
Algorand: Scaling Byzantine
Agreements for Cryptocurrencies

By Yossi Gilad, Rotem Hemo, Silvia Micali, Georgios Vlachos, Nickolai Zeldovich
At SOSP, 2017.

Presented by Raunak Kumar and Sishan Long

Outline

● Introduction
● Techniques / innovations

○ High level overview
○ In depth on VRF
○ High level on BA*

● Analysis / evaluation
● Research context
● Context in practice
● Personal critique
● Future work

INTRODUCTION

Current Cryptocurrencies

● Cryptocurrencies have a lot of applications.
○ Smart contracts, simplified currency conversions, etc.

● However, most of them suffer from a trade-off.
○ Trade-off between latency vs confidence in transaction.

● Bitcoin uses proof-of-work to address the double-spending problem.
○ On average, takes 10 minutes to generate a block.
○ Recommended to wait ~6 blocks before confirming transaction.
○ So on average, takes around an hour to confirm a transaction!
○ Can also have forks in the blockchain.

Algorand

● What is Algorand?
○ New cryptocurrency that aims to provide:

i. Low latency.
ii. Low probability of forking.

○ Uses proof of stake, not proof of work.

● Why is it interesting?
○ Use of randomness - verifiable random functions.
○ Consensus at scale - committees within BA* byzantine agreement protocol.

Overview

Really Really High Bird’s-eye View

● In every round we add a block to the blockchain.
● Every round has multiple steps.
● In each round:

○ Choose block proposers. They gossip.
○ Each user keeps track of highest priority block received.
○ Run BA* for multiple steps with different committee each time.
○ Run till we agree on a block to add or add empty block.
○ Some issues - final vs tentative consensus, forking.

Algorand’s Two-Step Road to Consensus
👥👤👥👤👥→ 👤→ ⬜⬜✳

Step 1: Proposal

● One token is selected randomly.
● Its corresponding public key becomes

to known to all.
● The corresponding user proposes,

signs and propagates a new block.

👥👤👥 ✅ →

Step 2: Agreement

● 1000 users are randomly selected,

their keys become to known to all.

● These users quickly reach agreement

on and sign the proposed blocks.

● Sufficiently signed blocks are valid

and are propagated.

✅

Gossip

● Send messages to peers.
● Do not relay same

message twice.
● Each user has a block of

pending transactions.

An overview of transaction flow in Algorand.

Block Proposal

● Small number of users chosen to propose a block.
● Each user proposes a block, its priority and a proof.
● Distribute this information using the gossip protocol.

○ Users wait for a certain amount of time to receive a block.
○ There could be multiple proposers.
○ Priority determines which block everyone should adopt.

👥👤👥👤👥→ 👤→ ⬜⬜✳

Agreement Using BA*

● Each user initializes BA* with highest priority block that they received.

● In each step:
○ Select a committee.
○ Committee members broadcast message.
○ Repeat until enough committee members

reach consensus.
○ No private state except private key ->

committee can be replaced after each step.
○ Terminates in 4 - 13 (expected) steps.

Cryptographic Sortition

Sortition???

● What does sortition even mean?

Sortition???

● What does sortition even mean?
○ “the action of selecting or determining something by the casting or drawing of lots”

Sortition???

● What does sortition even mean?
○ “the action of selecting or determining something by the casting or drawing of lots”

● Why is this relevant to us?
○ Need to pick block proposers and committee members.

Sortition for Proposal and Committee

● Sortition is great!
● For example, if we want to select committee members:

○ Toss a coin with heads probability proportional to the amount of money a person has.
○ If heads then select person.

Sortition for Proposal and Committee

● Sortition is great!
● For example, if we want to select committee members:

○ Toss a coin with heads probability proportional to the amount of money a person has.
○ If heads then select person.

● What’s the problem?
○ Adversary can target committee members! :(

Cryptographic Sortition

● Define:
○ w_i = weight of user i, W = total weight. (weight = money)
○ pk_i = public key of user i, sk_i = private key of user i.

● Goal: select user i proportional to w_i / W in a secure way.

Cryptographic Sortition

● Define:
○ w_i = weight of user i, W = total weight. (weight = money)
○ pk_i = public key of user i, sk_i = private key of user i.

● Goal: select user i proportional to w_i / W in a secure way.
● Key tool: Verifiable random functions (VRFs).

Cryptographic Sortition

● Define:
○ w_i = weight of user i, W = total weight. (weight = money)
○ pk_i = public key of user i, sk_i = private key of user i.

● Goal: select user i proportional to w_i / W in a secure way.
● Key tool: Verifiable random functions (VRFs).

○ I have input string x.
○ VRF_sk(x) = (hash, pi).
○ hash is a hashlen-bit long string determined by sk and x.
○ hash is ~uniformly distributed between 0 and 2^(hashlen) - 1.
○ If you know pk, then using pi you can check hash is valid output for x.

Selection

● seed = publicly known
(more details coming up)

● tau = expected number of
users

● role = proposer, committte,
etc.

The cryptographic sortition algorithm.

Verification

Pseudocode for verifying sortition of a user with public key pk

How to choose the seed?

● Seed should be publicly known, but cannot be controlled by the adversary.
● seed_0: Generate using distributed random number generation.
● seed_r:

○ During block proposal, also compute (seed_r, pi) = VRF_sk(seed_r-1 || r).
○ Include this in every block.
○ Everyone knows seed_r at the start of round r.
○ However, if block does not contain a valid seed or has invalid transactions, use seed_r =

H(seed_{r-1} || r), where H is a cryptographic hash function.

How to choose the seed?

● Seed should be publicly known, but cannot be controlled by the adversary.
● seed_0: Generate using distributed random number generation.
● seed_r:

○ During block proposal, also compute (seed_r, pi) = VRF_sk(seed_r-1 || r).
○ Include this in every block.
○ Everyone knows seed_r at the start of round r.
○ However, if block does not contain a valid seed or has invalid transactions, use seed_r =

H(seed_{r-1} || r), where H is a cryptographic hash function.

● But the seed is refreshed every R rounds…
○ Compute seed_r in every round.
○ But use seed_{r - 1 - (r % R)} as input to sortition.

How to use the seed?
Round Compute seed_r Use seed_{r-1 - (r%R)}

1 seed_1, pi = VRF_sk(seed_0 || 1) seed_{-1}

2 seed_2, pi = VRF_sk(seed_1 || 2) seed_{-1}

3 seed_3, pi = VRF_sk(seed_2 || 3) seed_{-1}

4 seed_4, pi = VRF_sk(seed_3 || 4) seed_{-1}

5 seed_5, pi = VRF_sk(seed_4 || 5) seed_4

6 seed_6, pi = VRF_sk(seed_5 || 6) seed_4

7 seed_7, pi = VRF_sk(seed_6 || 7) seed_4

8 seed_8, pi = VRF_sk(seed_7 || 8) seed_4

R = 5

Why?

● Suppose network is not strongly synchronous
○ So adversary has complete control over links.
○ Can drop block proposals and force users to agree on empty blocks.
○ But gets users to compute future selection seeds!

Why?

● Suppose network is not strongly synchronous
○ So adversary has complete control over links.
○ Can drop block proposals and force users to agree on empty blocks.
○ But gets users to compute future selection seeds!

● Instead, in round r
○ Check timestamp of block in round r - 1 - (r % R).
○ Use keys and weights from last block created b-time before that block.

■ Lower bound on length of strongly synchronous period should allow for sufficiently many
blocks to be created in order to ensure at least one block was honest whp.

■ To ensure prob. of failure <= F, need # blocks O(log(1 / F)).

BA*

BA*

● Execution consists of 2 phases:
○ First phase: reduce to problem of agreeing on a block to one of 2 options.
○ Second phase: reach agreement on 1 options (either proposed block or empty block).

BA*

● Execution consists of 2 phases:
○ First phase: reduce to problem of agreeing on a block to one of 2 options.
○ Second phase: reach agreement on 1 options (either proposed block or empty block).

● Each phase consists of several steps:
○ First phase takes 2 steps.
○ Second phases takes 2 - 11 (expected) steps.

BA*

● Execution consists of 2 phases:
○ First phase: reduce to problem of agreeing on a block to one of 2 options.
○ Second phase: reach agreement on 1 options (either proposed block or empty block).

● Each phase consists of several steps:
○ First phase takes 2 steps.
○ Second phases takes 2 - 11 (expected) steps.

● Each step:
○ Committee members cast votes for some value.
○ All users count the votes.
○ If a user receives more than a threshold of votes for a value, vote for that in the next step.

BA*

Voting

Each user

● Checks if part of committee (sortition).
● If chosen, gossip signed message containing a value.

○ Value is typically the hash of some block.
○ Also include the hash of previous block.

Voting

Counting Votes

Each user

● Reads messages from current round and step.
● Process votes for every message.

○ Get number of votes for message.
○ If it exceeds a certain threshold then vote for this value.
○ Otherwise return TIMEOUT.

Counting Votes

Reduction

● Reduce reaching consensus on arbitrary value to one of 2 options:
○ specific value (proposed block hash)
○ hash of empty block.

Reduction

● Reduce reaching consensus on arbitrary value to one of 2 options:
○ specific value (proposed block hash),
○ hash of empty block.

● First step: each committee member votes for hash of block.

Reduction

● Reduce reaching consensus on arbitrary value to one of 2 options:
○ specific value (proposed block hash),
○ hash of empty block.

● First step: each committee member votes for hash of block.
● Second step: vote for hash that received at least some threshold of votes.

○ If no such block, then vote for empty hash.

Reduction

● Reduce reaching consensus on arbitrary value to one of 2 options:
○ specific value (proposed block hash),
○ hash of empty block.

● First step: each committee member votes for hash of block.
● Second step: vote for hash that received at least some threshold of votes.

○ If no such block, then vote for empty hash.

● Reduction ensures that there is at most 1 non-empty block that can be
returned for all honest users.

Reduction

Binary BA*

Not enough time to cover Binary BA* - please refer to the paper.

Experiments

Implementation Parameters

Implementation Parameters

Experimental Setup

● 1000 m4.2xlarge VMs on Amazon EC2
○ 8 cores, 1Gbps network throughput.
○ Distributed across 20 cities around the world.

● Usually 50, sometimes 500, users per VM.
○ Each user can use <= 20 Mbps bandwidth.
○ Equal share of money.

● 1 MB block.

Latency

Latency for one round of Algorand, with 5,000 to 50,000 users.

Latency

Latency for one round of Algorand in a configuration with 500
users per VM, using 100 to 1,000 VMs.

Throughput

Latency for one round of Algorand as a function of the block size.

Malicious Users

Latency for one round of Algorand with a varying fraction of
malicious users, out of a total of 50,000 users.

Related Work

Ouroboros

● Some users are elected to propose blocks.
● Each round is subdivided into slots, each slot has one block proposer.

Ouroboros

● Some users are elected to propose blocks.
● Each round is subdivided into slots, each slot has one block proposer.
● Use of randomness

○ A random seed is generated in the previous round r-1.
○ Follow-the-Satoshi algorithm chooses some coins out of all coins.
○ The new block proposers are the owners of these coins.

● No committee election.

Ouroboros

● Use of randomness
○ A random seed is generated in the previous round r-1.
○ Follow-the-Satoshi algorithm chooses some coins out of all coins, their owners are the new

block proposers.

Algorand
● All users participate in the lottery and can win the ticket.
● Use of randomness

○ Every user runs VRF with a public random seed.
○ They produce uniformly distributed random values, others can verify.

Ouroboros

● No committee election.
● Longest chain rule.
● Slot leaders are known during the round.

Algorand
● The user may be selected to propose a block or be selected to be a

member of the committee at a certain step of BA*.
● Committees are constantly changing.

Ouroboros vs Algorand

● Security
○ Ouroboros assumes that honest users can communicate within some bounded delay.
○ Algorand assumes that the adversary may temporarily fully control the network and

immediately corrupt users in targeted attacks.

● Rate of Producing Blocks
● Time Synchronization

Related Work

● Bitcoin:
○ Possibility of forks → long confirmation time
○ Network partition

● Delegated PoS:
○ The committee is not random and will not change in a long time.
○ DOS

● Bonded PoS:
○ They are willing to give up their money and become adversary to gain more money.
○ DOS

● Hybrid consensus:
○ Secure only with respect to a “mildly adaptive” adversary.

Algorand: Pure Proof-of-Stake

Algorand in Practice

Critique

Trust Model

● Algorand assumes that majority of nodes remain honest.

Trust Model

● Algorand assumes that majority of nodes remain honest.

Not Rational !

-- Another Look at ALGORAND

Trust Model

● Algorand assumes that majority of nodes remain honest
○ The adversary can provide sufficient incentives to ask selected leaders

and verifiers to publish their roles.

Trust Model

● Algorand assumes that majority of nodes remain honest
○ The adversary can provide sufficient incentives to ask selected leaders

and verifiers to publish their roles.
○ Users need to forget their secrets, so they cannot be corrupted later.

Obviously there is no incentive.

No Forks

costless simulation attack → possible forks

100

👥
👥

300

👥
👥
👥

👥
👥
👥

Writing

The technical details are explained very well but

● Organization is not great - takes some time to figure out how the pieces fit
together, where the overview is, where the details are, etc.

● Male pronouns - the authors always use male pronouns for users (e.g.,
“...which the user can include in his messages…”).

Future Work and Conclusion

Future Work

● Incentives
○ Encourage users to be online when selected and pay network costs.

● Cost of joining
○ New users fetch all existing blocks and their certificates.
○ Lot of data + high throughput of Algorand => scalability challenge.

● Forward security
○ Identities of committee members are revealed after they send a message.
○ Attackers may attempt to corrupt users over time

■ Gather enough user keys, construct fake certificate, create fork

Conclusion

● Algorand is a cryptocurrency that
○ Provides low latency.
○ Provides high throughput.
○ Small probability of forking.

● Design based on
○ Cryptographic sortition
○ BA* byzantine agreement protocol.

● Need to solve
○ Creation of incentives.
○ High cost of joining.

END

