Applications of Elliptic Curves in Cryptography

William King

What do these have in common?

What Are Elliptic Curves?

Equations of the form:

 $y^{2}=x^{3}+ax+b$

such that:

4a³+27b²≠0

4a³+27b²≠0

Points on Elliptic Curves

The set of all (x,y) such that:

 $y^{2}=x^{3}+ax+b$

For example: (2,5)

 $5^2=2^3+5(2)+7$

Adding Points of Elliptic Curves!

Point Addition (Continued)

Where does the line intersect the curve?

The Point at Infinity

 $P+(-P) = \infty$

We define ∞, the point at infinity, as the point where vertical lines meet.

We include the point at infinity with elliptic curves to achieve algebraic closure.

Point Addition: Algebraic Interpretation

Four Cases:

- 1. For distinct points $P=(x_1, y_1), Q=(x_2, y_2)$, such that Q is not the elliptic inverse of P, then P+Q=(r, s) such that
 - $r = ((y_2 y_1)(x_2 x_1)^{-1})^2 x_1 x_2$
 - $S = ((y_2 y_1)(x_2 x_1)^{-1})(x_1 r) y_1$

Point Addition: Algebraic Interpretation (Continued)

- 2. For a point, $P=(x_1, y_1)$, then 2P = (r, s) such that
 - $r = ((3x_1^2 + a)(2y_1)^{-1})^2 2x_1$
 - $s = ((3x_1^2 + a)(2y_1)^{-1})(x_1 r) y_1$
- 3. For elliptic inverses P and -P, P+(-P) = ∞
 - This relationship also allows us to define
 - P+∞ = P
- 4. For ∞ , we define $\infty + \infty = \infty$

Elliptic Curves Over Finite Fields

 $y^2 = x^3 + 5x + 7$

 $y^2 \equiv x^3 + 5x + 7 \pmod{23}$

Point Addition on Elliptic Curves over Finite Fields

P+Q = (3, 7)+(18, 15) = (r, s)

 $r = ((15-7)(18-3)^{-1})^2 - 3 - 18$ =(8*(15)^{-1})^2 - 21 (mod 23) =22485 (mod 23) = 3

s = ((15-7)(18-3)⁻¹)(3-3) - 7 =(8*(15)⁻¹)(0) - 7 (mod 23) =0 - 7 (mod 23) = 16

Point Addition on Elliptic Curves over Finite Fields

 $_{2}P = (3, 7) + (3, 7) = (r, s)$

 $r = ((3(3)^{2} + 5)(2(7))^{-1})^{2} - 2(3)$ =((3(9)+5)(14)^{-1})^{2} - 6 (mod 23) =((9)(5))^{2} + 17 (mod 23) =501 (mod 23) =18

 $s = ((3(3)^{2} + 5)(2(7))^{-1})((3) - 18) - 7$ = ((3(9)+5)(14)^{-1})(8)+16 = (9*5)(8) + 16 (mod 23) = 376 (mod 23) = 8

The Discrete Logarithm Problem (DLP)

Given:

- a prime integer p
- a cyclic group Z_p = {0,1, 2,..., p-1}
- a generator *g*, of Z_p
- a non-zero element of Z_p , *a*

This discrete logarithm d, of a to the base g is given by

 $a \equiv g^d \pmod{p}$

DLP Example

Consider p = 23, then $Z_{23} = \{0, 1, 2, ..., 22\}$, and note that $<11> = Z_{23}$

Solve $15 \equiv 11^d \pmod{23}$ for *d*

Answer: 19

mod(seq(11^x,x,0,22),23) =
{1,11,6,20,13,5,9,7,8,19,2,22,12,17,3,10,18,14,16,15,4,21,1}
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22}

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given:

- an elliptic curve: $y^2 = x^3 + ax + b$
- a prime, p
- a field, F_p
- points P, Q on the elliptic curve such that Q is some multiple of P

This discrete logarithm k, of Q to the base P is given by

 $\mathbf{Q} = \mathbf{kP}$

ECDLP Example

Consider the elliptic curve $y^2 = x^3 + 9x + 17$ over F_{23} What is the discrete logarithm of Q = (4, 5) to the base P = (16, 5)? I.e., solve (4, 5) = k*(16, 5) for k.

Answer: 9

1P=(16,5), 2P=(20,20), 3P=(14,14), 4P=(19,20), 5P=(13,10), 6P=(7,3), 7P=(8,7), 8P=(12,17), 9P=(4,5), ...

Given Q=kP and P, it's difficult to find k; how does this relate to public key cryptography?

Elliptic Curve Cryptography! (ECC)

 Applications:
 Asymmetric (Public) Key Cryptography
 Digital Signatures
 Secure Key Generation Elliptic Curve Cryptography Broadcast Parameters

(p,a,b,G,q)

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Elliptic Curve Digital Signature Algorithm (ECDSA)

Meet the Players

Alice

Bob

Eve

Key Agreement Protocol

ECDH Proof

Alice and Bob agree upon the same key because

 $S_{A} = k_{A}B = k_{A}(k_{B}G) = (k_{A}k_{B})G = (k_{B}k_{A})G$ $=k_{\rm B}(k_{\rm A}G)=k_{\rm B}A=S_{\rm B}$

Digital Signatures

Alice chooses a secret and random integer i, and computes A = iG and publishes A to all

Step 1

Bob

Bob waits patiently!

Alice

Alice chooses another secret random integer $w \in \{1, 2, ..., q-1\}$, and computes $Q = wG = (x_Q, y_Q)$

Step 2

Bob

Bob waits patiently!

Alice

 $z_1 \equiv s^{-1}(h) \pmod{q}$ $z_2 \equiv s^{-1}(x_Q) \pmod{q}$

If B = Q, then signature is valid, else the signature is invalid

ECDSA Proof

A bit more tricky, but...

Since $s \equiv w^{-1}(h+ix_0)$

 $w \equiv s^{-1}(h+ix_{Q}) \equiv s^{-1}h+(s^{-1})ix_{Q} \equiv z_{1}+z_{2}i \pmod{q}$

then,

 $B=z_1G+z_2A=z_1G+z_2(iG)=(z_1+z_2i)G=wG=Q$

Since, the integers *i*, *w* could have only come from Alice, the signature is valid.

Attacks on Elliptic Curve Systems

Solving the Elliptic Curve Discrete Logarithm Problem!

Eve, the Eavesdropper

Baby Step, Giant Step Method

Deterministic (q)^{1/2} steps & storage

Eve chooses an integer $i \ge (q)^{1/2}$ and computes and stores all points jG such that $1 \le j \le i$

Alice computes $S_A = k_A B$

Bob computes $S_B = k_B A$

(p, a, b, G, q)

Eve computes A-(hi)G for consecutive integers h=0,1,2,...,i-1 until A-(hi)G=jG for some integer h and some j from the previous list

Alice and Bob have agreed on a shared key, $S_A = S_B$

Alice and Bob have agreed on a shared key, $S_A = S_B$

Eve has recovered Alice's private key, k_A≡j+hi (mod q)

(p, a, b, <mark>G</mark>, q)

Alice and Bob have agreed on a shared key, $S_A = S_B$

Alice and Bob have agreed on a shared key, $S_A = S_B$

Eve computes $S_A = k_A B$ and has arrived at the same shared secret key

(p, a, b, **G**, **q**)

Alice and Bob have agreed on a shared key, $S_A = S_B$

Alice and Bob have agreed on a shared key, $S_A = S_B$

Why does this work? When jG=A-(hi)G $jG=A-(hi)G \Rightarrow jG+(hi)G = A-(hiG)+(hi)G$ \Rightarrow (j+hi)G=A+ ∞ \Rightarrow (j+hi)G=A \Rightarrow (j+hi)G = k_AG ⇒(j+hi)≡k_△

Baby Step, Giant Step Method: Example

Eve chooses an integer $6 \ge (27)^{1/2}$ and computes and stores all points jG such that $1 \le j \le 6$ in list 1

j	LIST 1	jG
1	1(1,19)	(1,19)
2	2(1,19)	(10,15)
3	3(1,19)	(21,18)
4	4(1,19)	(19,21)
5	5(1,19)	(5,1)
6	6(1,19)	(20,9)

Eve computes (14,17)-(h6)(1,19) for consecutive integers h=0,1,2,...,5 Until (14,17)-(h6)G=jG for an integer h, and an integer j from the List 1

j	jG	
1	(1,19)	
2	(10,15)	
3	(21,18)	
4	(19,21)	
5	(5,1)	
6	(20,9)	

h	(14,17)-(h6)(1,19)	
0	(14,17)	
1	(18,8)	
2	(17,7)	
3	(21,18)	

Let's Put Things in Perspective

Windows DRM:

785963102379428822376694789446897396207498568951 (≈7.86x10⁴⁷)

8.865x10²³ steps/storage

NSA Recommends:

Primes larger than 2²⁵⁵ ≈ 5.79x10⁷⁹

ECC Advantages

Symmetric encryption algorithm			Public Keys ECC
Skipjack	1024	1024	160
3DES	2048	2048	224
AES-128	3072	3072	256
AES-192	7680	7680	384
AES-256	15360	15360	512
	encryption algorithm Skipjack 3DES AES-128 AES-192	encryption algorithmDSA/DHSkipjack10243DES2048AES-1283072AES-1927680	encryption algorithmDSA/DHRSASkipjack102410243DES20482048AES-12830723072AES-19276807680

http://www.design-reuse.com/articles/7409/ecc-holds-key-to-next-gen-cryptography.html

Conclusions

"Elliptic Curve Cryptography provides greater security and more efficient performance than the first generation public key techniques (RSA and Diffie-Hellman) now in use. As vendors look to upgrade their systems they should seriously consider the elliptic curve alternative for the computational and bandwidth advantages they offer at comparable security."