The Connected \textit{p}-Center Problem with Extension

William Chung-Kung Yen and Chien-Tsai Chen

Department of Information Management, Shih Hsin University, Taipei, Taiwan
Email: \{ckyen001@ms7.hinet.net, hbk_156@hotmail.com\}

Abstract

Let $G(V, E, W)$ be a graph with n vertices and m edges, where each edge e is associated with a positive distance $W(e)$. The traditional p-Center problem is to locate some kind of facilities at p vertices of G to minimize the maximum distance between any vertex and its nearest facility. This paper proposes a practical constraint: the subgraph induced by the p facility vertices must be connected and the problem is called the Connected p-Center problem. We show that the problem on bipartite graphs is NP-Hard, but $O(n)$-time solvable on trees. After then, the algorithmic result on trees is extended to the situation that some vertices in V cannot be selected as facility vertices.

Keywords: connected p-center, induced subgraph, NP-Hard, bipartite graph, tree, forbidden vertex

1. Introduction

Client/server architecture has become a basis for networks and distributed systems. Consider the situation that there are resources, e.g., servers, programs, routers, data objects, etc., to be built at some vertices to provide services requested by the clients all over a computer network. If there is no facility at a node u, the clients at u need to move to a nearest node at which there is a facility located to get the required service. These types of applications correspond to the fundamental discrete location problem, the p-Center problem.

Let $G(V, E, W)$ be a graph with n vertices and m edges, where each edge e is associated with a positive distance $W(e)$. For any $Q \subseteq V$, the distance between Q and a vertex $v \not\in Q$, is defined as $d(v, Q) = \min_{u \in Q} \{d(v, u)\}$, where $d(x, y)$ is the length of the shortest path between any pair of vertices x and y. Meanwhile, we define $\delta(Q) = \max_{v \not\in Q} \{d(v, Q)\}$. The p-Center problem can be described as follows [5].

\textbf{The p-Center problem:} Given a graph $G(V, E, W)$ and an integer $p \geq 1$, identify a subset $H = \{g_1, \ldots, g_p\}$ of V, called a p-center of G, such that $\delta(H)$ is minimized.

Fig. 1 shows an input instance of the 2-Center problem. It is easy to verify that $H = \{v_3, v_6\}$ is a 2-center of this graph such that $\delta(H) = 8$ is minimized.

Fig. 1: A graph with distances on edges.

The p-Center problem has wide-area applications to real-world problems. Extensive research effort has been done on it [1, 4, 5, 10]. The problem has been known to be NP-Hard [7]. In [11], the author provided an $O(n)$-time algorithm for the problem on interval graphs ($p = 1$). The author in [12] extended the result of [11] general $p \geq 1$ and the time-complexity is still $O(n)$. Lan et al. proposed a linear-time algorithm for finding centers on weighted cactus graphs [14]. Frederickson solved this problem on trees in linear-time (without necessarily restricting the location of the facilities to the vertices of the tree) using parametric search [6]. Bespamyatnikh et al. gave an $O(pn)$-time algorithm for the p-center problem on circular-arc graphs [3]. Hsu et al. presented a general p-facility location problem on the real line with unimodal distance functions and designed an $O(pn^2)$-time algorithm for it [8]. Kariv and Hakimi designed an $O(n^{p+1} \log(p-1))$-time algorithm for the p-center problem on general graphs [10]. Tamir showed that the p-center problems on weighted and unweighted networks can be solved in $O(n^p \log^2 n)$-time and $O(n^{p+1} \log n)$-time, respectively [13]. In addition, some works have been done on approximation algorithms for finding p-centers on graphs [2, 9].

This paper proposes a very practical constraint: the subgraph induced by the p facility vertices must be connected. The issue is very practical and essential when some facility vertex, say v, has very heavy task load. No routing overhead will occur for other facility vertices to support the services provided by v if the p facility vertices induce a connected subgraph. A p-center of this type is called a connected p-center hereafter. In our concerns, it is reasonable and natural to assume that $p \geq 2$ and the number of the vertices in

\footnote{This research was supported by National Science Council, Taiwan, under the contract number NSC94-2213-E-128-005.}
G is at least 2, i.e., n ≥ 2, in the rest of this paper.

The Connected p-Center Problem (The CpC problem): Given a graph G(V, E, W) and an integer p ≥ 2, identify a connected p-center Q = {q₁, …, qₚ} of V such that δ(Q) is minimized. Q is called an optimal solution of the CpC problem on G hereafter.

Let us examine Fig. 1 again. Q = {vₓ, vᵧ} is a connected 2-center such that δ(Q) = 9 is minimized.

2. The CpC Problem on Bipartite Graphs

A graph G(V, E) is a bipartite graph if V can be partitioned into two disjoint sets I and J such that if (u, v) ∈ E, then either (u ∈ I and v ∈ J) or (u ∈ J and v ∈ I). A bipartite graph will be denoted by G(I ∪ J, E) hereafter. The following decision problem and NP-complete problem are introduced.

The CpC decision problem: For a graph G(V, E, W), an integer p ≥ 2, and a positive constant λ, determine whether there exists a connected c-center Q of G such that δ(Q) ≤ λ or not?

The Monotone Satisfiability problem (The MSAT problem): Given a set of Boolean clauses in the conjunctive normal form in which each clause contains either only positive literals, say xi, or only negative literals, say xᵢ, determine whether the given Boolean formula is satisfiable or not.

Lemma 1. The CpC decision problem on bipartite graphs is NP-complete.

Proof: It is clear that the CxP decision problem is a NP problem. Suppose that there is an instance of the MSAT problem with p variables x₁, …, xₚ, p ≥ 2, and r clauses c₁, …, cᵣ. Assume that C(p) = {c₁, …, cᵣ} and C(N) = {cₛ₊₁, …, cᵣ} represent the set of clauses containing positive literals and negative literals, respectively. If one of C(p) and C(N) is empty, then the MSAT problem is trivial. Hence, we assume that both C(p) and C(N) are nonempty.

Denote A = {a₁, …, aₛ} ⊆ B = {b₁, …, bₛ}, X = {x₁, …, xₛ}, and X = {xₛ₊₁, …, xᵣ}. A graph G(V, E) can be constructed by the following transformation rules for any given positive constant λ:

1. V = C(p) ∪ C(N) ∪ X ∪ X ∪ A ∪ B.
2. E = {(cᵣ, xₛ₊₁) | for all cᵣ contains xₛ₊₁, 1 ≤ j ≤ λ} ∪ {(cₛ₊₁, xₛ₊₁) | for all cₛ₊₁ contains xₛ₊₁, 1 ≤ j ≤ λ} ∪ {(xᵣ, aₛ₊₁), (aₛ₊₁, bₛ) | 1 ≤ j ≤ λ} ∪ {(xₛ₊₁, aₛ₊₁), (aₛ₊₁, bₛ) | 1 ≤ j ≤ λ} ∪ {(xₛ₊₁, xₛ₊₁) | for all 1 ≤ s ≠ t ≤ λ}.
4. W(e) = λ, for all other edges e.

It is very clear that the time-complexity to construct the graph G is polynomial with respect to p and r, and G is a bipartite graph in which I = C(p) ∪ X ∪ A and J = C(N) ∪ X ∪ B.

Assume that there is a truth assignment for the Boolean formula. We can assume that x₁ = … = xₛ = TRUE and xₛ₊₁ = … = xᵣ = FALSE. Let Q = {xₛ₊₁, …, xₛ₊₁, xₛ₊₁, …, xᵣ}. Since both C(p) and C(N) are nonempty, we must have Q ∩ X ≥ 1 and Q ∩ X ≥ 1. Meanwhile, each xₛ₊₁ is adjacent to xₛ₊₁, for all s ≠ t. The subgraph induced by Q must be connected. We can easily verify that δ(Q) ≤ λ, i.e., Q a connected c-center of G such that δ(Q) ≤ λ.

Suppose that Q is connected c-center of G such that δ(Q) ≤ λ. We claim that for each pair xₛ and xₛ₊₁, at least one of them belongs to Q. Let there exist j such that xₛ ≠ Q and xₛ₊₁ ≠ Q. Since Q induces a connected subgraph and p ≥ 2, we have aₛ₊₁ ≠ Q and bₛ₊₁ ≠ Q. Let uₛ and vₛ be the nearest vertices in Q corresponding to aₛ and bₛ, respectively. The construction rules of G imply that d(uₛ, aₛ) ≥ λ and d(νₛ, bₛ) ≥ λ. It contradicts to the fact that δ(Q) ≤ λ.

Theorem 1. The CpC problem on bipartite graphs is NP-Hard, p ≥ 2.

3. An O(n)-time Algorithm on Trees

We prove the following lemma to identify the starting vertex for obtaining an optimal solution of a tree T.

Lemma 2. Given a tree T, suppose that u and v is a pair of vertices such that d(u, v) ≥ d(x, y), for all x, y ∈ V. Let m be the middle point of the shortest path from u to v, i.e., d(u, m) = d(m, v) = (1/2) * d(u, v) and r be a vertex nearest to m. If Q is a connected c-center of T such that r ∈ Q, then, δ(Q) ≤ δ(H), for all connected c-center H in which r ∈ H.

Proof: By the definition of vertex r, the middle point must lie on some edge incident with r. Here we just assume that m lies within the edge (r, xₛ) as shown in Fig. 2, where r is assigned as the root of T and xₛ, …, xᵣ are the children of r. The other case can be easily handled using the same way.

Denote V(T(xₛ)) as the vertex-set of the subtree rooted at xₛ, 1 ≤ j ≤ k. It is easy to see that {r, xₛ} ⊆ Q. This implies that δ(Q) ≤ max{d(v, xₛ), d(u, r)} < d(v, m) = (1/2)d(u, v). Since r ∈ H, by the definitions of trees and connected c-centers, we must have H ⊆ V(T(xₛ)), for some subtree T(xₛ). The following two cases will be handled, respectively.

Case 1. H ⊆ V(T(xₛ)): We can derive that δ(H) ≥ d(u, xₛ) = d(u, xₛ₊₁) + d(xₛ₊₁, m) + d(m, xᵣ) = (1/2)
\text{Algorithm Connected_p_Center_on_Trees}

\textbf{Input:} A tree \(T \) such that each edge \(e \) is associated with a positive distance \(\theta(e) \) and a positive integer \(p > 1 \).

\textbf{Output:} A connected \(p \)-center \(Q \) such that \(\delta(Q) \) is minimized.

\textbf{Step 1:} Find a pair of vertices \(u \) and \(v \) such that \(d(u, v) \geq d(x, y) \), for all pairs of vertices \(x \) and \(y \) of \(T \).

\textbf{Step 2:} Identify the root \(r \) as stated above;

\textbf{Step 3:} Compute \(\mu(z) \) for each vertex \(z \);

\textbf{Step 4:} \(Q = \{ q_1, \ldots, q_p \} \) such that \(\mu(q_1), \ldots, \mu(q_p) \) are the first \(p \) largest numbers among \(\{ \mu(z) \mid z \in V \} \);

\textbf{Step 5:} Return \(Q \);

\textbf{End Connected_p_Center_on_Trees}

\textbf{Theorem 2.} The \(CpC \) problem on trees can be solved in \(O(n) \)-time.

\textbf{Proof:} In the above algorithm, Step 1 through Step 3 can be done in \(O(n) \)-time [5]. Step 4 involves finding the \(p \)th largest number among \(\{ \mu(z) \mid z \in V \} \) and can be done in \(O(n) \)-time. Thus, the total time-complexity is \(O(n) \).

4. Extension to Trees with Forbidden Vertices

In real-world systems, some vertices may not be suitable as center vertices due to function failure or some practical constraints such as capacity and processing ability. We use \(F \) to represent such vertices and called them \textit{forbidden vertices}. The section will extend the results of Section 3 to the situation that the vertices in \(F \subseteq V \) cannot be included in any connected \(p \)-center \(H \) of a tree \(T \).

\textbf{Definition 3.} For each vertex \(z \) of \(T \), \(\Delta(z) \) is defined as follows: (1) \(\Delta(z) = 0 \), if \(z \in F \). (2) \(\Delta(z) = 1 \), if \(z \) is a leaf and \(z \notin F \). (3) \(\Delta(z) = \sum_{j \in \text{Children}(z)} \Delta(y) + 1 \), if \(z \) is not a leaf and \(z \notin F \).

Fig. 3 shows a tree with forbidden vertices (black vertices) and the numbers within braces are the \(\Delta \) values of each vertex. Any vertex can be assigned as the root. For example, \(\Delta(y_4) = \sum_{j \in \text{Children}(y_4)} \Delta(u) + 1 = \Delta(y_5) + \Delta(y_7) + 1 = 3 \). The vertex \(a \) is the root of \(T \) and \(\Delta(a) = \Delta(y_1) + \Delta(y_3) = 3 \).

\textbf{Lemma 5.} Given an integer \(p \geq 2 \), let \(T_1, \ldots, T_k \) be the disjoint subtrees obtained via deleting all vertices in \(F \). The following properties hold. (1) \(|W(T_j)| < p \) iff \(\Delta(u) < p \), for all \(u \in T_j \). (2) Let \(H \) be any connected \(p \)-center of \(T \) such that \(H \cap F = \emptyset \) and \(T^* \) be the union of the subtrees satisfying the property (1). Then, \(H \cap \text{Conv}(T^*) = \emptyset \).

Lemma 5 implies that all vertices in \(T^* \) can be viewed as additional forbidden vertices. For example, in Fig. 3, when \(p = 3 \), \(\{ y_3, y_4 \}, \{ y_6 \}, \) and \(\{ y_{11} \} \) can be viewed as additional forbidden vertices. Therefore, the set of all forbidden vertices is now...
shown in Fig. 4 (black vertices). In the rest of this section, we assume that all vertices in T^* are included into forbidden vertices. The following lemma can be proved using similar technique in Lemma 2.

Lemma 6. Given a tree T with forbidden set F, let u and v is a pair of vertices such that $d(u, v) \geq d(x, y)$, for all pairs $x, y \in V$. Let m be the middle point of the shortest path from u to v and r be a non-forbidden vertex nearest to m (must exist such vertex). Suppose that Q is a connected p-center of T such that $r \in Q$ and $Q \cap F = \emptyset$. Then, $\delta(Q) \leq \delta(H)$, for all connected p-center H in which $r \notin H$ and $H \cap F = \emptyset$.

After finding the starting vertex, it is easy to verify that the remaining task can be achieved using similar techniques in Section 3.

Theorem 3. The CpC problem on trees with forbidden vertex-set F can be solved in $O(n)$-time.

![Fig. 4: Adding additional forbidden vertices to Fig. 3.](image)

5. Conclusions

This paper addressed the Connected p-Center problem on graphs. It can be viewed as a practical variant of the traditional p-Center problem. We showed that the problem is NP-Hard on bipartite graphs and $O(n)$-time solvable on trees. Finally, the algorithmic result was extended to the situation that the input tree has forbidden vertices and time-complexity is still $O(n)$.

In the future, it is practical and meaningful to extend our algorithms to other classes of graphs such as cactus graphs and planar graphs. Meanwhile, identifying other variants of the p-Center problem is a very important issue. For example, restricting that the p-centers must be “total”, i.e., the subgraph induced by the p-centers has no isolated vertices.

References

