Lithe: Lightweight Secure CoAP for the Internet of Things

S. Raza, H. Shafagh, etc. IEEE Sensors 2013, Volume 13 Speaker: Renato lida, Le Wang

Outline

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
 - Conclusion

Outline

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LowPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
 - Conclusion

4 Introduction

 6LoWPAN (IPv6 over Low power Wireless Personal Area Network) enables IPv6 in low-power and lossy wireless networks such as WSNs.

6LoWPAN defines header compression mechanisms.

 COAP (Constrained Application Protocol) is designed for simplicity, low overhead and multicast support in resourceconstrained environments.

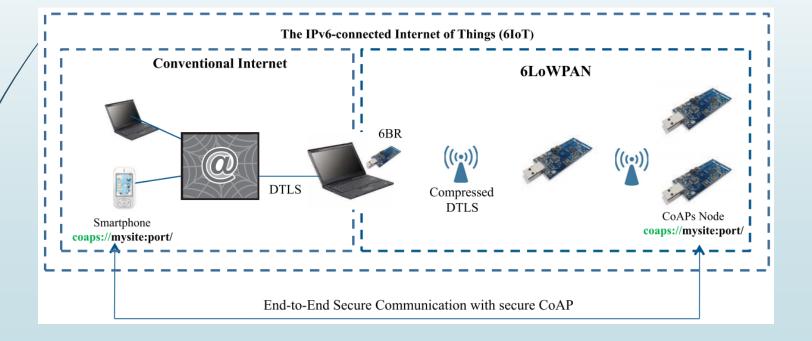
⁵ Introduction

- DTLS (Datagram Transport Layer Security) is used by CoAP as the security protocol
 - For key management and data encryption and integrity protection.

- CoAPs is CoAP with DTLS support, similar to HTTPs.
 - Problem: DTLS is inefficient for constrained IoT devices.
 - Solution: Apply the 6LoWPAN header compression mechanisms to compress DTLS header.

Introduction: Lithe

6


- Lithe: a lightweight CoAPs by compressing the underneath DTLS protocol with 6LoWPAN header compression mechanisms.
 - To achieve energy efficiency by reducing the message size;
 - To avoid 6LoWPAN fragmentation as 6LoWPAN protocol is vulnerable to fragmentation attaches.

Lithe is the proposal solution in this paper.

E2E Communication with CoAPs

7

• 6BR: 6LoWPAN Border Router is used between 6LoWPAN networks and the Internet to compress/decompress or/and fragment/reassemble messages before forwarding between the two realms.

Outline

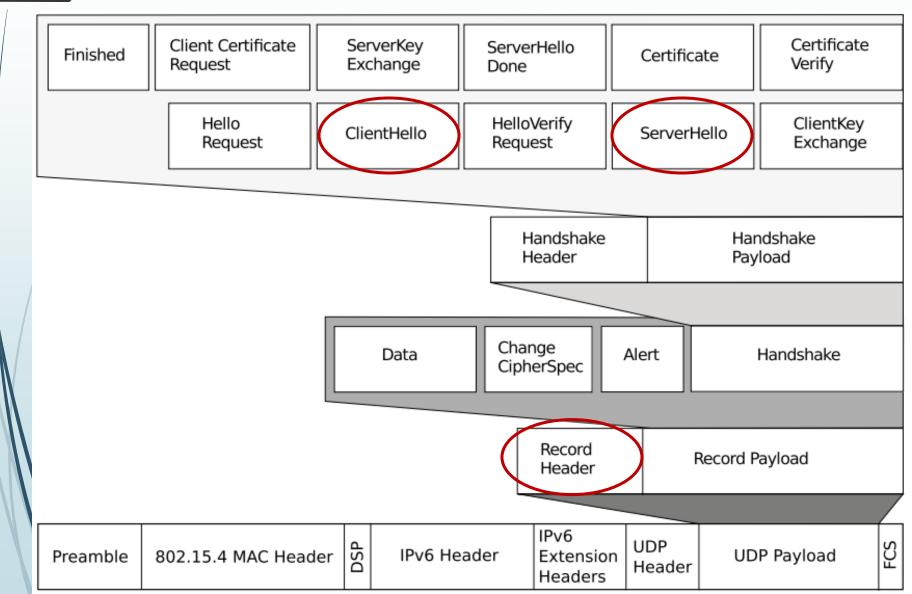
- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
 - Conclusion

Background

Goal: To enable secure yet efficient communication among IoT devices that utilize the CoAP protocol.

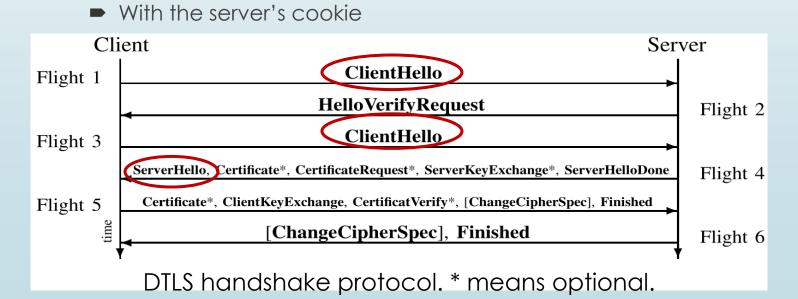
CoAP and DTLS

6Lowpan

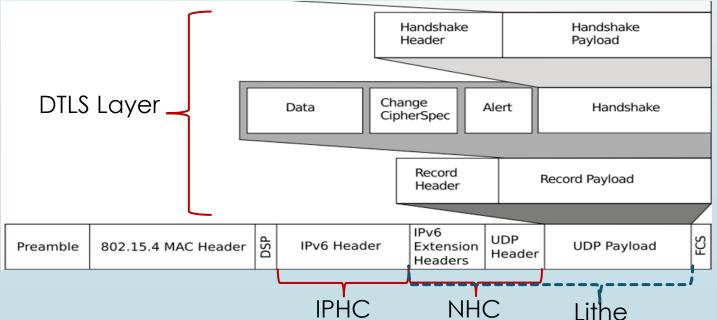


- CoAP is a web protocol that runs over the UDP for IoT
 - A variant of HTTP
 - Datagram Transport Layer Security (DTLS) is used to protect CoAP transmission.
- Similar to HTTPs (TLS-secured HTTP), CoAPs is DTLS-secured CoAP.
 - Coaps://myIPv6Address:port/MyResource

DTLS


- DTLS consists of two sublayers:
 - Upper layer contains:
 - Handshake, Alert and ChangeCipherSpec protocols
 - Or application data.
 - Lower layer contains the Record protocol
 - Carrier for the upper layer protocols
 - Record header contains content type and fragment fields.
- DTLS is between Application layer and Transport Layer

12 Layout of a packet secured with DTLS


DTLS-Handshake Process

- The handshake messages are used to negotiate security keys, cipher suites and compressing methods.
- This paper is limited to the header compression process only.
- During the handshake process the ClientHello message is sent twice.
 - Without cookie

6LoWPAN

- Header compression
 - IP Header Compression (IPHC)
 - Compress Header to 2 bytes for a single hop network
 - Or 7 bytes for a multi-hop networks (1-byte IPHC, 1-byte dispatch, 1byte Hop Limit, 2-byte Source address and 2-byte Destination Address)
 - Next Header Compression (NHC)
 - Used to encode the IPv6 extension headers and UDP header.
 - Lithe extends the NHC range to UDP payload.

Outline

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
 - Conclusion

DTLS Compression

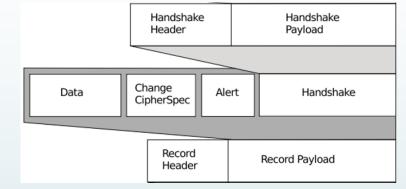
DTLS header compression is applied only within 6LoWPAN networks, i.e., between sensor nodes and the 6BR.

DTLS-6LoWPAN Integration

- 6LoWPAN-NHC for the Record and Handshake Headers
- 6LowPAN-NHC for ClientHello / ServerHello
- 6LowPAN-NHC for other Handshake Messages

DTLS-6LoWPAN Integration

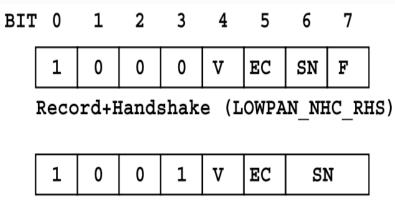
- Apply 6LoWPAN header compression mechanism to compress headers in the UDP payload.
- The ID bits in the NHC for UDP defined in 6LoWPAN:
 - 11110 means the UDP payload is not compressed;
 - 11011 means the UDP payload is compressed with 6LoWPAN-NHC.


BIT	0	1	2	3	4	5	67	
[1	1	0	1	1	С	Р	

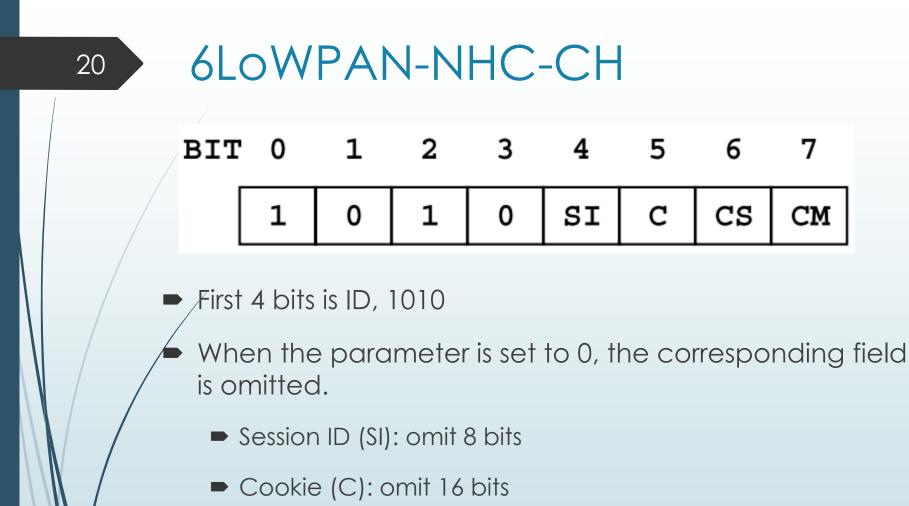
- C: Checksum
- P: Ports

6LoWPAN-NHC for UDP

6LoWPAN-NHC for the Record and Handshake Headers


After compression, the Handshake header can decrease from 12 to 5 bytes and the Record header can decrease from 13 to 3 bytes.

- 6Lowpan-NHC-RHS
 - 6LoWPAN-NHC for Record + Handshake
 - For Handshake messages
- 6Lowpan-NHC-R
 - 6LoWPAN-NHC for Record
 - Applied after the DTLS handshake has been performed successfully
 - For application data.


6LoWPAN-NHC-R and RHS

- First 4 bits represent the ID field:
 - 1000 6LoWPAN-NHC-RHS
 - 1001 6LoWPAN-NHC-R
- Version (v): DTLS version
 - 0 omit version field (16 bits)
- Epoch (EC):
 - 0, 8 bit epoch is used and the left most 8 bits are omitted.
 - 1, all16 bit epoch is used.
- Sequence Number (SN):
 - 0, 16 bit SN, omit 32 bits
 - 1, 48 bit SN

Record only (LOWPAN_NHC_R)

- Fragment (F):
 - O, not fragment.
 - Omit 2 x (offset + length) 6 bytes.
 - 1, fragment applied.

- Cipher Suites (CS): omit 16bits
- Compression Method (CM): Omit 8 bits

21

6LoWPAN-NHC for ClientHello

Octe	et O	Octo	et 1	Octet 2	Octet 3	Octe	et O	Octet 1	Octet 2	Octet 3
Versioin	Trat	ffic Class		Flow Label		LOWPAN_IPHC		Hop Limit	Source Address	
Payload Length		Next Header	Hop Limit	Source Address		Destination Address		LOWPAN_NHC_UDP		
Source Address (128 bits)					S Port	D Port	Chec	ksum	LOWPAN NHC RHS	
Destination Address (128 bits)										·····
Source Port Destin			Destinat	ion Port	Ep	och	Seque	nce Number	Message Type	
Length		Chec	Checksum		Message	Sequence	LOWPAN_NHC_CH			
Conter	n€type		Vers	iòŋ	Epoch			Client Band	om (32 bytes <u>)</u>	
Ер	Epoch Sequence Number		e Number				Chem Kanu	om (32 bytes),		
				Length_Record						
Length_l	Record	Message	Message Type		h_Handshake					
Length_H	andshake	lshake Message Sequence		Fragment Offset						
Fragment Offset		Fragment Length								
Fr'agment Length										
Client Random (32 bytes)										
Session_ID Length Cookie Length Cipher Suites		tes Length								
Cipher Suites		Comp_method Length	Comp_method							

22

Similar to ClientHello except:

- ID field is 1011
- V (Server DTLS Version): 0 DTLS 1.0, omit 16 bits

23

6LoWPAN-NHC for other Handshake Messages

The remaining mandatory handshake messages:

ServerHelloDone,ClientKeyExchange, Finish have NO fields that could be compressed.

Outline

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
 - Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
 - Conclusion

Implementation

- Extension to the 6LoWPAN in the Contiki OS;
 - Hardware platform: WiSMote.
- Lithe implementation consists of four components:
 - DTLS: open source tinyDTLS;
 - CoAP: default CoAP in Contiki;
 - CoAP-DTLS integration module: Connects the CoAP and DTLS to enable CoAPs.
 - DTLS header compression.

Implementation

 The 6LoWPAN layer resides between the IP and MAC layers.

• While applying header compression, the End-to-End security of DTLS is not compromised. .

Outline

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
 - Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
- Conclusion

Evaluation

- Packet Size Reduction
- RAM and ROM Requirement
- Run-Time Performance
 - DTLS Compression Overhead
 - CoAPs Initialization
 - CoAPs Request-Response

NUMBER OF BITS SENT AND SPACE SAVING

DTLS Header	Without	With	Space
	Comp. [Bit]	Comp. [Bit]	Saving
Record	104	40^{1}	62%
Handshake	96	24^{1}	75%
ClientHello	336 ²	264^{2}	23%
ServerHello	304	264^{3}	14%
CertificateRequest	40	0	100%

30 Evaluation – RAM/ROM Requirement

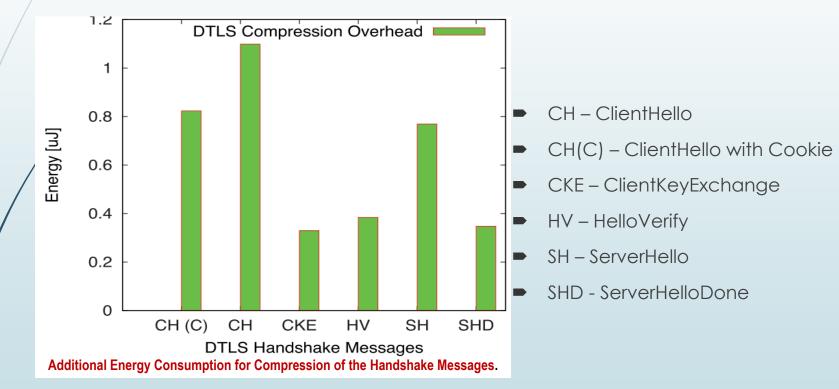
ROM AND STATIC RAM REQUIREMENTS FOR LITHE

Feature	ROM [Byte]	RAM [Byte]
DTLS Crypto (SHA-256, CCM, AES)	6590	2868
DTLS	10662	989
Contiki OS	32145	4979
CoAP	8632	582
DTLS Compression	2820	1
Total	60849	9419

- Radio Duty Cycling (RDC)
 - With RDC, the radio is off most of the time and is turned on either in certain intervals to check the medium for incoming packets or to transmit packets.
- Duty cycled MAC protocol, X-MAC
- Metrics:

31

- Energy consumption
 - Energy estimation module in Contiki OS
 - Conversion from absolute timer values to energy:


Energy $[mJ] = \frac{\text{ticks} \times I [mA] \times \text{Voltage} [V]}{\text{ticks per second}}$

Network-wide round trip time (RTT)

DTLS Compression Overhead

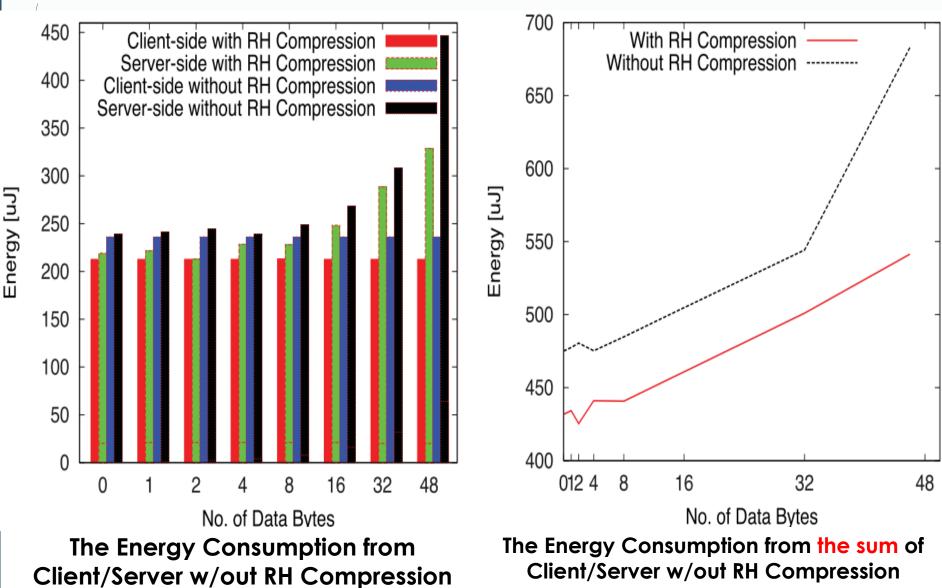
32

 The overhead caused through in-node computation for compression and decompression of DTLS headers is almost negligible.

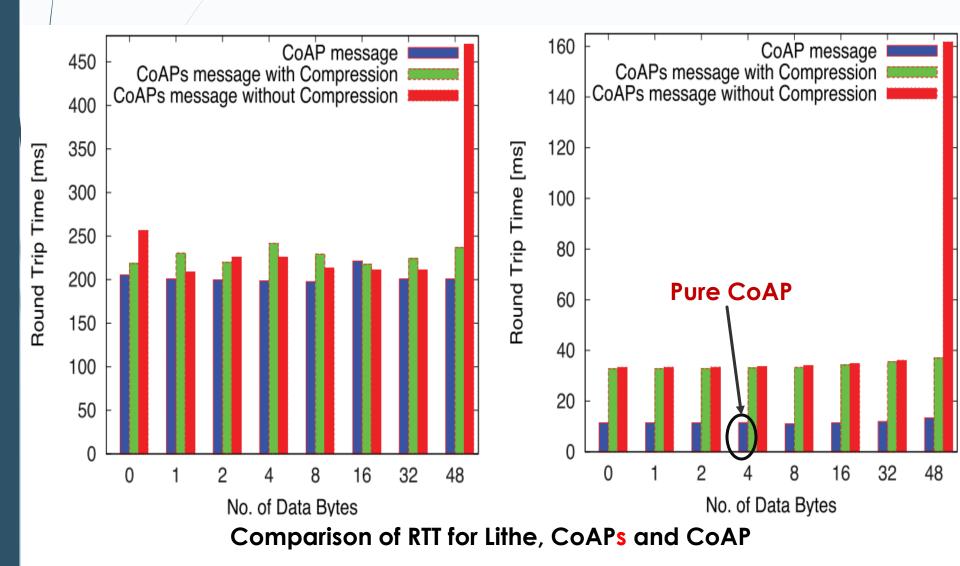
 For a DTLS handshake based on pre-shared keys, 4.2uJ of energy is consumed for compression

- CoAPs Initialization
 - The tradeoff between additional in-node computation vs. reduced packet sizes shows itself in the energy consumption for packet transmission in a DTLS handshake.

Compression	Client-side [uJ]	Server-side [uJ]	Total [uJ]
Without	1756.66	1311.65	3068.31
With	1467.54	1143.47	2611.01


15% less energy is used transmit/receive compressed packets.

CoAPs Request-Response


- Once the CoAPs initialization phase is completed, i.e., the handshake has been performed, a sensor node can send/receive secure CoAP messages using the DTLS Record protocol.
- Metrics

- Energy consumption
- RTT

35 Evaluation – Energy Consumption

Evaluation – Round Time Trip (RTT)

Outline

- Introduction
- Background
 - CoAP and DTLS
 - 6Lowpan
- DTLS Compression
 - DTLS-6LoWPAN Integration
 - 6LoWPAN-NHC for the Record and Handshake Headers
 - 6LoWPAN-NHC for ClientHello / ServerHello
 - 6LoWPAN-NHC for other Handshake Messages
- Implementation
- Evaluation
 - Packet Size Reduction
 - RAM and ROM Requirement
 - Run-Time Performance
 - Conclusion

Contribution

- The first paper to propose 6LoWPAN compressed DTLS and enable lightweight CoAPs support for the IoT.
- Provide novel and standard compliant DTLS compression mechanisms that aim to increase the applicability of DTLS and, thus, CoAPs for constrained devices.
- Implement the compressed DTLS in an OS for the IoT and evaluate it on real headware;
- Lithe is more efficient compared to uncompressed CoAP/DTLS.