
and keeps k_{A} secret.
Step 1
Bob randomly chooses an integer
$\mathrm{k}_{\mathrm{B}} \in\{1,2, \ldots, \mathrm{q}-1\}$
and keeps k_{B} secret.

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Alice computes $A=k_{A} G$

and sends A to Bob.

Step 2

Bob

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Alice computes $S_{A}=k_{A} B$

Bob computes $S_{B}=k_{B} A$
Step 3

Bob

ECDH Proof

Alice and Bob agree upon the same key because

$$
\begin{aligned}
S_{A}=k_{A} B & =k_{A}\left(k_{B} G\right)=\left(k_{A} k_{B}\right) G=\left(k_{B} k_{A}\right) G \\
& =k_{B}\left(k_{A} G\right)=k_{B} A=S_{B}
\end{aligned}
$$

Elliptic Curve Digital Signature Algorithm (ECDSA)

Digital Signatures

Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Digital Signature Algorithm (ECDSA)

Alice waits patiently!

Alice

Step 4
Bob computes $h=h a s h(M)$ and $z_{1}=s^{-1}(h)(\operatorname{modq})$
$\mathrm{z}_{2} \equiv \mathrm{~s}^{-1}\left(\mathrm{x}_{\mathrm{Q}}\right)(\operatorname{modq})$

Elliptic Curve Digital Signature Algorithm (ECDSA)

Alice waits patiently!

Bob computes $\mathrm{B}=\mathrm{z}_{1} \mathrm{G}+\mathrm{z}_{2} \mathrm{~A}$

Elliptic Curve Digital Signature Algorithm (ECDSA)

Alice waits patiently!

Step 6
If $B=Q$, then signature is valid, else the signature is invalid

ECDSA Proof

A bit more tricky, but...
Since $s=w^{-1}\left(h+i x_{Q}\right)$

$$
w \equiv s^{-1}\left(h+i x_{0}\right) \equiv s^{-1} h+\left(s^{-1}\right) i x_{0} \equiv z_{1}+z_{2} i(\bmod q)
$$

then,

$$
B=z_{1} G+z_{2} A=z_{1} G+z_{2}(i G)=\left(z_{1}+z_{2} i\right) G=w G=0
$$

Since, the integers i,w could have only come from Alice, the signature is valid.

Attacks on Elliptic Curve Systems

Solving the Elliptic Curve Discrete Logarithm Problem!

Eve, the Eavesdropper

Baby Step, Giant Step Method

Deterministic

$$
(\mathrm{q})^{1 / 2} \text { steps \& storage }
$$

Baby Step, Giant Step Method

Baby Step, Giant Step Method

Eve chooses an integer $\mathrm{i} \geq(\mathrm{q})^{1 / 2}$ and computes and stores all points jG such that $1 \leq \mathrm{j} \leq \mathrm{i}$

Alice computes
$S_{A}=k_{A} B$

Bob computes $S_{B}=k_{B} A$

Baby Step, Giant Step Method

Eve computes A-(hi)G for

 consecutive integers $h=0,1,2, \ldots, \mathrm{i}-1$ until A-(hi)G=jG for some integer h and some j from the previous listAlice and Bob have agreed on a shared key, $S_{A}=S_{B}$

Alice and Bob have agreed on a shared key, $\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}$

Baby Step, Giant Step Method

Eve has recovered Alice's private key, $k_{A} \equiv j+h i(\bmod q)$

$$
(p, a, b, \quad, q)
$$

Alice and Bob have agreed on a shared key, $S_{A}=S_{B}$

Alice and Bob have agreed on a shared key, $\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}$

Baby Step, Giant Step Method

Eve computes $S_{A}=k_{A} B$ and has arrived at the same shared secret key

Alice and Bob have agreed on a shared key, $S_{A}=S_{B}$

Alice and Bob have agreed on a shared key, $\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}$

Baby Step, Giant Step Method

Why does this work?
When jG=A-(hi)G

$$
\begin{aligned}
& j G=A-(h i) G \Rightarrow j G+(h i) G=A-(h i G)+(h i) G \\
& \Rightarrow(j+h i) G=A+\infty \Rightarrow(j+h i) G=A \\
& \Rightarrow(j+h i) G=k_{A} G \\
& \Rightarrow(j+h i)=k_{A}
\end{aligned}
$$

Baby Step, Giant Step Method: Example

Baby Step, Giant Step Method

Eve chooses an integer $6 \geq(27)^{1 / 2}$ and computes and stores all points $j G$ such that $1 \leq j \leq 6$ in list 1

j	LIST $1^{c \mid}$ jG	
1	$1(1,19)$	$(1,19)$
2	$2(1,19)$	$(10,15)$
3	$3(1,19)$	$(21,18)$
4	$4(1,19)$	$(19,21)$
5	$5(1,19)$	$(5,1)$
6	$6(1,19)$	$(20,9)$

Baby Step, Giant Step Method

Eve computes $(14,17)-(h 6)(1,19)$ for consecutive integers $h=0,1,2, \ldots, 5$ Until $(14,17)-(h 6) G=j G$ for an integer h, and an integer j from the List 1

j	jG
1	$(1,19)$
2	$(10,15)$
3	$(21,18)$
4	$(19,21)$
5	$(5,1)$
6	$(20,9)$

h	$(14,17)-(h 6)(1,19)$
0	$(14,17)$
1	$(18,8)$
2	$(17,7)$
3	$(21,18)$

Baby Step, Giant Step Method

-

Eve has recovered Alice's private key, $k_{A} \equiv\left(3+3^{*} 6\right) \equiv 21(\bmod 27)$

Let's Put Things in Perspective

Windows DRM:
785963102379428822376694789446897396207498568951 $\left(\approx 7.86 \times 10^{47}\right)$
8.865×10^{23} steps/storage
NSA Recommends:
Primes larger than $2^{255} \approx 5.79 \times 10^{79}$

ECC Advantages

Security (Bits)	Symmetric encryption algorithm	Minimum Size (Bits) of Public Keys DSA/DH		RSA
80	Skipjack	1024	1024	160
112	3DES	2048	2048	224
128	AES-128	3072	3072	256
192	AES-192	7680	7680	384
256	AES-256	15360	15360	512

http://www.design-reuse.com/articles/7409/ecc-holds-key-to-next-gen-cryptography.html

Conclusions

"Elliptic Curve Cryptography provides greater security and more efficient performance than the first generation public key techniques (RSA and Diffie-Hellman) now in use. As vendors look to upgrade their systems they should seriously consider the elliptic curve alternative for the computational and bandwidth advantages they offer at comparable security."

