SOME RESULTS ON FARTHEST POINTS IN 2-NORMED SPACES

M. Iranmanesh\(^1\) and F. Soleimany\(^2\)

Abstract. In this paper, we consider the problem of the farthest point for bounded sets in a real 2-normed spaces. We investigate some properties of farthest points in the setting of 2-normalised spaces and present various characterizations of b-farthest point of elements by bounded sets in terms of b-linear functional. We also provide some applications of farthest points in the setting of 2-inner product spaces.

AMS Mathematics Subject Classification (2010): 41A65; 46A70

Key words and phrases: 2-norm space; b-farthest point; b-linear function; 2-inner product

1. Introduction

The concepts of 2-metric spaces and linear 2-normed spaces were first introduced by Gähler in 1963\(^8\) and have been developed extensively in different subjects by others authors (see \(\cite{1, 2, 3, 4, 9, 10, 12}\)). Elumalai, Vijayaragavan and Sistani, Moghaddam in \(\cite{6, 14}\) gave some results on the concept best approximation in the context of bounded linear 2-functionals on real linear 2-normed spaces. They established various characterizations of the best approximation elements in these spaces. The concepts of farthest point in normed spaces have been studied by many authors (see \(\cite{1, 2, 5, 7, 13}\)). In this paper we study this concept in 2-normed spaces, and obtain some results on characterization and existence of farthest points in normed linear spaces in terms of bounded b-linear functionals. In section \(\S 2\), we give some preliminary results. In section \(\S 3\), we give some fundamental concepts of b-farthest points and give characterization of farthest points in 2-normed linear spaces and some basic properties of farthest points. Also we study the farthest point mapping on \(X\) by virtue of the Gateaux derivative in 2-normed spaces. We show in the case that 2-normed space is strictly convex there exists a unique farthest points of the closed convex set from each point. In the end, we delineate some applications of farthest points in 2-inner product spaces.

2. Preliminaries

Definition 2.1. Let \(X\) be a linear space of dimension greater than 1. Suppose \(\|.,.\|\) is a real-valued function on \(X \times X\) satisfying the following conditions:

\(^1\)Department of mathematical sciences, Shahrood university, Iran, e-mail: m.iranmanesh2012@gmail.com
\(^2\)Department of mathematical sciences, Shahrood university, Iran, e-mail: enfazh.bmaam@gmail.com
a) \(\|x, z\| \geq 0 \) and \(\|x, z\| = 0 \) if and only if \(x \) and \(z \) are linearly dependent.

b) \(\|x, z\| = \|z, x\| \),

d) \(\|\alpha x, z\| = \alpha \|x, z\| \) for any scalar \(\alpha \in \mathbb{R} \),

e) \(\|x + x', z\| \leq \|x, z\| + \|x', z\| \).

Then \(\|\cdot, \cdot\| \) is called a 2-norm on \(X \) and \((X, \|\cdot, \cdot\|) \) is called a linear 2-normed space.

Example 2.2. Let \(X = \mathbb{R}^3 \), and consider the following 2-norm on \(X \):

\[
\|x, y\| = |xy| = |\text{det} \begin{bmatrix} i & j & k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}|.
\]

where \(x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \). Then \(X \) is a 2-normed space.

Example 2.3. Let \(X \) be a real linear space having two seminorms \(\|\cdot\|_1 \) and \(\|\cdot\|_2 \). Then \((X, \|\cdot\|) \) is a generalized 2-normed space with the 2-norm defined by

\[
\|x, y\| = \|x\|_1 \|y\|_2, \text{ for } x, y \in X.
\]

Every 2-normed space is a locally convex topological vector space. In fact for a fixed \(b \in X \), \(p_b = \|x, b\| ; x \in X \) is a semi-norm on \(X \) and the family \(P = \{p_b : b \in X\} \) of semi-norms generates a locally convex topology.

Definition 2.4. Let \((X, \|\cdot, \cdot\|) \) be a 2-normed linear space, \(E \) be a nonempty subset of \(X \). The set \(E \) is called b-open if and only if for each \(a_0 \in E \), there exists \(\varepsilon_{a_0} > 0 \) such that for each \(c \in E \) with \(\|a_0 - c, b\| < \varepsilon_{a_0} \) implies \(a_0 - c \in E \). The b-interior of \(E \) is denoted \(\text{int}_b(E) \), is the largest b-open set contained in \(E \).

A sequence \(\{x_n\} \) in 2-normed linear space \(X \) is said to be b-convergent if there exists an element \(a \in X \) such that \(\lim_{n \to \infty} \|x_n - a, b\| = 0 \). A set is b-closed if and only if it contains all of its limit points.

Definition 2.5. Let \((X, \|\cdot, \cdot\|) \) be a 2-normed space, \(b \in X \) be fixed, then a map \(T : X \times \langle b \rangle \to \mathbb{R} \) is called a b-linear functional on \(X \times \langle b \rangle \) whenever

1) \(T(a + c, b) = T(a, b) + T(c, b) \) for \(a, c, b \in X \) such that

2) \(T(\alpha a, b) = \alpha T(a, b) \) for \(\alpha \in \mathbb{R} \).

A b-linear functional \(T : X \times \langle b \rangle \to \mathbb{R} \) is said to be bounded if there exists a real number \(M > 0 \) such that \(|T(x, b)| < M \|x, b\| \) for every \(x \in X \). The norm of the b-linear functional \(T : X \times \langle b \rangle \to \mathbb{R} \) is defined by

\[
\|T\| = \sup\{\|T(x, b)\| : \|x, b\| \neq 0\}.
\]
3. Farthest points in 2-normed spaces

Let X be a 2-normed vector space. For a nonempty subset G of X and $x \in X$, define

$$f_G(x,b) = \sup_{g \in G} \|x-g,b\|.$$ \hfill (3.1)

Recall that a point $g_0 \in G$ is called a b-farthest point for $x \in X$ if

$$\|x-g_0,b\| = f_G(x,b).$$ \hfill (3.2)

The set of all b-farthest points to x from G is denoted by $F_G(x,b)$. Let

$$R_b(G) = \{x \in X : F_G(x,b) \neq \emptyset\}.$$

The set G is said to be a b-remotal set if $R_b(G) = X$.

Corollary 3.1. Let X be a 2-normed vector space and G be a nonempty bounded subset of X. Then for any x, z of X

i) $|f_G(x,b) - f_G(z,b)| \leq \|x-z,b\|$.

ii) $\|x-z,b\| \leq f_G(x,b) + f_G(z,b)$.

Proof.

i) Let $y \in F_G(z,b)$. By the definition of b-farthest points, we have

$$f_G(x,b) \geq \|x-y,b\| = \|x-z+z-y,b\| \geq \|x-z,b\| - \|z-y,b\|$$

$$f_G(x,b) - f_G(z,b) \geq \|x-z,b\|.$$

Interchanging x and y, we get

$$f_G(z,b) - f_G(x,b) \geq \|x-z,b\|.$$

Hence $|f_G(x,b) - f_G(z,b)| \leq \|x-z,b\|$.

ii) It’s proof is similar to that of (i).

Theorem 3.2. Let G is a closed bounded b-remotal set in a 2-normed space X. Then $F_G(x,b) \cap \text{int}_b(G) = \emptyset$.

Proof. Suppose $e \in G$ such that $e \in F_G(x,b) \cap \text{int}_b(G)$. There exists a number $r > 0$ such that $\{y \in X : \|y-e,b\| < r\} \subseteq G$. Put $u = e - \frac{r}{2\|x-e,b\|}(x-e)$. Then $\|u-e,b\| = \frac{r}{2} \leq r$, and hence $u \in G$ and

$$\|x-u,b\| = \|x-e + \frac{r}{2\|x-e,b\|}(x-e),b\|$$

$$= \|(1 + \frac{r}{2\|x-e,b\|})(x-e),b\|$$

$$= (1 + \frac{r}{2\|x-e,b\|})\|x-e,b\| > \|(x-e),b\|.$$

This is a contradiction. \qed
Theorem 3.3. A nonvoid bounded set G in a 2-normed space X is b-remotal if and only if the following associated set

$$K_d = G + CB_d^b (0)$$

is closed for $d > 0$, where $CB_d^b (0) = \{ y \in X : \| x, b \| \geq d \}$.

Proof. Let x be an adherent element of $G + CB_d^b (0)$, i.e. there exist a sequence $(x_n)_{n \in N}$ which converges to x and a sequence $(u_n)_{n \in N} \subset G$ such that for all $n \in N \| x_n - u_n, b \| \geq d$. Thus, for every $\varepsilon > 0$ there exists $n_\varepsilon \in N$ such that $\| x_n - u_n, b \| > d - \varepsilon$ for all $n \geq n_\varepsilon$. Now, if G is b-remotal, taking an element $g' \in F_G(x, b)$ we obtain that $\| x - g', b \| \geq \| x_n - u_n, b \|$ for all $n \geq n_\varepsilon$ and so $\| x - g', b \| \geq d - \varepsilon$, for every $\varepsilon > 0$. Consequently $\| x - g', b \| \geq d$ i.e. $x \in G + CB_d^b (0)$. Conversely, for an arbitrary element $x \in X$ we take $d = f_G(x, b)$. We can suppose $d > 0$ since $f_G(x, b) = 0$ if and only if $G = \{ x \}$. When G is b-remotal obviously for every $n \in N$ exist $u_n \in G$ such that $\| x - u_n, b \| \geq d - \frac{1}{n}$. But, we have

$$\frac{1}{n} (d - \frac{1}{n})^{-1} (x - u_n) + x \in u_n + CB_d^b (0) \subset G + CB_d^b (0),$$

for all $n \in N$ such that $n > 1$. Since $(u_n)_{n \in N}$ is bounded, by passing to the limit we get $x \in G + CB_d^b (0)$). Therefore, if $G + CB_d^b (0)$ is closed there exists $g' \in G$ such that $\| x - g', b \| \geq d$ i.e. $g' \in F_G(x, b)$. Hence the set G is b-remotal. \qed

Some characterizations of farthest points in 2-normed spaces are provided in following theorems.

Theorem 3.4. Let G be a subset of a 2-norm space X and $x \in X \setminus M + < b >$, then $g_0 \in F_G(x, b)$, if and only if there exists a b-bilinear function p such that

$$p(x - g_0, b) = \sup_{g \in G} \| x - g, b \| \text{ and } \| p \| = 1.$$ \hspace{1cm} (3.3)

Proof. Suppose that there is a b-bilinear function p which satisfies (3.3), then

$$\| x - g_0, b \| = \| x - g_0, b \| \| p \| \geq | p(x - g_0, b) | = \sup_{g \in G} \| x - g, b \| \geq \| x - g, b \| .$$

Conversely, let $g_0 \in F_G(x, b)$, by Hahn-Banach theorem in the context of 2-normed spaces (see Theorem 2.2 [11]) there exists a b-bilinear function p such that $\| p \| = 1$, $p(x - g_0, b) = \| x - g_0, b \| = \sup_{g \in G} \| x - g, b \|$. \qed

Theorem 3.5. Let G be a subset of a 2-norm space X and $x \in X \setminus M + < b >$. Then the following statements are equivalent.

i) $g_0 \in F_G(x, b)$.

\hspace{1cm} (i) $g_0 \in F_G(x, b)$.
ii) There is a b-bilinear function \(p \) on \(X \) which satisfies

\[
(3.4) \quad |p(x - g_0, b)| = \sup_{g \in G} \|x - g, b\| \text{ and } \|p\| = 1,
\]

\[
(3.5) \quad |p(x - g_0, b)| \geq |p(x - g, b)|.
\]

iii) There is a b-bilinear function \(p \) on \(X \) which satisfies (3.4) and

\[
(3.6) \quad p(g_0 - g, b)p(g_0 - x, b) \geq 0.
\]

Proof. Let \(g_0 \in F_G(x, b) \). Then by Theorem 3.4 we have (3.4) and

\[
|p(x - g_0, b)| = \sup_{g \in G} \|x - g, b\| \geq \|x - g, b\| \geq |p(x - g, b)|,
\]

which proves (3.3). Thus, \((i) \Rightarrow (ii)\).

\((ii) \Rightarrow (iii)\). Suppose that there is a b-bilinear function \(p \) on \(X \) satisfying (3.4), (3.5) then

\[
|p(x - g_0, b)|^2 \geq |p(x - g, b)|^2 = |p(x - g_0, b)|^2 + |p(g - g_0, b)|^2 + 2p(g_0 - g, b)p(g_0 - x, b)
\]

\[
\geq |p(x - g_0, b)|^2 + 2p(g_0 - g, b)p(g_0 - x, b),
\]

whence it follows that \(p(g_0 - g, b)p(g_0 - x, b) \geq 0 \).

\((iii) \Rightarrow (i)\) It is a consequence of Theorem 3.4. \qed

Definition 3.6. A linear 2-normed space \((X, \|., .\|)\) is said to be strictly convex if \(\|x + y, c\| = \|x, c\| + \|y, c\|\) and \(c \notin \text{Span}\{x, y\}\) imply that \(x = \alpha y\) for some \(\alpha > 0\).

Definition 3.7. A real-valued function \(f\) on \(X \times < b >\) is said to be b-Gateaux differentiable at a point \(x\) of \(X\) if there is a b-linear functional \(df_x\) such that, for each \(y \in X\),

\[
df_x(y, b) = \lim_{t \to 0} \frac{f(x+ty, b) - f(x, b)}{t},
\]

and we call \(df_x\) the b-Gateaux derivative of \(f\) at \(x\).

Theorem 3.8. Let \(G\) be a subset of a 2-norm space \(X, x \in X\) and \(y \in F_G(x, b)\). Suppose that the functional \(df_{x,b}\) is the Gateaux derivative of the function \(f_G(., .)\) at the point \(x\). Then

\[
df_x(x - y, b) = \|x - y, b\| \text{ and } \|df_x\| = 1.
\]

Proof. If \(G\) is a single point this is clear. Otherwise \(x \neq y\) and \(\|x - y, b\| = f_G(x, b)\), for \(0 < t < 1\),

\[
f_G(x, b) + t\|x - y, b\| = (1 + t)\|x - y, b\| = \|x + t(x - y) - y, b\|
\]

\[
\leq f_G(x + t(x - y), b) \leq f_G(x, b) + t\|x - y, b\|.
\]
As above and Corollary 3.1 so omitted holds throughout, and
\[df_x(x - y, b) = \lim_{t \to 0} \frac{f_G(x + t(y - x), b) - f_G(x, b)}{t} = \|x - y, b\|. \]

Corollary 3.1 implies that \(\|df_x, b\| \leq 1 \), so this also show that \(\|df_x\| = 1 \).

Theorem 3.9. Let \(G \) be a convex subset of a strictly convex 2-normed space \(X, x \in X \setminus G \) and \(b \notin \text{Span}\{x, G\} \). Suppose that the functional \(df_x, b \) is the Gateaux derivative of the function \(f_G(., b) \) at the point \(x \). Then there is at most one \(b \)-farthest point in \(G \) to \(x \).

Proof. Suppose that \(y, z \) of \(F_G(x, b) \). Theorem 3.8 shows that
\[df_x(x - y, b) = \|x - y, b\| = \|x - z, b\| = df_x(x - z, b). \]

\[f_G(x, b) = \frac{1}{2}((\|x - y, b\| + \|x - z, b\|) = \frac{1}{2}(df_x(x - y, b) + df_x(x - z, b)) \]
\[= df_x(x - \frac{y + z}{2}, b) \leq \|x - \frac{y + z}{2}, b\| \]
\[\leq f_G(x, b). \]

Hence equality must hold throughout these inequalities. Since \(X \) is strictly convex 2-normed space and \(b \notin \text{Span}\{x, G\} \), it follows that \(F_G(x, b) \) has at most one element.

The properties of linear 2-normed spaces have been extensively studied by many authors. The same properties also hold in 2-inner product spaces, which were introduced by Diminnie et al [4].

Definition 3.10. Let \(X \) be a linear space. Suppose that \(\langle ., . \rangle \) is a \(R \) valued function defined on \(X \times X \times X \) satisfying the following conditions:

a) \(\langle x, x|z \rangle \geq 0 \) and \(\langle x, x|z \rangle = 0 \) if and only if \(x \) and \(z \) are linearly dependent.

b) \(\langle x, x|z \rangle = z, z|x \),

c) \(\langle x, y|z \rangle = \langle y, x|z \rangle , \)

d) \(\langle ax, x|z \rangle = a\langle x, x|z \rangle \) for any scalar \(a \in R \),

e) \(\langle x + x', y|z \rangle = \langle x, y|z \rangle + \langle x', y|z \rangle \).

\(\langle ., .|., . \rangle \) is called a 2-inner product and \((X, \langle ., .|., . \rangle) \) is called a 2-inner product space (or a 2-perHilbert space).

In any given 2-inner product space \((X, \langle ., .|., . \rangle) \), we can define a function \(\|., .\| \) on \(X \times X \) by
\[\|x, z\| = \langle x, x|z \rangle^{\frac{1}{2}}. \]

Using the above properties, we can prove the Cauchy-Schwarz inequality
\[\|\langle x, y|z \rangle\|^{\frac{1}{2}} \leq \langle x, x|z \rangle \langle y, y|z \rangle. \]
Theorem 3.11. Let G be a bounded subset of 2-inner product space X, $x \in X$, and $y_0 \in G$. If $\langle x - y, y_0 - y \rangle b \leq 0$ for all $y \in G$, then $y_0 \in F_G(x, b)$.

Proof. Suppose that $\langle x - y, y_0 - y \rangle b \leq 0$ for all $y \in G$, then

$$\|x - y, b\| = \langle x - y, x - y \rangle b = \langle x - y, x - y_0 + y_0 - y \rangle b$$

$$= \langle x - y, x - y_0 \rangle b + \langle x - y, y_0 - y \rangle b$$

$$\leq \langle x - y, x - y_0 \rangle b \leq \|x - y, b\| \|x - y_0, b\|.$$

Hence $\|x - y, b\|^2 \leq \|x - y_0, b\|$ i.e. $y_0 \in F_G(x, b)$. □

Definition 3.12. A set A in a 2-normed space X is said to be b-strongly convex with constant $r > 0$ if there exists a set $A_1 \subseteq E$ such that

$$A = \cap_{a \in A_1} B_r^b(a),$$

where $B_r^b(a) = \{y \in X : \|x - a, b\| \leq r\}.$

A set A is called a b-strongly convex set of radius $R > 0$ if this set is the intersection of balls of radius R.

In the following, we study uniqueness problem for a point of closed bounded set that is the farthest point from a given point in 2-inner product spaces.

Lemma 3.13. Let G be a b-strongly convex set of radius $r > 0$ in the 2-inner product space X. Then the inequality

$$\|a_1 - a_2, b\|^2 \leq R\|a_1 - a_2, p_2 - p_1 | b\|,$$

holds for vectors p_1, p_2 such that $\|p_1, b\|, \|p_2, b\| \geq 1.$

Proof. We fix vectors p_1, p_2. According to the definition of strongly convex sets, we have

$$G \subseteq B_r^b(a_1 - R \frac{p_1}{\|p_1, b\|}) \cap B_r^b(a_2 - R \frac{p_2}{\|p_2, b\|}),$$

which implies the inequalities

$$\|a_2 - a_1 + R \frac{p_1}{\|p_1, b\|}, b\|^2 \leq R^2, \quad \|a_1 - a_2 + R \frac{p_2}{\|p_2, b\|}, b\|^2 \leq R^2$$

and hence

$$\|a_2 - a_1 + R \frac{p_1}{\|p_1, b\|}, b\|^2 = \langle a_2 - a_1 + R \frac{p_1}{\|p_1, b\|}, a_2 - a_1 + R \frac{p_1}{\|p_1, b\|} \rangle b,$$

$$= \langle a_2 - a_1, a_2 - a_1 | b \rangle + R \frac{p_1}{\|p_1, b\|} | R \frac{p_1}{\|p_1, b\|} | b \rangle + 2 \langle a_2 - a_1, R \frac{p_1}{\|p_1, b\|} | b \rangle \leq R^2,$$

and hence

$$\|a_1 - a_2, b\|^2 \leq 2R \langle a_1 - a_2, -p_1 | b \rangle$$

$$\|a_1 - a_2, b\|^2 \leq 2R \langle a_1 - a_2, p_2 | b \rangle.$$

We sum the last two inequalities and obtain the desired inequality. □
For a set G in a 2-normed space X and a number $r > 0$, we define the set
\[T^b_r(G) = \{ x \in X : f_G(x, b) > r \}. \]

Theorem 3.14. Let G be a b-strongly convex set of radius $r > 0$ in the 2-inner product space X. Then for $x_1, x_2 \in T^b_r(G)$ the inequality
\[\| f_b(x_1) - f_b(x_2), b \|^2 \leq \frac{r}{R - r} \| x_1 - x_2, b \|, \]
holds for any $R > r$ and $f_b(x_i) \in F_G(x_i, b)$, $i = 1, 2$.

Proof. We choose a number $R > r$, and introduce the vectors
\[p_i = \frac{1}{R} (f_b(x_i) - x_i), i = 1, 2. \]
From Lemma 3.13, we obtain
\[
\| f_b(x_1) - f_b(x_2), b \|^2 \\
\leq \ r (f_b(x_1) - f_b(x_2), p_2 - p_1 | b) \\
= \ r (f_b(x_1) - f_b(x_2), \frac{1}{R} (f_b(x_2) - x_2) - \frac{1}{R} (f_b(x_1) - x_1), | b) \\
= \ \frac{r}{R} \| f_b(x_1) - f_b(x_2), b \|^2 - \frac{r}{R} (f_b(x_1) - f_b(x_2), x_2 - x_1 | b).
\]
Hence by Cauchy-Schwarz inequality we get
\[
(1 - \frac{r}{R}) \| f_b(x_1) - f_b(x_2), b \|^2 \leq \frac{r}{R} \| f_b(x_1) - f_b(x_2), b \| \| x_1 - x_2, b \|.
\]
which implies formula (3.7).

Corollary 3.15. Let G be a b-strongly convex set of radius $r > 0$ in the 2-inner product space X, $x \in T^b_R(G)$ and $b \notin \text{Span}\{G\}$. Then there is at most one b-farthest point in G to x.

Proof. It is a consequence of Theorem 3.14.

Acknowledgement

The authors thank the anonymous referee for his/her remarks.

References

Some results on farthest points in 2-normed spaces

Received by the editors September 8, 2015