Algorand: Scaling Byzantine
Agreements for Cryptocurrencies

By Yossi Gilad, Rotem Hemo, Silvia Micali, Georgios Vlachos, Nickolai Zeldovich
At SOSP,. 2017.

Presented by Raunak Kumar and Sishan Long

Outline

Introduction
Techniques / innovations
o High level overview
o Indepth on VRF
o High level on BA*
Analysis / evaluation
Research context
Context in practice
Personal critique
Future work

INTRODUCTION

Current Cryptocurrencies

e Cryptocurrencies have a lot of applications.
o Smart contracts, simplified currency conversions, etc.

e However, most of them suffer from a trade-off.
o Trade-off between latency vs confidence in transaction.

e Bitcoin uses proof-of-work to address the double-spending problem.
o On average, takes 10 minutes to generate a block.
o Recommended to wait ~6 blocks before confirming transaction.
o So on average, takes around an hour to confirm a transaction!
o Can also have forks in the blockchain.

Algorand

e Whatis Algorand?
o New cryptocurrency that aims to provide:
i. Low latency.
ii. Low probability of forking.
o Uses proof of stake, not proof of work.

e Why isitinteresting?
o Use of randomness - verifiable random functions.
o Consensus at scale - committees within BA* byzantine agreement protocol.

Overview

Really Really High Bird's-eye View

e In every round we add a block to the blockchain.
e Every round has multiple steps.

e Ineach round:

Choose block proposers. They gossip.

Each user keeps track of highest priority block received.

Run BA* for multiple steps with different committee each time.
Run till we agree on a block to add or add empty block.

Some issues - final vs tentative consensus, forking.

o O O O O

Algorand’s Two-Step Road to Consensus

e%ede- 9 *
Step 1: Proposal

One token is selected randomly.

Its corresponding public key becomes
to known to all.

The corresponding user proposes,
signs and propagates a new block.

02

000, - ==
Il\
Step 2: Agreement

1000 users are randomly selected,
their keys become to known to all.
These users quickly reach agreement
on and sign the proposed blocks.
Sufficiently signed blocks are valid

and are propagated.

Gossip

Block chain |2 FZEE—R125 223 222 R)%
e Send messages to peers.
e Do notrelay same
message twice.
e Each user has a block of
pending transactions.
X7
Pending X2
" TX11
transactions
TX 19
TX5

An overview of transaction flow in Algorand.

Block Proposal

e Small number of users chosen to propose a block.
e FEach user proposes a block, its priority and a proof.

e Distribute this information using the gossip protocol.
o Users wait for a certain amount of time to receive a block.
o There could be multiple proposers.
o Priority determines which block everyone should adopt.

200000

Agreement Using BA*

e FEach user initializes BA* with highest priority block that they received.

e |n each step:

o Select a committee. CryptographicSortition
o Committee members broadcast message. | | !
o Repeat until enough committee members Gossip

reach consensus.

o No private state except private key -> — —_—
committee can be replaced after each step. __ I—, |—| |—,

o Terminates in 4 - 13 (expected) steps.

4
N

Cryptographic Sortition

Sortition???

e What does sortition even mean?

Sortition???

e What does sortition even mean?
o “the action of selecting or determining something by the casting or drawing of lots”

IFYOU DON'T KNOW
|

[JE

L il
” - s
-

. ' : (
N \ M

| \ “
& NOW YOU'KNOW

Sortition???

e What does sortition even mean?
o “the action of selecting or determining something by the casting or drawing of lots”

e Why is this relevant to us?
o Need to pick block proposers and committee members.

Sortition for Proposal and Committee

e Sortition is great!

e For example, if we want to select committee members:

o Toss a coin with heads probability proportional to the amount of money a person has.
o If heads then select person.

Sortition for Proposal and Committee

e Sortition is great!

e For example, if we want to select committee members:

o Toss a coin with heads probability proportional to the amount of money a person has.
o If heads then select person.

e What's the problem?

o Adversary can target committee members! :(

Cryptographic Sortition

e Define:
o w_i = weight of user i, W = total weight. (weight = money)
o pk_i = public key of user i, sk_i = private key of user i.

e (Goal: select user i proportional to w_i / W in a secure way.

Cryptographic Sortition

e Define:
o w_i = weight of user i, W = total weight. (weight = money)
o pk_i = public key of user i, sk_i = private key of user i.

e (Goal: select user i proportional to w_i / W in a secure way.
e Key tool: Verifiable random functions (VRFs).

Cryptographic Sortition

e Define:
o w_i = weight of user i, W = total weight. (weight = money)
o pk_i = public key of user i, sk_i = private key of user i.
e (Goal: select user i proportional to w_i / W in a secure way.

e Key tool: Verifiable random functions (VRFs).
o | have input string x.
VRF_sk(x) = (hash, pi).
hash is a hashlen-bit long string determined by sk and x.
hash is ~uniformly distributed between 0 and 2(hashlen) - 1.
If you know pk, then using pi you can check hash is valid output for x.

(@)
(@)
(@)
@)

Selection

procedure Sortition(sk, seed, 7, role, w, W):

(hash,) < VRF(seed||role)

T
P w

je< 0
while 2k ¢ | 51 B(ksw,p), Y17, Blkiw,p)) do

2 hashlen

L j++

return (hash, 7, j)

The cryptographic sortition algorithm.

seed = publicly known
(more details coming up)
tau = expected number of

users
role = proposer, committte,
etc.

Verification

procedure VerifySort(pk, hash, =, seed, t, role, w, W):

if —uVerinyRFpk(hash, i, seed||role) then return 0;

P W

j<0

while S ¢ [I Blksw,p), 07 B(k;w,p)) do
i

return j

Pseudocode for verifying sortition of a user with public key pk

How to choose the seed?

e Seed should be publicly known, but cannot be controlled by the adversary.
e seed_0: Generate using distributed random number generation.
e seed_r:

(@)

(@)
@)
(@)

During block proposal, also compute (seed_r, pi) = VRF_sk(seed_r-1 || r).

Include this in every block.

Everyone knows seed_r at the start of roundr.

However, if block does not contain a valid seed or has invalid transactions, use seed_r =
H(seed_{r-1} || r), where H is a cryptographic hash function.

How to choose the seed?

e Seed should be publicly known, but cannot be controlled by the adversary.
e seed_0: Generate using distributed random number generation.

e seed._r:
o During block proposal, also compute (seed_r, pi) = VRF_sk(seed_r-1 || r).
o Include this in every block.
o Everyone knows seed_r at the start of round r.
o However, if block does not contain a valid seed or has invalid transactions, use seed_r =
H(seed_{r-1} || r), where H is a cryptographic hash function.

e But the seed is refreshed every R rounds...
o Compute seed_r in every round.
o Butuseseed_{r-1-(r%R)}as input to sortition.

How to use the seed?

Round Compute seed _r Use seed {r-1 - (r%R)} R=5
1 seed 1, pi = VRF_sk(seed 0 || 1) seed {-1}
2 seed 2, pi = VRF_sk(seed 1 || 2) seed {-1}
3 seed_3, pi = VRF_sk(seed 2 || 3) seed {-1}
4 seed 4, pi = VRF_sk(seed 3 || 4) seed {-1}
5 seed 5, pi = VRF_sk(seed 4 || 5) seed 4
6 seed_6, pi = VRF_sk(seed 5 || 6) seed 4
7 seed 7, pi = VRF_sk(seed 6 || 7) seed 4
seed 8, pi = VRF_sk(seed 7 || 8) seed 4

Why?

e Suppose network is not strongly synchronous
o So adversary has complete control over links.
o Candrop block proposals and force users to agree on empty blocks.
o But gets users to compute future selection seeds!

Why?

e Suppose network is not strongly synchronous
o So adversary has complete control over links.
o Candrop block proposals and force users to agree on empty blocks.
o But gets users to compute future selection seeds!

e Instead,inroundr
o Check timestamp of block inround r-1-(r % R).
o Use keys and weights from last block created b-time before that block.
m Lower bound on length of strongly synchronous period should allow for sufficiently many
blocks to be created in order to ensure at least one block was honest whp.
m To ensure prob. of failure <= F, need # blocks O(log(1 / F)).

BA*

BA*

e Execution consists of 2 phases:

o First phase: reduce to problem of agreeing on a block to one of 2 options.
o Second phase: reach agreement on 1 options (either proposed block or empty block).

BA*

e Execution consists of 2 phases:

o First phase: reduce to problem of agreeing on a block to one of 2 options.

o Second phase: reach agreement on 1 options (either proposed block or empty block).
e Each phase consists of several steps:

o First phase takes 2 steps.
o Second phases takes 2 - 11 (expected) steps.

BA*

e Execution consists of 2 phases:

o First phase: reduce to problem of agreeing on a block to one of 2 options.

o Second phase: reach agreement on 1 options (either proposed block or empty block).
e Each phase consists of several steps:

o First phase takes 2 steps.

o Second phases takes 2 - 11 (expected) steps.
e Each step:

o Committee members cast votes for some value.

o All users count the votes.
o If a user receives more than a threshold of votes for a value, vote for that i

BA*

procedure BAx(ctx, round, block):

hblock < Reduction(ctx, round, H(block))
hblock, < BinaryBAx(ctx, round, hblock)
// Check if we reached “final” or “tentative” consensus

r « CountVotes(ctx, round, FINAL, Ty1nars Trinass Astep)
if hblock, = r then
| return (FINAL,BlockOfHash(hblock,))

else
| return (TENTATIVE, BlockOfHash(hblock,))

Algorithm 3: Running BAx for the next round, with a
proposed block. H is a cryptographic hash function.

Voting

Each user

e Checks if part of committee (sortition).

e If chosen, gossip signed message containing a value.

o Value is typically the hash of some block.
o Also include the hash of previous block.

Voting

procedure CommitteeVote(ctx, round, step, 7, value):

// check if user is in committee using Sortition (Alg. 1)
role < (“committee”, round, step)

(sorthash, i, j) < Sortition(user.sk, ctx.seed, t, role,

ctx.weight| user.pk], ctx.W)

// only committee members originate a message

if j > 0 then

Gossip({user.pk,Signed . ., (round, step,
L sorthash, r, H(ctx.last_block), value)))

Algorithm 4: Voting for value by committee members.
user.sk and user.pk are the user’s private and public keys.

Counting Votes

Each user

e Reads messages from current round and step.

e Process votes for every message.
o Get number of votes for message.

o If it exceeds a certain threshold then vote for this value.
o Otherwise return TIMEOUT.

Counting Votes

procedure CountVotes(ctx, round, step, T, 7, A): procedure ProcessMsg(ctx, T, m):
smrt;— Ti{n}leo // hash tabl k dto0 Pl SpnEd) &~
— . S, .
f}?;:rss(_ 0 Aastl bl flew Xeys Happec 50 if VerifySignature(pk, signed_m) # OK then
msgs «— incomingMsgs| round, step).iterator() | return (0, L, 1)
while True do (round, step, sorthash, i, hprev, value) «— signed_m
f:‘__mig:;‘ex"() // discard messages that do not extend this chain
leifTTime(‘)at tart + 1 then retarn TIMEOUT. if hprev# H(ctx.last_block) then return (0, L, L);
else votes «— VerifySort(pk, sorthash, r, ctx.seed, 7,
(votes, value, sorthash) < ProcessMsg(ctx, 7, m) (“committee”, round, step), ctx. weight| pk], ctx.W)
if pk € voters or votes = 0 then continue; return (votes, value, sorthash)

voters U = {pk}
counts|value] + = votes
// if we got enough votes, then output this value

if counts[value] > T - 7 then
L return value

Algorithm 6: Validating incoming vote message m.

Algorithm 5: Counting votes for round and step.

Reduction

e Reduce reaching consensus on arbitrary value to one of 2 options:

o specific value (proposed block hash)
o hash of empty block.

Reduction

e Reduce reaching consensus on arbitrary value to one of 2 options:
o specific value (proposed block hash),
o hash of empty block.

e First step: each committee member votes for hash of block.

Reduction

e Reduce reaching consensus on arbitrary value to one of 2 options:

o specific value (proposed block hash),
o hash of empty block.

e First step: each committee member votes for hash of block.

e Second step: vote for hash that received at least some threshold of votes.
o If no such block, then vote for empty hash.

Reduction

e Reduce reaching consensus on arbitrary value to one of 2 options:

o specific value (proposed block hash),
o hash of empty block.

e First step: each committee member votes for hash of block.

e Second step: vote for hash that received at least some threshold of votes.
o If no such block, then vote for empty hash.

e Reduction ensures that there is at most 1 non-empty block that can be
returned for all honest users.

Reduction

procedure Reduction(ctx, round, hblock):

// step 1: gossip the block hash
CommitteeVote(ctx, round, REDUCTION_ONE,
Tsrep, NDlOCK)
// other users might still be waiting for block proposals,
// so set timeout for Agock+ Aster
hblock; < CountVotes(ctx, round, REDUCTION_ONE,
TSTEP9 TsTEP» ABLOCK & ASTEP)
// step 2: re-gossip the popular block hash
empty_hash < H(Empty(round, H(ctx.last_block)))
if hblock; = TiMEOUT then
L CommitteeVote(ctx, round, REDUCTION_TWO,

Tsrep, empty_hash)

else

CommitteeVote(ctx, round, REDUCTION_TWO,

Tsrers hblock,)

hblock, « CountVotes(ctx, round, REDUCTION_TWO,

Tsreps TsTeps ASTEP)
if hblock, = TiMEOUT then return empty_hash ;
else return hblock, ;

Algorithm 7: The two-step reduction.

Binary BA*

Not enough time to cover Binary BA* - please refer to the paper.

Experiments

Implementation Parameters

Parameter Meaning Value

h assumed fraction of honest weighted users 80%

R seed refresh interval (# of rounds) 1,000 (§5.2)
Do REPOSEN expected # of block proposers 26 (§B.1)
Torsp expected # of committee members 2,000 (§B.2)
f PR threshold of 7grgp for BAx 68.5% (§B.2)
Toiniat expected # of final committee members 10,000 (§C.1)
y pam—_— threshold of 74y, for BAx 74% (§C.1)
MaxSTEPS maximum number of steps in BinaryBAx 150 (§C.1)

p ——— time to gossip sortition proofs 5 seconds

p M— timeout for receiving a block 1 minute
AsTEP timeout for BAx step 20 seconds

AsTEPVAR estimate of BAx completion time variance 5 seconds

Implementation Parameters

4500
4000

— 51049

o\ A® E ¥ & & & P
% of Honest Users

Figure 3: The committee size, 7, sufficient to limit the proba-
bility of violating safety to 5x10™°. The x-axis specifies h, the
weighted fraction of honest users. * marks the parameters
selected in our implementation.

Experimental Setup

e 1000 m4.2xlarge VMs on Amazon EC2
o 8 cores, 1Gbps network throughput.
o Distributed across 20 cities around the world.
e Usually 50, sometimes 500, users per VM.
o Each user can use <= 20 Mbps bandwidth.
o Equal share of money.

e 1 MB block.

Latency

25
20 %
0 15
()
£
=10
5
—e— Round Completion
0
NI R o S

Number of Users

Latency for one round of Algorand, with 5,000 to 50,000 users.

Latency

120

100

o T 1%[}/4\]
—e— Round Completion
bt o & +

Number of Users

Latency for one round of Algorand in a configuration with 500
users per VM, using 100 to 1,000 VMs.

Throughput

60

[BA Final Step
50| mmm BAX w/o Final Step
B Block Proposal

GRE® &Y

Block Size

Latency for one round of Algorand as a function of the block size.

Malicious Users

s

20

15

Time (s)

—e— Round Completion

0 5 10 15 20
% Malicious Users

Latency for one round of Algorand with a varying fraction of
malicious users, out of a total of 50,000 users.

Related Work

Ouroboros

e Some users are elected to propose blocks.
e Each round is subdivided into slots, each slot has one block proposer.

Ouroboros

Some users are elected to propose blocks.

Each round is subdivided into slots, each slot has one block proposer.

e Use of randomness

o Arandom seed is generated in the previous round r-1.
o Follow-the-Satoshi algorithm chooses some coins out of all coins.
o The new block proposers are the owners of these coins.

e No committee election.

Ouroboros

e Use of randomness

o Arandom seed is generated in the previous round r-1.
o Follow-the-Satoshi algorithm chooses some coins out of all coins, their owners are the new
block proposers.

Algorand

e All users participate in the lottery and can win the ticket.

e Use of randomness

o Every user runs VRF with a public random seed.
o They produce uniformly distributed random values, others can verify.

Ouroboros

e No committee election.
e Longest chain rule.
e Slot leaders are known during the round.

Algorand

e The user may be selected to propose a block or be selected to be a
member of the committee at a certain step of BA*.
e Committees are constantly changing.

Ouroboros vs Algorand

e Security
o Ouroboros assumes that honest users can communicate within some bounded delay.
o Algorand assumes that the adversary may temporarily fully control the network and
immediately corrupt users in targeted attacks.

e Rate of Producing Blocks
e Time Synchronization

Related Work

e Bitcoin:
o Possibility of forks — long confirmation time
o Network partition

e Delegated PoS:

o The committee is not random and will not change in a long time.
o DOS

e Bonded PoS:
o They are willing to give up their money and become adversary to gain more money.
o DOS

e Hybrid consensus:
o Secure only with respect to a “mildly adaptive” adversary.

Algorand: Pure Proof-of-Stake

4
N

Algorand in Practice

{27 coindesk

Algorand Raises $60 Million in"Token
Sale

Daniel Kuhn & W N\ NEWS
L JL 201¢€ |) ¢ Updat 21, 201 t 1€ b

Algorand raised over $60 million in a token sale of its native Algo token on Coinlist, using a Dutch
Auction mechanism that ensures market participants set a uniform price per Algo. All 25 million tokens
were sold at a market drive price of $2.40.

Forbes

People who know,
know BDO*

LEARN MORE

This Cryptography Pioneer Is
Building A Cryptocurrency From
The Ground Up

Joresa Blount Contributor ©
Enterprise & Cloud

Critique

Trust Model

o Algorand assumes that majority of nodes remain honest.

Trust Model

e Algorand assumes that majority of nodes remain honest.

Not Rational !

Majority of individual users are honest: Wrong!

-- Another Look at ALGORAND

Trust Model

e Algorand assumes that majority of nodes remain honest

o The adversary can provide sufficient incentives to ask selected leaders
and verifiers to publish their roles.

Trust Model

e Algorand assumes that majority of nodes remain honest

o The adversary can provide sufficient incentives to ask selected leaders
and verifiers to publish their roles.
o Users need to forget their secrets, so they cannot be corrupted later.

Obviously there is no incentive.

No Forks

costless simulation attack — possible forks

Writing

The technical details are explained very well but

e Organization is not great - takes some time to figure out how the pieces fit
together, where the overview is, where the details are, etc.

e Male pronouns - the authors always use male pronouns for users (e.g.,
“...which the user can include in his messages..").

4
N

Future Work and Conclusion

Future Work

e Incentives

o Encourage users to be online when selected and pay network costs.
e Cost of joining

o New users fetch all existing blocks and their certificates.

o Lot of data + high throughput of Algorand => scalability challenge.
e Forward security

o Identities of committee members are revealed after they send a message.
o Attackers may attempt to corrupt users over time
m Gather enough user keys, construct fake certificate, create fork

Conclusion

e Algorand is a cryptocurrency that

o Provides low latency.
o Provides high throughput.
o Small probability of forking.

e Design based on

o Cryptographic sortition

o BA* byzantine agreement protocol.
e Needto solve

o Creation of incentives.

o High cost of joining.

END

