An Interconnect-Centric Design Flow for Nanometer Technologies

Jason Cong

UCLA Computer Science Department

Email: cong@cs.ucla.edu

Tel: 310-206-2775

URL: http://cadlab.cs.ucla.edu/~cong

Exponential Device Scaling

- **■** Moore's Law
 - **♦** The min. transistor feature size decreases by 0.7X every three years (Electronics Magazine, Vol. 38, April 1965)
 - **♦** True in the past 30 years!
- National Technology Roadmap for Semiconductors (NTRS'97)

Technology (um)	0.25	0.18	0.15	0.13	0.10	0.07
Year	1997	1999	2001	2003	2006	2009
# transistors	11M	21M	40M	76M	200M	520M
On-Chip Clock (MHz)	750	1200	1400	1600	2000	2500
Area (mm²)	300	340	385	430	520	620
Wiring Levels	6	6-7	7	7	7-8	8-9

Global/Local Interconnect Delays vs. Gate Delays

Optimization is obtained buffer insertion/sizing and wire sizing

Jason Cong 10/16/00

3

Coupling Noise

Coupling noise from two adjacent aggressors to the middle victim wire of 1mm with 2x min. spacing. Rise time is 10% of project clock period.

• Coupling noise depends strongly on both spatial and temporal relations!

Clock cycles required for traveling 2cm line under BIWS (buffer insertion and wire sizing)

Estimated by IPEM On NTRS'97 technology

Driver size: 100x min gate Receiver size: 100x min gate Buffer size: 100x min gate

How Far Can We Go in Each Clock Cycle

- NTRS'97 0.07um Tech
- 5 G Hz across-chip clock
- 620 mm² (24.9mm x 24.9mm)
- **IPEM BIWS estimations**
 - ♦ Buffer size: 100x
 - ♦ Driver/receiver size: 100x
- From corner to corner:
 - ♦ 7 clock cycles

Two Important Implications

■ Interconnects determine the system performance

Interconnect/communication-centric design methodology

■ Need multiple clock cycles to cross the global interconnects in giga-hertz designs

Pipelining/retiming on global interconnects

Interconnect-Centric Design Methodology

Proposed transition

device/function centric

interconnect/communication centric

Analogy

Interconnect-Centric IC Design Flow Under Development at UCLA

Interconnect-Centric IC Design Flow Under Development at UCLA

Architecture/Conceptual-level Design

Dogian Specification

Interconnect Planning

- Physical Hierarchy Generation
- Foorplan/Coarse Placement with Interconnect Planning
- Interconnect Architecture Planning

erconnect Performance imation Models (IPEM)

- OWS
- SDWS
- BISWS

abetraction

Structure view
Functional view
Physical view
Timing view

HDM

Interconnect

Performance-driver

Pseudo Pin Assignment

Interconnec

Route Plai

Interconnect Optimization (TRIO)

- Topology Optimization with Buffer Insertion
- Wire sizing and spacing
- Simultaneous Buffer Insertion and Wire Sizing
- Simultaneous Topology Construction with Buffer Insertion and Wire Sizing

Point-to-Point Gridless Routing

Jason Cong

Final Layout

10

Interconnect-Centric IC Design Flow Under Development at UCLA

Interconnect Planning

- Physical Hierarchy Generation
- Floorplan/Coarse Placement with Interconnect Planning
- Interconnect Architecture Planning

Physical Hierarchy Generation

- Designs are hierarchical due to high complexity
- Design specification (in HDL) follows logic hierarchy
- Logic hierarchy may not be suitable to be embedded on a 2D silicon surface, resulting poor interconnect designs
 - RT-level floorplanning is a bad idea!
- Solution: transform logic hierarchy to physical hierarchy

Example of Logic Hierarchy in Final Layout

Example of Logic Hierarchy in Final Layout

Transform Logic Hierarchy to Physical Hierarchy

- Simultaneous partitioning, coarse placement, and retiming on the *flat* netlist to generate a good physical hierarchy
 - Synthesis will follow
- Use multi-level optimization to handle with the complexity

Role of Partitioning

- Importance of Partitioning:
 - **◆** Conventional view: enables divide-and-conquer
 - **◆ DSM view: defines global and local interconnects**

Need of Considering Retiming during Partitioning

- Retiming/pipelining on global interconnects
- Multiple clock cycles are needed to cross the chip
- Proper partitioning allows retiming to hide global interconnect delays.

18

Sequential Arrival Time (SAT)

- **■** Definition [Pan et al, TCAD98]
 - $l(v) = \max \text{ delay from PIs to } v \text{ after opt. retiming under a given clock period } f$
 - $l(v) = \max\{l(u) f \cdot w(u,v) + d(u,v) + d(v)\}$

$$\begin{array}{c|ccc} u & & v \\ \hline l(u) & w(u,v) & d(v) \end{array}$$

- Relation to retiming: $r(v) = \frac{\dot{e}l(v)}{f} \dot{u} 1$
- Theorem: P can be retimed to $f + \max\{d(e)\}$ iff $l(POs) \pounds f$

$$l(u) = 7$$
 (u)
 $d(v) = 1, d(e) = 2, f = 5$
 $l(v) = \max\{7-5\cdot 1+2+1, 3+2+1\} = 6$

Jason Cong 10/16/00 19

Simultaneous Partitioning/Placement with Retiming

- Minimize SAT during partitioning/placement
- Apply optimal retiming to the resulting solution (best suitable for retiming)
- Partitioning/placement with retiming can be applied recursively to generate physical hierarchy
- Good news: SAT can be computed efficiently (linear time in practice, quadratic time in the worst case)
- Difficulty: Flattened netlist can be very large!
 - Solution: use multi-level method

Multi-level Partitioning

- Iterative coarsening (clustering) to generate a multi-level hierarchy
- Initial partitioning on the coarsest level
- Iterative de-clustering and refinement

Initial Partitioning

Hierarchical Approach vs Multi-Level Approach

- Hierarchical approach: higher-level design *constrains* lower-level designs
 - Not sufficient information at higher-level
 - Mistake at higher level is impossible or costly to correct
- Multi-level approach: finer-level design refines coarse-level design
 - Converge to better solution as more details are considered

Example: Multi-Level Partitioning with Coarse Placement & Retiming

- Bottom-up multi-level clustering
- Top down cell move based multi-level partitioning
- Sequential timing analysis at each level[Cong and Lim, ICCAD00]

Success of Multi-Level Approach

- First used to solve partial differential equations (multigrid method)
- Successfully applied to circuit partitioning (hMetis [Karypis et al, 1997])
 - Best partitioner for cut-size minimization
- Successfully applied to physical hierarchy generation (HPM and GEO [Cong et al, DAC'00 & ICCAD'00])
 - 30-40% delay reduction compared to hMetis
- Successfully applied to circuit placement [Chan et al, ICCAD'00]
 - 10x speed-up over GordianL

Experimental Results

- Comparison with existing algorithms
 - hMetis [DAC97] + retiming + slicing floorplan [Algo89]
 - HPM [DAC00] + slicing floorplan [Algo89]
 - GEO: simultaneous partitioning + coarse placement + retiming
 Close to 40% delay reduction!

Interconnect Planning

- Physical Hierarchy Generation
- Floorplan/Coarse Placement with Interconnect Planning
 - Example: Buffer Block Planning in Floorplanning
- Interconnect Architecture Planning

Demand of Buffers in Nanometer Designs

■ Need to insert buffers in long global interconnects for performance optimization

Technology (um)	0.25	0.18	0.13	0.10	0.07
#buffer per chip	5k	25k	54k	230k	797k

Source: [Cong'97, SRC Work Paper]

http://www.src.org/research/frontier.dgw

(Estimated based on NTRS'97 & [Davis-Meindl'97])

Buffer Block Planning Problem

[Cong-Kong-Pan, ICCAD'99]

- **■** Restriction from hard IP blocks
- Implications on P/G routing
- Impact on floorplan configuration
- => need to plan ahead for buffers.

Optimal Buffer Location Can Be Relaxed

■ Closed-form formula of feasible region (FR) for inserting one buffer to meet delay constraint

$$x \in [x \min, x \max]$$

$$x = M A X \left(0, \frac{K_2 - \sqrt{K_2^2 - 4K_1K_3}}{2K_1}\right)$$

$$x = M IN \left(l, \frac{K_2 + \sqrt{K_2^2 - 4K_1K_3}}{2K_1}\right)$$

Jason Cong 10/16/00 29

Feasible Region (FR) Is Very Large

■ Even under tight delay constraint, FR for BI can still be very large!

❖ Delay budget is (1+Delta) T_{opt} (the best delay by optimal buffer insertion)

Delta	FR
1%	19%
5%	43%
10%	60%
20%	86%

Extension: 2D Feasible Region

■ FR extended to 2-dimension with obstacles

Experimental Results of Buffer Block Planning

Buffer block planning reduces # buffer blocks, better meets timing constraints, and use smaller area

Concluding Remarks

- Interconnects determine system performance
- Interconnect-centric design is needed
 - Interconnect planning
 - ◆ Interconnect synthesis
 - ◆ Interconnect layout
- Physical hierarchy generation is crucial for interconnect planning
- A good combination of partitioning/placement and retiming can hide global interconnect delays, and lead to good physical hierarchy
- Multi-level method is an effective way to cope with complexity