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WWW: http://www.control.isy.liu.se

E-mail: schon@isy.liu.se, fredrik@isy.liu.se

23nd April 2003

AUTOMATIC CONTROL

COMMUNICATION SYSTEMS

LINKÖPING

Report no.: LiTH-ISY-R-2518

Submitted to Proceedings of the 13th IFAC Symposium on System

Identification, Rotterdam, The Netherlands

Technical reports from the Control & Communication group in Linköping are
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Abstract

The potential use of the marginalized particle filter for nonlinear sys-
tem identification is investigated. The particle filter itself offers a general
tool for estimating unknown parameters in non-linear models of moderate
complexity, and the basic trick is to model the parameters as a random
walk (so called roughening noise) with decaying variance. We derive al-
gorithms for systems which are non-linear in either the parameters or the
states, but not both generally. In these cases, marginalization applies to
the linear part, which firstly significantly widens the scope of the particle
filter to more complex systems, and secondly decreases the variance in the
linear parameters/states for fixed filter complexity. This second property
is illustrated on an example of chaotic model. The particular case of freely
parametrized linear state space models, common in subspace identifica-
tion approaches, is bi-linear in states and parameters, and thus both cases
above are satisfied. One can then choose which one to marginalize.

Keywords: System identification, Nonlinear estimation, Recursive

estimation, Particle filters, Kalman filters, Bayesian estimation
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Abstract: The potential use of the marginalized particle filter for nonlinear system identifi-
cation is investigated. The particle filter itself offers a general tool for estimating unknown
parameters in non-linear models of moderate complexity, and the basic trick is to model the
parameters as a random walk (so called roughening noise) with decaying variance. We derive
algorithms for systems which are non-linear in either the parameters or the states, but not both
generally. In these cases, marginalization applies to the linear part, which firstly significantly
widens the scope of the particle filter to more complex systems, and secondly decreases
the variance in the linear parameters/states for fixed filter complexity. This second property
is illustrated on an example of chaotic model. The particular case of freely parametrized
linear state space models, common in subspace identification approaches, is bi-linear in states
and parameters, and thus both cases above are satisfied. One can then choose which one to
marginalize.
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1. INTRODUCTION

In this contribution, the particle filter (Doucetet al.,
2001a) is applied to some classical system identifi-
cation problems (Ljung, 1999) based on time-varying
parametric state-space models

zt+1 = f(zt; θt) + vzt , (1a)

yt = h(zt; θt) + et, (1b)

where z ∈ Rn is the state variable,θt ∈ Rd is
the parameter vector, andy ∈ Rm is the output
variable. The additive noise terms are assumed to be
independent and identically distributed (i.i.d.).

1 This work was supported by the Swedish Research Council.

First, we briefly review the problem formulation in
(Gustafsson and Hriljac, 2003). By augmenting the
state vector with the parameters,xTt = (zTt , θTt ),
and assuming a random walk parameter variation (of
which constant parameters is a special case), we get[

zt+1

θt+1

]
=
[
f(zt; θt)

θt

]
+
[
vzt + wzt
vθt + wθt

]
(2a)

yt = h(zt; θt) + et, (2b)

where the noises are physical state noisevzt , state
roughening noisewzt , parameter random walk for
time-varying parametersvθt and parameter roughening
noisewθt . The roughening noise is instrumental in the
particle filter to get good performance, and is a sec-
ond level design parameter. For system identification,
vθt = 0 andwθt has a variance decaying to zero, which



yields converging parameter estimates. The particle
filter recursively approximates the posterior density
functionp(Xt|Yt), whereXt = {x0, . . . , xt}, and the
approximation converges to the true posterior when
the number of particles tends to infinity. The only
problem is that the practical limit for ’infinity’ de-
pends on the dimension ofxt, that is, the sum of num-
ber of parametersθt and stateszt. As a very coarse
rule of thumb, do not try to use the particle filter for
more than five unknowns.

Now, if there is linear substructure available in the
model this can be exploited usingmarginalization.
Conceptually, marginalization means that the linear
states are marginalized out and then we can apply
optimal filters for these states and the particle filter
is only applied to the truly nonlinear states. In this
way, the samples in the particle filter will live in a
lower dimensional space. Hence, we will intuitively
obtainmore accurate estimatesfor a given number of
samples, since we use the optimal filters for a part
of the state vector. Alternatively, we can apply the
particle filter onmore complex models. These are the
practical implications of our contribution.

We will in this contribution consider the two following
special cases of (1a):

(1) The model is affine in the parameters and possi-
bly nonlinear in the states,i.e.,

f(zt; θt) = At(zt)θt + fzt (zt) (3)

h(zt; θt) = Ct(zt)θt + hzt (zt). (4)

(2) The model is affine in the states and possibly
nonlinear in the parameters,i.e.,

f(zt; θt) = At(θ)zt + fθtt (θt) (5)

h(zt; θt) = Ct(θ)zt + hθtt (θt). (6)

2. THE PARTICLE FILTER

We here briefly present the theory and main algorithm.
For a more intuitive presentation, see the accompany-
ing paper (Gustafsson and Hriljac, 2003).

2.1 Recursive Bayesian estimation

Consider systems that are described by the generic
state space model (2). The optimal Bayesian filter
in this case is given below. For further details, con-
sult (Doucetet al., 2001b; Bergman, 1999).

Denote the observations at timet byYt = {y0, . . . , yt}.
The Bayesian solution to compute the posterior distri-
bution,p(xt|Yt), of the state vector, given past obser-
vations, is given by (Bergman, 1999)

p(xt+1|Yt) =
∫
p(xt+1|xt)p(xt|Yt) dxt, (7a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (7b)

For expressions onp(xt+1|xt) and p(yt|xt) in (7)
we use the known probability densitiespet(x) and
pvt+wt(x) = pvt ∗ pwt(x), with all noises assumed
independent,

p(xt+1|xt) = pvt+wt
(
xt+1 − f(xt)

)
, (8a)

p(yt|xt) = pet
(
yt − h(xt)

)
. (8b)

2.2 Implementation

A numerical approximation to (7) is given by

p(xt|Yt) ≈
N∑
i=1

q
(i)
t δ(xt − x(i)

t ), (9)

whereδ(·) is the Dirac delta function. The particles

x
(i)
t and the corresponding weightsq(i)

t represent a
sampled version of the posterior distributionp(xt|Yt)
(Doucetet al., 2001b), and intuitively, the more sam-
ples the better approximation.

2.3 The algorithm

The discussion in the previous section is summarized
in the algorithm below. This is the algorithm presented
in (Gordonet al., 1993) under the name,Bayesian
bootstrap filter.

Algorithm 1. The Particle Filter

(1) GenerateN samples{x(i)
0|−1}Ni=1 from p(x0).

(2) Calculate the weightsqit = p(yt|x(i)
t ) and nor-

malize,i.e., q̄(i)
t = q

(i)
t∑

N

j=1
q
(j)
t

.

(3) Resample with replacement,

P (x(i)
t|t = x

(i)
t|t−1) = q̄

(i)
t .

(4) Predict (i.e.,simulate) new particles by

x
(i)
t+1|t = f(x(i)

t|t ) + v
(i)
t + w

(i)
t .

(5) Iterate from step(2).

The particle filter can be interpreted as a simulation-
based method,i.e.,N possible state trajectories,x(i)

t ,
i = 1, . . . , N , are simulated. Based on the measure-
ments each trajectory is assigned a weight,q̄

(i)
t , rep-

resenting the probability of that trajectory being the
correct one.



3. MARGINALIZATION FOR VARIANCE
REDUCTION

Consider the case where the model is linear in some of
the states. Then the Kalman filter can be used to esti-
mate the linear states, denotedxlt, and the particle filter
can be used to estimate the nonlinear states, denoted
xnt . To separate the problem of estimatingp(xlt, x

n
t |Yt)

into one linear and one nonlinear problem, Bayes’ rule
is used2

p(xlt, X
n
t |Yt) = p(xlt|Xn

t , Yt)p(X
n
t |Yt). (10)

Here the densityp(xlt|Xn
t , Yt) is given by the Kalman

filter and the particle filter is used to estimatep(Xn
t |Yt).

This means that the particles live in a lower-dimensional
space, and it can indeed be proven (Doucetet al.,
2001c; Nordlund, 2002) that the variance of any func-
tion of the state and parameter is decreased or re-
mains constant when using marginalization for a given
number of particles. This technique of marginaliz-
ing out the linear state is also referred to as Rao-
Blackwellization (Doucetet al., 2001c).

Before we state the theorem we have to introduce
some notation. Let the estimate of any inference func-
tion of the state vector be given by

I(g(xt)) = Ep(xt|Yt)[g(xt)] =
∫
g(xt)p(xt|Yt)dxt,

(11)

and its estimate usingN particles and the standard
particle filter be denoted bŷIsN (g(xt)). When the
marginalized particle filter is used the same estimate
is denoted bŷImN (g(xt)).

Theorem 1.Assume i.i.d. samples{x(i)
t }Ni=1 com-

puted by Algorithm 1 and that the expected value
and variance of the inference functiong(xt) and the
likelihoodqt exist and are finite. Then there is a central
limit theorem stating that for largeN ,

ÎsN (g(xt)) ≈ N (I(g(xt), Rs(N)),

ÎmN (g(xt)) ≈ N (I(g(xt), Rm(N)),

whereRs(N) ≥ Rm(N).

Seee.g.,(Doucetet al., 2001c) for a proof.

Asymptotically as the number of particles tend to in-
finity there is nothing to gain in using marginalization,
since then the particle filter will provide a perfect
description ofp(xlt, x

n
t |Yt). However, since we only

can use a finite number of particles it is certainly
useful to marginalize and use the optimal filter,i.e.,
the Kalman filter, for the linear states. For details
concerning the marginalized particle filter, the reader

2 We have to use all the old nonlinear states,Xn
t , in order to make

the Kalman filter work. The densityp(xlt, x
n
t ) is then obtained by

integratingp(xlt,X
n
t ) over the old nonlinear states,Xt−1

is referred toe.g.,(Chen and Liu, 2000), (Doucetet
al., 2001c), (Nordlund, 2002).

4. MODELS

In this section it will be shown how the particle filter
can be used to estimate the nonlinear states and the
Kalman filter to estimate the linear states, using the
marginalization technique discussed above. All noise
terms associated with the linear states are here as-
sumed to be Gaussian, which means that the opti-
mal estimator for the linear states/parameters is given
by the Kalman filter. For the details concerning the
Kalman filter equations, the state transition densities,
and the likelihood functions in Algorithms 2 and 3 the
reader is referred to (Nordlund, 2002). First there will
be a discussion on models that are linear in the states
and nonlinear in the parameters. This is followed by
the reversed case,i.e., linear in the parameters and
nonlinear in the states.

4.1 State-space models linear in the states

A state-space model linear in the states and possibly
nonlinear in the parameters is written as

zt+1 = At(θt)zt + fθ(θt) + vzt (12a)

θt+1 = θt + vθt + wθt (12b)

yt = Ct(θt)zt + hθ(θt) + et, (12c)

where vzt ∈ N (0, Qv,zt ), vθ,t ∈ N (0, Qv,θt ) and
wθ,t ∈ N (0, Qw,θt ) 3 . Note that we can let the rough-
ening noisewzt be zero when using marginalization.
The posterior density will here be separated using
Bayes’ rule according to

p(zt,Θt|Yt) = p(zt|Θt, Yt)p(Θt|Yt). (13)

Note that we here consider the posterior of the com-
plete parameter trajectoryΘt, but only the last state
vector zt. The first density on the right hand side
in (13) is given by the Kalman filter, while the second
one is approximated by the particle filter. That is, we
randomize particles in the parameter space according
to our prior, and then each particle trajectory will be
associated with one Kalman filter. The exact algorithm
is given below.

Algorithm 2. The particle filter for linear states
Below, we letC(i)

t = Ct(θ
(i)
t|t−1) andA(i)

t = At(θ
(i)
t|t )

for ease of notation.

3 The noise on the non-linear part, herewθt and vθt , can in fact
have an arbitrary distribution. Similarly, The PDFp(θ0) does not
have any restrictions, since it is only used in the particle filter, the
same goes forp(et) if C = 0 in (12c).However, we leave these
generalizations as a remark and assume Gaussian distributions.



(1) Sampleθ(i)
0|−1 ∼ p(θ0) and set, fori = 1, . . . , N ,

{z(i)
0|−1, P0|−1}Ni=1 = {z0,Π0}.

(2) Calculate the weights

q
(i)
t =p(yt|Θ(i)

t , Yt−1)

=N (hθ(θ(i)
t|t−1) + C

(i)
t ẑ

(i)
t|t−1),

Rt + C
(i)
t Pt|t−1(C(i)

t )T

and normalize,i.e., q̄(i)
t = q

(i)
t∑

N

j=1
q
(j)
t

.

(3) Resample with replacement,

P (θ(i)
t|t = θ

(j)
t|t−1) = q̄

(j)
t

(4) Kalman filter measurement update:

S
(i)
t =Rt + C

(i)
t P

(i)
t|t−1(C(i)

t )T

L
(i)
t =P (i)

t|t−1(C(i)
t )T (S(i)

t )−1

ẑ
(i)
t|t =ẑ(i)

t|t−1 + L
(i)
t (yt − hθ(θ(i)

t|t )− C
(i)
t ẑ

(i)
t|t−1)

P
(i)
t|t =P (i)

t|t−1 − L
(i)
t S

(i)
t (L(i)

t )T

(5) Predict (i.e., simulate) new particles byp(θt+1|t|Θt, Yt),
where

θ
(i)
t+1|t ∼ p(θt+1|t|Θ(i)

t , Yt) = N (θ(i)
t|t , Q

v,θ
t +Qw,θt ).

(6) Kalman filter time update:

ẑ
(i)
t+1|t = A

(i)
t ẑ

(i)
t|t + fθ(θ(i)

t|t )

P
(i)
t+1|1 = A

(i)
t P

(i)
t|t A

T
t (θ(i)

t|t ) +Qv,zt +Qw,zt

(7) Compute relevant estimates fromp(zt, θt|Yt).

θ̂t =
N∑
i=1

q̄
(i)
t θ̂

k,(i)
t|t (15a)

ẑt =
1
N

N∑
i=1

z
(i)
t|t (15b)

(8) Iterate from step(2).

Comparing the algorithms 1 and 2 we see that the dif-
ferences are in the prediction step, which now consists
of a Kalman filter update stage (split into step4 and6)
besides the prediction of the nonlinear states.

In some cases the same Riccati recursion can be used
for all the particles, and hence a lot of computations
can be saved. This occurs when the matricesAt andCt
in (12) are independent ofθt. In this caseP (i)

t|t = Pt|t.
for all i = 1, . . . , N and hence the covariance only
has to be updated once for eacht. More on this can be
found in (Gustafssonet al., 2002).

4.2 State-space models linear in the parameters

A state-space model that is linear in the parameters
can be written as

zt+1 = At(zt)θt + fz(zt) + vzt + wzt (16a)

θt+1 = θt + vθt (16b)

yt = Ct(zt)θt + hz(zt) + et. (16c)

In this case the posterior will be split the other way
around, compared to the previous section,i.e.,

p(Zt, θt|Yt) = p(θt|Zt, Yt)p(Zt|Yt). (17)

The last density is approximated by the particle filter,
while the first one can be solved by a Kalman filter for
a parameter estimation problem in a linear regression
framework. The corresponding algorithm will thus be

Algorithm 3. The particle filter for linear parameters
Below, we letC(i)

t = Ct(z
(i)
t|t−1) andA(i)

t = At(z
(i)
t|t )

for ease of notation.

(1) Samplez(i)
0|−1 ∼ p(z0) and set fori = 1, . . . , N

{θ(i)
0|−1, P0|−1}Ni=1 = {θ0,Π0}.

(2) Calculate the weights

q
(i)
t =p(yt|Z(i)

t , Yt−1)

=N (h(z(i)
t|t−1) + C

(i)
t θ̂

(i)
t|t−1,

Rt + C
(i)
t P

(i)
t|t−1(C(i)

t )T )

and normalize,i.e., q̄(i)
t = q

(i)
t∑

N

j=1
q
(j)
t

.

(3) Resample with replacement,

P (z(i)
t|t = z

(j)
t|t−1) = q̄

(j)
t (18)

(4) Kalman filter measurement update:

S
(i)
t = (Rt + C

(i)
t P

(i)
t|t−1(C(i)

t )T )

L
(i)
t = P

(i)
t|t−1C

T
t (S(i)

t )−1 (19)

θ̂
(i)
t|t = θ̂

(i)
t|t−1 + L

(i)
t (yt − h(z(i)

t|t )− C
(i)
t θ̂

(i)
t|t−1)

P
(i)
t|t = P

(i)
t|t−1 − L

(i)
t S

(i)
t (L(i)

t )T

(5) Predict (i.e., simulate) new particles by
p(zt+1|t|Zt, Yt), where

z
(i)
t+1|t ∼p(zt+1|t|Z(i)

t , Yt)

=N (A(i)
t θ̂

(i)
t|t , Q

θ,v
t +Qθ,wt + (20)

A
(i)
t P

(i)
t|t (A(i)

t )T ).

(6) Kalman filter time and state update:

θ̂
(i)
t+1|t = θ̂

(i)
t|t +K

(i)
t (z(i)

t+1|t −A
(i)
t θ̂

(i)
t|t )

P
(i)
t+1|t = P

(i)
t|t +Qv,zt + Qw,zt −

K
(i)
t (Qnt +A

(i)
t )P (i)

t|t (A(i)
t )T )(K(i)

t )T

K
(i)
t = P

(i)
t|t (A(i)

t )T (Qnt +A
(i)
t P

(i)
t|t (A(i)

t )T )−1

(7) Compute relevant estimates fromp(zt, θt|Yt).

ẑt =
1
N

N∑
i=1

z
(i)
t|t (22a)

θ̂t =
N∑
i=1

q̄
(i)
t θ̂

k,(i)
t|t (22b)



(8) Iterate from step(2).

The measurements used in the Kalman filter are thus
the “normal” measurementsyt and the predicted state
trajectoryzt+1|t, i.e.,the samples from the particle fil-
ter. Step6 in the current algorithm contains a measure-
ment update, using the prediction (since this contains
information aboutθt) from the particle filter, and a
time update.

5. PARAMETRIC INNOVATION MODELS

An interesting special case of the two different model
types discussed above is when we consider “the inter-
section” of the two types,i.e.,a model that is bilinear
in the states,zt, and in the parameters,θt.

A particular case of interest is a general state-space
model in innovation form

zt+1 = A(θt)zt +K(θt)et (23a)

yt = C(θt)zt + et, (23b)

where the parameters enter linearly inA, K, andC.
The posterior will here be according to (17). One pop-
ular approach here is so called subspace identification,
see (?). This class of algorithms usually perform very
well and gives consistent estimates. One limitation is
that it is hard to give thea posteriordistribution of
the parameters, even in the Gaussian case, and this is
perhaps where the particle filter can help. However,
the particle filter has perhaps not so much to offer to
this bi-linear model, and this case is mentioned more
to show the relation to classical system identification
problems.

Assume, to avoid ambiguities in the state coordinates,
an observer canonical form and scalar output, where
C = (1, 0, . . .0) and that all parameters inA and
K are unknown. Then, given the state trajectory and
measurement, we have from (16) the linear regression
yt = Azt+K(yt−z(1)

t ). This regression problem has
to be solved for each particlez(i)

t .

In the case where there are more states to be estimated
than parameters,i.e., dim z > dim θ it is better to
split the densityp(Zt, θt|Yt) in (17) the other way
around, i.e., as in (13). This time, a Kalman filter
estimating the stateszt for each particleθ(i)

t is needed.
In this way the dimension of the state estimated by the
particle filter is kept as low as possible. An example
where this situation typically occurs is in gray-box
identification (Ljung, 1999).

6. CHAOS EXAMPLE

The ideas presented in this article will be illustrated
using the following chaotic model

zt+1 = (1− zt)ztθ + vt, (24a)

yt = zt + et, (24b)

where,zt, is the state variable,yt, is the measure-
ment,θ is the unknown parameter,vt is the process
noise, andet is the measurement noise. Both these
noise densities are Gaussian distributed. The aim is
to recursively estimate both the state,zt, and the pa-
rameter,θ. This model is linear in the time-invariant
parameterθ and nonlinear in the statezt. This fits our
framework, according to Section 4.2 and hence Algo-
rithm 3 can be applied. This problem has also been
studied in (Gustafsson and Hriljac, 2003), where the
particle filter was directly applied to the augmented
statext = (zt, θt). The model (24) can be written on
the form (16),i.e.,

zt+1 = At(zt)θt + vt + wzt , (25a)

θt+1 = θt + wθt , (25b)

yt = ht(zt) + et, (25c)

whereAt(zt) = zt(1 − zt) andht(zt) = zt. The two
noiseswzt ∼ N (0, Qw,zt ) andwθt ∼ N (0, Qw,θt ) are
roughening noises. Furthermoreet ∼ N (0, Rt).

In the simulations, two different particle filters were
used, the standard particle filter, Algorithm 1, applied
to the augmented state vector,xt, and the marginal-
ized particle filter according to Algorithm 3. The true
value of θ is 3.92, and the initial guess isθ0|−1 ∼
N (3.83, 0.04). The initial state isz0 ∼ N (0, 1).
We do not use any process noise, however we have
roughening noisesQw,z0 = Qw,θ0 = 10−2, which is
decreased at each time step, according to (Gustafsson
and Hriljac, 2003). The measurement noise has vari-
anceRt = 10−5, and we have used200 Monte Carlo
simulations. In Fig. 1 the filtered estimates ofθ are
shown using these two algorithms for150, 1000, and
10000 particles respectively. In order to make the dif-

0 20 40 60 80 100
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0 20 40 60 80 100
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Time

Fig. 1. Estimates ofθ using the standard (dotted) and
the marginalized (solid) particle filters. The true
θ is shown using a dashed line. Top plot -150
particles, middle -1000 particles, bottom -10000
particles.



ference more apparent the Root Mean Square Error
(RMSE) is plotted in Fig. 2 as a function of the num-
ber of particles used in the simulations. Note that the
RMSE values are calculated from time50. In that way
the transient effects are not included in the RMSE
values. According to Theorem 1 the estimates should
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 z

Number of particles

Fig. 2. RMSE values for̂θ (top) andẑ (bottom) as a
function of the number of particles used. Notice
that a log-scale has been used in the plots, and
that a dashed line has been used for the standard
particle filter and a solid line for the marginalized
particle filter.

be better or the same when we use the marginalized
particle filter. From Fig. 2 we can see that this is indeed
the case. It is only the estimate of the linear part,θ, that
is improved, this is also consistent with the theory, see
e.g.,(Nordlund, 2002) for the theoretical details. That
this is true in the simulations is apparent by Fig. 2,
from which it is clear that the estimate of the linear
part (top) clearly is better using the marginalized par-
ticle filter. The estimate of the nonlinear part,zt, has
the same quality. Of course if we could use an infinite
number of particles the results using the standard and
the marginalized particle filter would have been the
same, since then the particle filter would be able to
provide an arbitrarily good estimate ofp(xt|Yt). We
can see indications of this fact in the top plot in Fig. 2,
since the more particles that are used the closer the
estimates get.

7. CONCLUSIONS

The potential use of particle filtering for system iden-
fication of unknown parameters in non-linear systems
was explained in the accompanying paper (Gustafsson
and Hriljac, 2003). Here, we have proposed the use
of marginalized particle filters. More specifically, we
studied the cases where the model is either linear in the
states and nonlinear in the parameters, or nonlinear in
the states and linear in the parameters. The algorithms
were given for these two cases. It is straightforward

to give the algorithm for an arbitrary mix of linear
and nonlinear states and parameters. The advantage
of marginalization is that one can apply the filter to
larger problems with more states and parameters, or
that fewer particles and thus less filter complexity is
needed for a given performance. Finally an example
was given, which illustrates the improvement in es-
timation performance compared to using a standard
particle filter.
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