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Abstract: Copper(II) complexes with 2,3,4-trimethoxybenzoic acid (H234-tmbz) and 2,4,6-trimethoxyb
enzoic acid (H246-tmbz), [Cu2(234-tmbz)4(H2O)2] (6) and [Cu(246-tmbz)2(µ-H2O)2(H2O)2]n (7), were
synthesized and characterized by elemental analysis, infrared and UV-vis spectra and temperature
dependence of magnetic susceptibilities (1.9–300 K). The X-ray crystal structures revealed that the
former 6 is a dinuclear cluster having syn-syn-bridged Cu2(µ-234-tmbz)4 core with Cu···Cu separation
of 2.6009(7) Å, while the latter 7 is a µ-aqua-bridged chain molecule consisting of Cu(246-tmb)2(µ-
H2O)2(H2O)2 units with Cu···Cu separation of 4.1420(5) Å. Temperature dependence of magnetic
susceptibilities showed that an antiferromagnetic interaction with 2J = −272 cm−1 for 6 and a weak
antiferromagnetic interaction with J = −0.21 cm−1 for 7, between the two copper(II) ions. The
adsorption isotherm of 6 showed Types I behavior having a 125.4 m2g−1 of specific surface area.

Keywords: copper(II) carboxylate; 2,3,4-trimethoxybenzoic acid; 2,4,6-trimethoxybenzoic acid; mag-
netic property; antiferromagnetic interaction; adsorption property

1. Introduction

Copper acetate is known as one of the oldest compounds as dinuclear metal clusters
and became popular since the discovery of the paddle-wheel or lantern-type dinuclear
core with four syn-syn bridging acetate ligands for the two copper(II) ions, which interact
with each other by an antiferromagnetic spin-coupling [1,2]. A great number of dinucler
copper(II) carboxylates have been prepared and their magnetic properties and crystal struc-
tures have been studied in order to elucidate the magneto structural correlations [3–11].
In most cases, dinuclear clusters with the paddle-wheel or lantern-type core have been
found to have a general formula [Cu2(RCOO)4L2] (L = H2O, CH3OH, DMF, CH3CN, etc.),
forming discrete dinuclear carboxylates and their adducts. In other cases, 1-D coordination
polymers can be formed with linking ligands, which connect the axial sites of the dinuclear
clusters. We have engaged in the synthesis of such copper acetate analogues and their
coordination polymers [11–18]. Previously, we found that a chain compound of copper(II)
benzoate with pyrazine [Cu2(bz)4(pyz)]n (1) (Hbz = benzoic acid, pyz = pyrazine) (Figure 1)
forms a hydrophobic micropore surrounded by the aromatic benzoate groups in the crystal
and has a high adsorption ability for N2, recognizing from other gas molecules such as
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H2O and CCl4 [12,13]. In order to extend copper(II) benzoate analogues, we introduced
three substituent groups into the benzoate ring. We could isolate an analogous dinuclear
cluster [Cu2(345-tmbz)4(CH3OH)2] (2) by the use of 3,4,5-trimethoxybenzoic acid (H345-
tmbz) as a carboxylate ligand [16]. The X-ray structure analysis revealed a lantern-type
core with Cu-Cu distance of 2.6190(6) Å [16]. We also found a similar dinuclear cluster
[Cu2(tbng)4(DMF)2] (DMF = N,N-dimethylformamide) (3) by the use of much more bulky
benzyl group-containing benzoic acid, 3,4,5-tri-O-benzylgalic acid (Htbng) [18]. Unfortu-
nately, these compounds did not show a good adsorption property for N2, irrespective of
the introduction of bulky groups. In case of ruthenium, we isolated a dinuclear cluster
with deuterated 3,4,5-tri(ethoxy-d5)benzoic acid (H345-tedbz) [Ru2(345-tedbz)4(H2O)2]+ (4),
which enabled us to interpret the 1HNMR spectra of the chrolido-bridged chain complex
[Ru2(345-tedbz)4Cl]n, suggesting the rotation of the benzoate phenyl ring in solution [19,20].
We also prepared many chlorido-bridged chain compounds [Ru2(345-tRbz)4Cl]n (5) by the
use of a series of 3,4,5-trialkoxybenzoic acid (H345-tRbz) [21,22], as shown in Figure 1. In
these dinuclear ruthenium carboxylates, liquid-crystalline properties [21] and magnetic fas-
tener effect [22] were found by introducing long alkyl chain groups at the 3, 4, 5-positions of
the benzoate rings, exploring a new aspect of these compounds. In this study, we selected
2,3,4-trimethoxybenzoic acid (H234-tmbz) and 2,4,6-trimethoxybenzoic acid (H246-tmbz)
as carboxylic acids in order to put three methoxy groups at the 2, 3, 4- and 2, 4, 6- positions
of the benzoate rings in the hope of finding the substitution-position effect to construct
new copper(II) carboxylates (Figure 2). This paper reports the synthesis, spectroscopic
and magnetic properties, and crystal structures of the isolated compounds, the copper(II)
carboxylate with234-tmbz− (6) and the copper(II) carboxylate with 246tmbz− (7). The
adsorption property of 6 for N2 is also reported.
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Figure 1. Lantern-type dinuclear metal carboxylates and chain compounds of metal carboxylates
with linking ligands: [Cu2(bz)4(pyz)]n (1), [Cu2(345-tmbz)4(CH3OH)2] (2), [Cu2(tbng)4(DMF)2] (3),
[Ru2(345-tedbz)4(H2O)2]+ (4), and [Ru2(345-tRbz)4Cl]n (5).
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2. Results and Discussion
2.1. Synthesis of Copper(II) Carboxylates

The present copper(II) carboxylates were synthesized according to a similar method
to that described for the dinuclear cluster [Cu2(345-tmbz)4(CH3OH)2] (2) [16]. Reaction of
2,3,4-trimethoxybenzoic acid and copper(II) nitrate in the neutral aqueous solution afforded
pale blue precipitate (6), while the reaction of 2,4,6-trimethoxybenzoic acid with copper(II)
nitrate gave greenish precipitate (7). Elemental analysis data of the isolated compounds are
in accordance with the formulation of the dinuclear [Cu2(234-tmbz)4(H2O)2]·H2O for 6 and
the mononuclear [Cu(246-tmbz)2(H2O)4]·H2O or dinuclear [Cu2(246-tmbz)4(H2O)2]·8H2O
or polynuclear [Cu(246-tmbz)2(µ-H2O)2(H2O)2]n·nH2O for 7, respectively.

2.2. Infrared Spectra of Copper(II) Carboxylates

In the infrared spectra of the complex 6, antisymmetric and symmetric stretching
bands for COO− group were observed at 1602 and 1468 cm−1 with the energy difference
of νas(COO) and νs(COO) of 134 cm−1, which is similar to those observed for dinuclear
copper(II) carboxylates with syn-syn mode of carboxylato bridges [15,23]. On the other
hand, the complex 7 exhibited two COO stretching bands at 1608 and 1414 cm−1 with the
greater separation of ∆ν of 194 cm−1, which is characteristic of monodentate coordination
of carboxylate ligands [15,23], and consistent with the crystal structure, as described in
Section 2.4. The strong band at 3441 cm−1 in 6 can be assigned to OH stretching band of
coordinated or crystallization water molecules [23]. The four medium bands at around
3634–3120 cm−1 in 7 also can be assigned as OH stretching bands, suggesting the presence
of bridging water molecules as well as coordinated and crystal water molecules in the
compound [24,25]. It is known that the frequency shift of the ν(OH) bands to the lower
energy side is indicative of the hydrogen bonded state of the water molecules [26]. The
stretching vibrations of the CH3 of methoxy groups appeared at 2941 and 2839 cm−1 in 6
and 2948 and 2840 cm−1 in 7, respectively, confirming the presence of the methoxy groups
of 2,3,4-trimethoxybenzoate and 2,4,6-trimethoxybenzoate ligands, respectively [26].

2.3. Electronic Spectra of Copper(II) Carboxylates

The diffused reflectance spectra of the present complexes are shown in Figure 3. The
spectra of 6 show a broad band at around 246 and 286 nm, which can be assigned to ligand-
to-metal charge transfer bands in the UV-region, a shoulder band at around 360 nm, which
can be a distinctive CT band characteristic of copper acetate type dinuclear clusters [3,7,11],
and a broad band assignable to d-d transitions at around 706 nm. The d-d band of 6
is located at higher energy side compared with that of 7. Moreover, the typical broad
asymmetric band with a shoulder at around 1000 nm is in harmony with the distorted
square pyramidal coordination of copper(II) [27] as found in the crystal structure of 6. On
the other hand, the spectra of 7 can be characterized as four absorption bands, being a
little different from those previously reported for copper acetate type clusters, lacking a
distinctive shoulder-like absorption at near-UV region. The absorption bands at 212, 254,
and 310 nm can be assigned to ligand to metal charge transfer bands, which are responsible
for the high intensity bands in the UV region. Furthermore, a broad band at 750 nm
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spanned in the visible and NIR regions until around 1200 nm is typically interpreted as d-d
transitions of the elongated octahedral copper(II) [27], which is observed for the crystal
structure of 7 in Section 2.4.
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Figure 3. Diffused reflectance spectra of [Cu2(234-tmbz)4(H2O)2]·H2O (6) (green line) and [Cu(246-
tmbz)2(µ-H2O)2(H2O)2]n ·nH2O (7) (red line).

2.4. Crystal Structures of Copper(II) Carboxylates

Single crystals were obtained by recrystallization from methanol for complexes 6 and
7. Crystal data and details concerning data collection are given in Table 1. Selected bond
lengths and angles are listed in Table 2. Both of the presented complexes crystallized in
the monoclinic lattice. As for 6, the crystal contains coordinating methanol molecules with
a formula [Cu2(234-tmbz)4(CH3OH)2] (6′), slightly different from 6. A perspective view
of the molecular structure of 6′ is shown in Figure 4. The asymmetric unit consists of half
of a [Cu2(234-tmbz)4(CH3OH)2] molecule with the crystallographic inversion center at
the midpoint of the Cu2 core. The molecule has a copper acetate type dinuclear core with
four syn-syn carboxylate-bridges and the structure is similar to that of the one reported
for [Cu2(345-tmbz)4(CH3OH)2] [16]. The copper atom is coordinated by four carboxylate
oxygen atoms of 234-tmbz− with the Cu1-O distances of 1.9504(18)–1.9827(17) Å and
an apical oxygen atom of methanol with the Cu1-O11 distance of 2.1309(19) Å to form
a distorted square pyramidal geometry. The apical methanol molecules came from the
recrystallization solvent. The copper atom lies on the basal O4 plane toward the apical
oxygen atom by 0.178 Å. The Cu···Cu’ distance is 2.6009(7) Å, which is normal as found in
copper(II) acetate type dinuclear clusters [4–11]. This feature is originated from the pseudo
Jahn–Teller distortion of copper(II) ion and has been similarly observed in copper(II) acetate
type clusters. The relationship between the Cu···Cu distance and apical coordination
was recently elucidated [28,29]. The coordination of apical ligand weakens the Cu-Cu
interaction which becomes longer upon the apical coordination and the distortion of the Cu
atom from the planar arrangement can be understood to be due to electrostatic attraction
between the Cu(II) and apical ligand’s dipole moment, reflecting trans influence of apical
ligand [29]. The benzoate moieties are not planar as like the related dinuclear copper(II)
benzoate analogues [8,30,31]. The dihedral angle (φbend) between the O1-C7-O2 plane
of the carboxylato bridge and the Cu1-O1···O2-Cu1′ plane and the dihedral angle (φrot)
between the O1-C7-O2 plane and the benzoate C1-C2-C3-C4-C5-C6 ring are 1.9(3)◦ and
38.3(2)◦, respectively. The φbend and φrot angles for the O6-C17-O7, Cu1-O6···O7-Cu1′,
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and C11-C12-C13-C14-C15-C16 planes are 5.9(4)◦ and 30.3(3)◦, respectively. The distortion
from the planar arrangement may be due to the packing effect in the crystal. As shown in
Figure 5, the dinuclear molecules are loosely bound to the adjacent dinuclear molecules
by the hydrogen bonds between the apical methanol molecules and the carboxylato-
oxygen atoms of the neighbor dinuclear molecules [O11···O2(x, 1 + y, z) 2.819 Å]. In
the crystal, the hydrogen-bonded array of the dinuclear molecules are related by the
crystallographic C2 axis to the neighboring the hydrogen-bonded array of the dinuclear
molecules. A perspective view of the molecular structure of 7 is depicted in Figure 6. The
asymmetric unit consists of half of a [Cu(246-tmbz)2(µ-H2O)2(H2O)2] molecule with the
crystallographic inversion center at the Cu1 atom and one crystallizing water molecule.
Unexpectedly, the complex is essentially polynuclear copper(II) complex [Cu(246-tmbz)2(µ-
H2O)2(H2O)2]n with two monodentate 246-tmbz− ligands and four aqua ligands in an
elongated octahedral geometry. The equatorial Cu1-O1 and Cu1-O6 distances are 2.0583(18)
Å and 1.9461(18) Å, respectively, and the axial Cu1-O7 distance is 2.3018(12) Å, which is
typical as due to the pseudo Jahn–Teller distortion of copper(II) ion. The other oxygen atom
(O2) of the monodentate 246-tmbz− is hydrogen-bonded to the axial aqua-oxygen atom
(O7) [O2···O7 2.645 Å]. The equatorial aqua-oxygen atom (O6) is also hydrogen bonded to
the crystallization water molecule (O8) [O6···O8 2.661 Å]. The equtorial moieties including
the 246-tmbz− ligands of the mononuclear unit are not coplanar, with the dihedral angle
between the equatorial O1-O6-O1′-O6′ plane around the Cu1 atom and the benzoate ring
C1-C2-C3-C4-C5-C6 plane, of 40.14(7)◦. The dihedral angle (φrot) between the O1-C7-O2
plane and the benzoate C1-C2-C3-C4-C5-C6 ring is 64.0(2)◦, disclosing the severe rotated
arrangement of the benzoate ring from the carboxylate moiety, compared with that of
6′. This rotation of the benzoate ring would force a sterically crowded state between the
2,6-methoxy groups of neighboring four 246-tmbz− ligands, if the dinuclear [Cu2(246-
tmbz)4] cluster was constructed, resulting in the formation of the present polynuclear chain
molecule inseat of the dinuclear cluster. In the crystal, the O7 atom of the aqua ligand
is located at the crrystallographic C2 axis and thus, the mononuclear [Cu(246-tmbz)2(µ-
H2O)2(H2O)2] units are connected by the axial aqua molecules with the closest contact of
Cu1···Cu1(1 − x, y, 3/2–z) of 4.1420(5) Å and the Cu1-O7-Cu1(1 − x, y, 3/2–z) angle of
128.24(12)◦, to form an infinite chain molecule as shown in Figure 7.

Table 1. Crystal data for 6′ and 7.

6′ 7

Empirical formula C42H52Cu2O22 C20H32CuO15
Formula weight 1035.91 575.99
Temperature/K 90 90

Crystal dimensions/mm 0.30 × 0.22 × 0.11 0.40 × 0.22 × 0.06
Crystal system monoclinic monoclinic

Space group C2/c C2/c
a/Å 26.014(4) 28.686(3)
b/Å 7.4409(12) 10.4617(11)
c/Å 24.510(4) 8.2841(9)
β/o 105.174(3) 101.792(2)

V/Å3 4579.0(13) 2433.6(5)
Z 4 4

dcalcd./gcm−3 1.503 1.572
µ/mm−1 1.012 0.973

F(000) 2152 1204
Reflections collected 14670 7502

Independent reflections (Rint) 5524 (0.0441) 2947 (0.0385)
θ range for data collection 1.722 to 28.490◦ 2.902 to 28.435

Data/Restraints/Parameters 5524/0/309 2947/2/188
R1, wR2 [I > 2σ(I)] [a] 0.0430, 0.1124 0.0458, 0.1023
R1, wR2 (all data) [a] 0.0622, 0.1282 0.0658, 0.1131
Goodness-of-fit on F2 0.820 1.038

CCDC number 1570723 2060931
a R1 = ∑||Fo| − |Fc||/∑|Fo|; wR2 = [∑w(Fo

2 − Fc
2)2/∑w(Fo

2)2]1/2.
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Table 2. Selected bond distances (Å) and angles (◦), with esds in parentheses for 6′ and 7. Prime in
6′ denotes the symmetry position (1 − x, 1 − y, 1 − z). Prime and double prime in 7 denotes the
symmetry positions (1 − x, 2 − y, 1 − z) and (1 − x, y, 3/2 − z), respectively.

6′

Cu1···Cu1′ 2.6009(7) Cu1-O6 1.9504(18)
Cu1-O1 1.9827(17) Cu1-O7′ 1.9574(17)
Cu1-O2′ 1.9802(17) Cu1-O11 2.1309(19)

O1-Cu1-O2′ 169.71(7) O2′-Cu1-O7′ 90.54(7)
O1-Cu1-O6 90.72(7) O2′-Cu1-O11 96.23(7)
O1-Cu1-O7′ 88.75(7) O6-Cu1-O7′ 169.47(7)
O1-Cu1-O11 94.05(7) O6-Cu1-O11 98.36(8)
O2′-Cu1-O6 88.11(8) O7′-Cu1-O11 92.16(7)

7
Cu1-Cu1” 4.1420(5) Cu1-O6 1.9461(18)

Cu1-O1 2.0583(18) Cu1-O7 2.3018(12)
O1-Cu1-O1′’ 180.0 O1-Cu1-O7 85.61(6)
O1-Cu1-O6 87.65(7) O1-Cu1-O7′ 180.0
O1-Cu1-O6′ 92.35(8) O7-Cu1-O7′ 180.0

Cu1-O7-Cu1” 128.24(12)
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2.5. Magnetic Properties of Copper(II) Carboxylates

The magnetic data for complex 6 is displayed in Figure 8 as the temperature variation
of effective magnetic moment (µM) and magnetic susceptibility (χM) per dinuclear unit.
The effective magnetic moment of 6 at 300 K is 1.53 µB per Cu atom, which is lower than
the spin-only value of 1.73 µB for a magnetically isolated S = 1/2 spin with g = 2.0. The
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magnetic moment gradually decreases with a lowering of temperature, reaching the value
of 0.11 µB at 1.9 K, suggesting an antiferromagnetic interaction between the copper(II) ions.
The magnetic data were analyzed by the molecular field approximation (Equation (1) [32]),
for the Bleaney–Bowers Equation (2) [2] based on the Heisenberg model, H = −2JS1•S2,
taking account of magnetic interaction between the neighboring dinuclear units as zJ′

(z = number of interacting neighbors),

χM
′ = χM/{1 − (2zJ′/Ng2µB

2)χM} (1)

χM = (1 − p)(2Ng2µB
2/kT) [3 + exp(−2J/kT)]−1 + pNµB

2g2/2kT + 2Nα (2)

where g is g value, J is an exchange coupling constant for the two copper(II) ions within
the cluster, p = the fraction of mononuclear copper(II) impurity, and Nα is the temperature-
independent paramagnetism, which was set to be 60 × 10−6 cm3 mol−1 for each cop-
per(II) ion [14]. The best-fitting parameters are g = 2.16, 2J = −272 cm−1, p = 0.0070, and
zJ′ = −5 cm−1 as shown in Figure 8. The 2J value is comparable to those found in dinuclear
copper(II) benzoate and its derivatives (2J = −250–−350 cm−1) [8,12,14,16,18,30,31,33]. It is
known that there is a dependence of the magnetic coupling within the dinuclear cluster on
the apical ligand species [34,35]. Considering for the apical ligand H2O for 6, the magnetic
coupling within the dinuclear cluster of 6 can be regarded as relatively weak among the
copper(II) benzoate analogues. The relatively weak antiferromagnetic interaction may be
attributed to the bending of the benzoate moieties with the larger φbend angles of 5.9(4) and
1.9(3)◦ in 6′, which induces a poor overlap between the magnetic orbital and the 2px orbital
of the benzoate oxygen atom, causing a suppression of the spin-exchange interaction via
the benzoate-bridge [8,18]. The magnetic data for the complex 7 are shown in Figure 9 as
the temperature variation of effective magnetic moment (µA) and magnetic susceptibility
(χA) per mononuclear unit. The effective magnetic moment of 7 at 300 K is 1.91 µB per
the mononuclear unit. When cooling, the magnetic moment keeps constant until 20 K
and steadily decreases from 20 to ca. 5 K, and then diminishes to a value of 1.69 µB at
1.9 K, suggesting a weak antiferromagnetic interaction between the adjacent copper(II) ions.
The crystal structure of 7 showed that the complex is essentially polynuclear copper(II)
with an elongated octahedral geometry, where the axial µ-aqua-bonds with the distance
of 2.3018(12) Å can be considered to intervene with the adjacent magnetic orbitals in the
chain molecule. Therefore, magnetic interaction between the adjacent copper(II) ions was
analyzed by the Bonner-Fisher equation (3) for an isolated Heisenberg 1D chain,

χA = (Ng2µB
2/kT)(0.25 + 0.14995x + 0.30094x2)/(1.0 + 1.9862x + 0.68854x2 + 6.0626x3) + Nα (3)

in which x = |J|/kT and J is the exchange integral for the two copper(II) ions, and the
other symbols have their usual meanings [36]. The best fitting parameters are g = 2.179(2)
and J = −0.21(1) cm−1 with the fixed Nα value of 60 × 10−6 cm3 mol−1. The J value in 7 is
comparable to those of the µ-dicyanamido-bridged (J =−0.02–−0.76 cm−1, Cu···Cu 7.095—
8.314 Å) [37], µ-croconato-bridged (J =−0.06 cm−1, Cu···Cu 7.6635 Å [38]), µ-ClO4-bridged
(J = −0.41 cm−1, Cu···Cu 6.9416 Å [39]), µ-azido-bridged (J = 1.68 cm−1, Cu···Cu 5.7949 Å;
J = −3.82 cm−1, Cu···Cu 3.550 Å [40]) copper(II) chain compounds, confirming the very
weak antiferromagnetic interaction. In 7, the magnetic orbitals should lie in the equatorial
plane involving the benzoate- and aqua- oxygen donors, and thus the superexchange
interaction via the axial aqua-oxygen might be negligible. However, the superexchange
interaction via the Cu-O-C-O···H-O-H···O-C-O-Cu is possible, because of the hydrogen
bonding between the non-coordinating oxygen atom of the monodentate benzoate ligand
and the axial aqua-oxygen atom, resulting in the weak antiferromagnetic interaction.
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2.6. Adsorption Properties of Copper(II) Carboxylate

We measured the adsorption property of 6 for N2 to see if complex 6 has a porous
structure or not. Intriguingly, the adsorption isotherm of N2 at 77 K showed an adsorption
property with the Type I behavior having a 125.4 m2g−1 of specific surface area estimated
from Langmuir plot as shown in Figure 10, meaning the existence of a uniform micropore
in 6. A t-plot analysis of the N2 adsorption isotherm suggested a diameter of micropore
to be 0.76 nm. If we refer to the crystal structure of 6′, it seems to have almost no voids
in the crystal. However, very narrow voids faced each other by the benzoate rings can be
found in the crystal structure as shown in Figure 11. Similar narrow voids were found in
the chain compound of dinuclear rhodium(II) benzoate with pyrazine, which is known as
a porous material with the Type I adsorption isotherm for N2 gas [41,42].
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3. Materials and Methods

All the chemicals were commercial products and were used as supplied.
Synthesis of [Cu2(234-tmbz)4(H2O)2]·H2O (6). To a 5 cm3 of 0.10 M sodium hy-

droxide solution, a portion of 2,3,4-trimethoxybenzoic acid (507.9 mg, 2.39 mmol) was
added. The solution was neutralized by adding nitric acid with phenolphthalein indicator.
To the neutralized solution, a 5cm3 of aqueous solution of copper(II) nitrate trihydrate
(304.3 mg, 1.26 mmol) was added with stirring to give a pale blue precipitate. The pre-
cipitate was filtered off and desiccated in vacuo. Yield: 568.3 mg, 93.6%. Found C 46.38,
H 4.28%. Calcd for C40H50Cu2O23: C 46.83, H 4.91%. IR (KBr, cm−1): 3441(ν(OH)),
2994(ν(CH, ring)), 2941(νas(CH3)), 2839(νs(CH3)), 1602(νas(COO)), 1560, 1493(δas(CH3)),
1468(νs(COO)), 1395(δ s(CH3)), 1289, 1226, 1095, 1025, 1001, 949, 887, 835, 810(δ(CH, ring)),
795, 763, 702, 656, 625. Diffuse reflectance spectra: λmax 246, 286, 360sh, 706 nm. X-ray qual-
ity crystals [Cu2(234-tmbz)4(CH3OH)2] (6′) were grown by recrystallization from methanol
at ambient temperature.

Synthesis of [Cu(246-tmbz)2(µ-H2O)2(H2O)2]n·nH2O (7). To a 5 cm3 of 0.10 M sodium
hydroxide solution, a portion of 2,4,6-trimethoxybenzoic acid (509.4 mg, 2.40 mmol) was
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added. The solution was neutralized by adding nitric acid with phenolphthalein indi-
cator. To the neutralized solution, a 5cm3 of aqueous solution of copper(II) nitrate tri-
hydrate (529.8 mg, 2.19 mmol) was added with stirring to give a green precipitate. The
precipitate was filtered off and desiccated in vacuo. Yield: 530.8 mg, 50.2%. Found C
42.04, H 5.60%. Calcd for C20H32CuO15: C 41.70, H 5.60%. IR (KBr, cm−1): 3634(ν(OH)),
3538(ν(OH)), 3384(ν(OH)), 3120(ν(OH)), 3003(ν(CH, ring)), 2948(νas(CH3)), 2840(νs(CH3)),
1608(νas(COO)), 1538, 1459(δas(CH3)), 1414(νs(COO)), 1385(δs(CH3)), 1335, 1229, 1207, 1162,
1126, 1052, 951, 810(δ(CH, ring)), 652. Diffuse reflectance spectra: λmax 212, 254, 310,
750 nm. X-ray quality crystals were grown by recrystallization from methanol at ambient
temperature.

Elemental analyses for C, H, and N were performed using a Thermo-Finnigan FLASH
EA1112 series CHNO-S analyzer. Infrared spectra were measured with a JASCO MFT-2000
FT-IR Spectrophotometer in the 4000–600 cm−1 region. Diffused reflectance spectra were
measured with a Shimadzu UV-vis-NIR Recording Spectrophotometer Model UV-3100
in the 200–1500 nm region. Magnetic susceptibilities were measured with a Quantum
Design MPMS-7 SQUID susceptometer from 1.9 to 300 K with a static field of 0.5 T. The
polycrystalline samples were ground into a fine powder, 47.47 mg of 6 and 17.07 mg
of 7 of which, were used for the measurements. The susceptibilities were corrected for
the diamagnetism of the constituent atoms using Pascal’s constants [43]. Adsorption
measurements for N2 were performed using a MicrotracBEL BELSORP-mini II. Prior to the
adsorption, the sample was evacuated at 298 K for 2 h.

Single-crystal diffraction data were measured on a Bruker Smart APEX CCD diffrac-
tometer equipped with a graphite crystal and incident beam monochromator using Mo
Kα radiation (λ = 0.71073 Å). The structures were solved by intrinsic phasing methods
and refined by full-matrix least-squares methods. The hydrogen atoms were inserted
at their calculated positions and fixed there, except for those attached to the methanol
oxygen atom of 6 and water oxygen atoms of 7, which were located from the D-Fourier
maps. All of the calculations were carried out utilizing the SHELXTL software package [44].
Crystallographic data have been deposited with Cambridge Crystallographic Data Centre:
Deposit numbers CCDC-1570723 and 2060931. Copies of the data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 4 February
2021). (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge,
CB2 1EZ, UK; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

4. Conclusions

In this study, two new copper(II) carboxylates 6 and 7 were prepared by a reaction
of copper(II) nitrate with 2,3,4-trimethoxybenzoic acid or 2,4,6-trimethoxybenzoic acid.
The X-ray crystal structure analysis revealed that 6 is the syn-syn-µ-carboxylato-bridged
dinuclear copper(II) cluster with an antiferromagnetic interaction and with Type I N2-
adsorption behavior having a 125.4 m2g−1 of specific surface area, while 7 is not dinuclear
cluster, but the µ-aqua-bridged copper(II) chain molecule, where the magnetic interaction
via the µ-aqua bridge was found to be weak and antiferromagnetic. In the cases of 3,4,5-
trimethoxybenzoic acid, 2,3,4-trimethoxybenzoic acid, and even more bulky 3,4,5-tri-O-
benzylgalic acid, dinuclear copper(II) clusters were formed. Thus far, only in the case of
2,4,6-trimethoxybenzoic acid, the polynuclear copper(II) chain molecule was found for the
first time here. Considering these results, the 2,4,6-trimethoxy groups of the benzoate ring
should invoke a large rotation to the OCO plane because of the steric hindrance with the 2-
and 6-methoxy groups of the benzoate rings to form the Cu(II) chain compound.
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