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What Are Elliptic Curves?

Equations of the form:

y2=x3+ax+b

— such that:

4+

4a3+27b2#0

y2=X3+E5X+7



4a3+27b%#0

Im plicit plot: Im plicit plot:

y?=(X-2)*(x-1)




Points on Elliptic Curves

The set of all (x,y)
such that:

y2=x3+ax+b

For example: (2,5)

5*=23+5(2)+7

y2=X3+E5X+7



Adding Points of Elliptic Curves!

Rt (R E T

y2=x3+5X+7




Point Addition (Continued)

Where does

the line
intersect the
curve?

y2=x3+5X+7



The Point at Infinity

P+(-P) =00

We define oo, the point
at infinity, as the point
where vertical lines
meet.

We include the point at
infinity with elliptic
curves to achieve
algebraic closure.




Point Addition: Algebraic Interpretation

Four Cases:

1. For distinct points P=(x_, y,), Q=(x,, v,), such
that Q is not the elliptic inverse of P, then
P+Q=(r, s) such that
© = ((Y2 B Y1)(X2 B Xl)_l)z - X7 X,

* 5= ((Y2 ) Y1)(X2 ) Xl)-l)(xl- r) - Y1




Point Addition: Algebraic Interpretation
(Continued)

2. Forapoint, P=(x,, y,), then 2P =(r, s) such that
* r=((3x.2+a)(2y,)?)? - 2x,
s =((3x.2+a)(2y,) ) (X,- -y,

3. Forelliptic inverses P and —P, P+(-P) = oo
«  This relationship also allows us to define
° P+oo =P

1. Foroeo, we define co+oo=c0




Elliptic Curves Over Finite Fields

y*=X3+5X+7 y2=x3+5x+7 (mod 23)



Point Addition on Elliptic Curves over
Finite Fields

P+Q = (3, 7)+(18, 15) = (r, s)

Q=(18,15) r=((15-7)(18-3)*)*-3-18
. =(8*(15)*)* -21 (mod 23)

=22485 (mod 23)
=3

s =((15-7)(28-3)*)(3-3) - 7
=(8*(25)™)(0) - 7 (mod 23)
=0 - 7 (mod 23)
=16




Point Addition on Elliptic Curves over
Finite Fields

2P = (3/ 7)+(3I 7)= (rl S)

r=((3(3)* +5)(2(7))*)* - 2(3)
=((3(9)+5)(14))*>— 6 (mod 23)
. =((9)(5)) + 17 (mod 23)
=501 (mod 23)
5P=(21,9) =18

.- @ s =((3(3)2 + 5)(2(7)))((3)-18)-7
A =((3(9)+5)(24))(8)+16
2P=(18,8) ~(9%5)(8) + 16 (mod 23)
=376 (mod 23)
=8




The Discrete Logarithm Problem (DLP)

Given:
*a prime integer p
*acyclicgroupZ,={0,1, 2,..., p-1}
* a generatorg, of Z,
*anon-zero elementofZ,, a

This discrete logarithm d, of a to the base g is given by

a = g (modulo p)




DLP Example

Consider p = 23, then Z,, = {0,1,2,...,22}, and
note that <11>=7,,

Solve 15 =119 (mod 23) for d

Answer: 19

mod(seq(11°%,X,0,22),23) =
{11 11[ 6I 20[ 13[ 5[ 9[71 8[ 19[ 2[ 22[ 12[ 17[ 3[ 10[ 18[ 14[ 16[ 15[ 4[ 21] 1}
{OI 1[ 2I 3[ 4[ 5[ 6[ 7I 8[ 9[ 10[ 11] 12[ 13[ 14[ 15[ 16[ 17[ 18[ 19[ 20[ 21] 22}




Elliptic Curve Discrete Logarithm
Problem (ECDLP)

Given:
* anellipticcurve: y2=x3+ax+b
*aprime,p
* afield, F,
* points P,Q on the elliptic curve such that Q is some
multiple of P

This discrete logarithm k, of Q to the base P is given by

Q=kP




ECDLP Example

Consider the elliptic curve y2=x3+gx+17 over

F.,

What is the discrete logarithm of Q=(4,5) to
the base P=(16,5)? |l.e., solve
(4,5) = k*(16,5) for k.

Answer: g

1P=(1615)I 2P=(2OI 20)[ 3P=(14114)I 4P=(19120)I 5P=(13110)I 6P=(7I3)I 7P=(817)I
8P=(12,17), 9P=(4,5), ...




S5000000000000000000

Given Q=kP and P, it's
difficult to find k; how

does this relate to public
key cryptography?




Elliptic Curve Cryptography! (ECC)

= Applications:
= Asymmetric (Public) Key

Cryptography
= Digital Signatures
= Secure Key Generation




Elliptic Curve Cryptography
Broadcast Parameters

(p,a,b,G,0)

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Elliptic Curve Digital Signature Algorithm (ECDSA)
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Elliptic Curve Diffie-Hellman Key
Exchange (ECDH)

Key Agreement Protocol




Elliptic Curve Diffie-Hellman Key
Exchange (ECDH)

Alice Step 1

Bob randomly chooses an integer

kg € {1,2,...,0-1)

\_ and keeps k; secret.




Elliptic Curve Diffie-Hellman Key
Exchange (ECDH)

Step 2

- BobComputes B = k;G

and sends B to Alice.
\




Elliptic Curve Diffie-Hellman Key
Exchange (ECDH)




ECDH Proof

Alice and Bob agree upon the same key because

S, =k \B=k (kg G)=(k 1kg)G=(kgk )G

=kg(k,G)=kgA= S,




Elliptic Curve Digital Signature
Algorithm (ECDSA)

Digital Signatures
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Elliptic Curve Digital Signature
Algorithm (ECDSA)




Elliptic Curve Digital Signature
Algorithm (ECDSA)




Elliptic Curve Digital Signature
Algorithm (ECDSA)




Elliptic Curve Digital Signature
Algorithm (ECDSA)

Step 4
- Bob computes h=hash(M) and
z,25%(h) (mod q)
2,25 (xg) (mod q)
N\




Elliptic Curve Digital Signature
Algorithm (ECDSA)

Step 5




Elliptic Curve Digital Signature
Algorithm (ECDSA)

Step 6

~If B =Q, then signature Is
valid, else the signature is
invalid

\_




ECDSA Proof

A bit more tricky, but...

Since s=Ew(h+ixp)
WEs?(h+ixg)=sh+(s?)ixo=z,+z,i (mod q)

then,

B=z G+z,A=z G+z (iG)=(z,+z,i)G=wG=Q

Since, the integers j,w could have only come from Alice,
the signature is valid.




Attacks on Elliptic Curve Systems

Solving the Elliptic Curve Discrete
Logarithm Problem!

Eve, the Eavesdropper




Baby Step, Giant Step Method

Deterministic

(q)¥2 steps & storage




Baby Step, Giant Step Method

A

Béends his public

key, B=kgG to Alice.




Baby Step, Giant Step Method

Bob computes




Baby Step, Giant Step Method

Alice and Bob have
agreed on a shared
key, S\=Sg

L




Baby Step, Giant Step Method

Alice and Bob have
agreed on a shared
key, S\=Sg

L




Baby Step, Giant Step Method

Alice and Bob have
agreed on a shared
key, S\=Sg

L




Baby Step, Giant Step Method

Why does this work?
When jG=A-(hi)G

jG=A-(hi)G = jG+(hi)G = A-(hiG)+(hi)G

= (j+hi)G=A+co = (j+hi)G=A
= (j+hi)G = k,G
=(j+hi)=k,




Baby Step, Giant Step Method: Example

A

Béends his public

key, B=kgG to Alice.




Baby Step, Giant Step Method




Baby Step, Giant Step Method




Baby Step, Giant Step Method




Let’s Put Things in Perspective

Windows DRM:

785963102379428822376694789446897396207498568951
(=7.86x1047)

8.865x107%° steps/storage

NSA Recommends:

Primes larger than 225> = 5.79x107°




ECC Advantages

Symmetric Minimum Size (Bits) of Public Koys
Security encryption
(Bits) algorlthm DSA/DH

J/lwww.design-reuse.com/articles/7409/ecc-holds-key-to-next-




Conclusions

“Elliptic Curve Cryptography provides greater
security and more efficient performance
than the first generation public key

techniques (RSA and Diffie-Hellman) now in
use. As vendors look to upgrade their
systems they should seriously consider the
elliptic curve alternative for the
computational and bandwidth advantages
they offer at comparable security.”




