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We implement a relatively new analytical technique, the variational iteration decompo-
sition method (VIDM), for solving the eighth-order boundary value problems. The pro-
posed method is an elegant combination of variational iteration method and decompo-
sition method. The analytical results of the equations have been obtained in terms of
convergent series with easily computable components. Numerical work is given to check
the efficiency of the method. Comparisons are made to confirm the reliability and accu-
racy of the technique. The technique can be used as an alternative for solving nonlinear
boundary value problems.
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1. Introduction

In this paper, we consider the general eighth-order boundary value problem of the type

y(viii)(x) + f (x)y(x)= g(x), x ∈ [a,b], (1.1)

with boundary conditions

y(a)= α0, y(b)= α1, y(2)(a)= ε0, y(2)(b)= ε1,

y(4)(a)= ξ0, y(3)(b)= ξ1, y(6)(a)= σ0, y(6)(b)= σ1.
(1.2)

A class of characteristic-value problems of higher order (as higher as 24) is known to
arise in hydrodynamic and hydromagnetic stability [1, 2]. In addition, it is well known
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that when a layer of fluid is heated from below and is subject to the action of rotation, in-
stability may set in as overstability [1, 3, 4]. This instability may be modeled by an eighth-
order ordinary differential equation with appropriate boundary conditions [1, 4, 5]. For
more discussion about the eighth-order boundary value problems, see [1–3, 5–7] and
the references therein. The literature of numerical analysis contains little on the solu-
tion of the eighth-order boundary value problems [6]. Research in this direction may be
considered in its early stages. Theorems which list the conditions for the existence and
uniqueness of solutions of such problems are contained in a comprehensive survey by
Agarwal [8].

The boundary value problems of higher order have been investigated because of both
of their mathematical importance and the potential for applications in hydrodynamic
and hydromagnetic stability. Finite-difference method was employed in [2, 6] to find the
solution of eighth-order boundary value problems. The obtained results were divergent
at points adjacent to the boundary. In a later study, Siddiqi and Twizell [4] used octic
polynomial spline for solving these problems. Twizell et al. [2, 4, 6] also solved some
other higher-order problems and encountered the same deficiencies. The divergent re-
sults are due to the use of lower-order test function in the spline methods. The spline
function values at the mid knots of the interpolation interval and the corresponding val-
ues of the even-order derivatives are related through consistency relations. However, the
performance of the techniques used so far is well known that it provides the solution at
grid points only. Modified Adomian decomposition method was used in [5] to find the
analytical solution of linear and nonlinear boundary value problems of eighth order. Re-
cently, Noor and Mohyud-Din applied homotopy perturbation method [9–15] and vari-
ational iteration method [9, 16–22] for solving higher-orders boundary value problems,
see [3, 21–25] and the references therein. The obtained results were compared with the
exact solutions. Inspired and motivated by the ongoing research in this area, we apply the
variational iteration decomposition method (VIDM) to find solutions of eighth-order
boundary value problems. It is worth mentioning that our proposed technique can han-
dle any boundary value problem with a set of boundary conditions defined at any order
derivatives and is an elegant combination of variational iteration method and decompo-
sition method.

He [9, 16–19] developed the variational iteration method for solving linear, nonlinear,
initial, and boundary value problems. It is worth mentioning that method was first con-
sidered by Inokuti et al. [20]. Since the beginning of 1980s, the Adomian decomposition
method has been applied to a wide class of functional equations [5, 26–28]. In these meth-
ods, the solution is given in an infinite series usually converging to an accurate solution,
see [5, 26–28] and the references therein. In this paper, we apply the variational iteration
decomposition method (VIDM) which is an elegant combination of variational iteration
method and the Adomian’s decomposition method to solve eighth-order boundary value
problems. This idea has been used by Abbasbandy [29, 30] for solving quadratic Ric-
cati differential equation and Klein-Gordon equation. The basic motivation of this paper
is to apply the variational iteration decomposition method (VIDM) for solving eighth-
order boundary value problems. It is shown that the variational iteration decomposition
method provides the solution in a rapid convergent series. To make the implementation



M. A. Noor and S. T. Mohyud-Din 3

of the proposed method simpler, we first rewrite eighth-order boundary value problem
in an equivalent system of integral equations using a suitable transformation. This alter-
nate transformation plays a pivotal and fundamental role in solving the boundary value
problems. We use the VIDM to solve equivalent system of integral equations efficiently.
The VIDM solves effectively, easily, and accurately a large class of linear, nonlinear, par-
tial, deterministic, or stochastic differential equations with approximate solutions which
converge very rapidly to accurate solutions. Several examples are given to illustrate the re-
liability and performance of the proposed method. We would like to emphasize that the
VIDM may be considered as an important and significant improvement of the already
developed methods.

2. Variational iteration method

To illustrate the basic concept of the technique, we consider the following general differ-
ential equation:

Lu+Nu= g(x), (2.1)

where L is a linear operator, N a nonlinear operator and g(x) is the forcing term. Accord-
ing to variational iteration method [9, 16–20], we can construct a correct functional as
follows:

un+1(x)= un(x) +
∫ x

0
λ
(
Lun(s) +Nũn(s)− g(s)

)
ds, (2.2)

where λ is a Lagrange multiplier [16–20], which can be identified optimally via variational
iteration method. The subscripts n denote the nth approximation, ũn is considered as a
restricted variation. That is, δũn = 0; (2.2) is called as a correct functional.

The solution of the linear problems can be solved in a single iteration step due to the
exact identification of the Lagrange multiplier.

The principles of variational iteration method and its applicability for various kinds
of differential equations are given [16–19]. For the sake of simplicity and to convey the
idea of the technique, we consider the following system of differential equations:

x′i (t)= fi
(
t,xi

)
, i= 1,2,3, . . . ,n, (2.3)

subject to the boundary conditions

xi(0)= ci, i= 1,2,3, . . . ,n. (2.4)

To solve the system by means of the variational iteration method, we rewrite the system
(2.3) in the following form:

x′i (t)= fi
(
xi
)

+ gi(t), i= 1,2,3, . . . ,n, (2.5)

subject to the boundary conditions xi(0)= ci, i= 1,2,3, . . . ,n and gi is defined in (2.1)
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The correct functional for the nonlinear system (2.3) can be approximated as

x(k+1)
1 (t)= x(k)

1 (t) +
∫ t

0
λ1

(
x′(k)

1 (T), f1
(
x̃(k)

1 (T), x̃(k)
2 (T), . . . , x̃(k)

n (T)
)
− g1(T)

)
dT ,

x(k+1)
2 (t)= x(k)

2 (t) +
∫ t

0
λ2

(
x′(k)

2 (T), f2
(
x̃(k)

1 (T), x̃(k)
2 (T), . . . , x̃(k)

n (T)
)
− g2(T)

)
dT ,

...

x(k+1)
n (t)= x(k)

n (t) +
∫ t

0
λn
(
x′(k)
n (T), fn

(
x̃(k)

1 (T), x̃(k)
2 (T), . . . , x̃(k)

n (T)
)
− gn(T)

)
dT ,

(2.6)

where λi =±1, i= 1,2,3, . . . ,n, are Lagrange multipliers, x̃1, x̃2, . . . , x̃n denote the restricted
variations.

For λi =−1, i= 1,2,3, . . . ,n, we have the following iterative schemes:

x(k+1)
1 (t)= x(k)

1 (t)−
∫ t

0

(
x′(k)

1 (T), f1
(
x(k)

1 (T),x(k)
2 (T), . . . ,x(k)

n (T)
)
− g1(T)

)
dT ,

x(k+1)
2 (t)= x(k)

2 (t)−
∫ t

0

(
x′(k)

2 (T), f2
(
x(k)

1 (T),x(k)
2 (T), . . . ,x(k)

n (T)
)
− g2(T)

)
dT ,

...

x(k+1)
n (t)= x(k)

n (t)−
∫ t

0

(
x′(k)
n (T), fn

(
x(k)

1 (T),x(k)
2 (T), . . . ,x(k)

n (T)
)
− gn(T)

)
dT.

(2.7)

If we start with the initial approximations xi(0) = ci, i = 1,2,3, . . . ,n, then the approxi-
mations can be completely determined; finally we approximate the solution

xi(t)= lim
k→∞

x(n)
i by the nth term x(n)

i (t) for i= 1,2,3, . . . ,n. (2.8)

3. Adomian’s decomposition method

Consider the differential equation [5, 26–28]

Lu+Ru+Nu= g, (3.1)

where L is the highest-order derivative which is assumed to be invertible, R is a linear
differential operator of lesser order than L, Nu represents the nonlinear terms, and g is
the source term. Applying the inverse operator L−1 to both sides of (3.1) and using the
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given conditions, we obtain

u= f −L−1(Ru)−L−1(Nu), (3.2)

where the function f represents the terms arising from integrating the source term g and
by using the given conditions. Adomian’s decomposition method [5, 26–28] defines the
solution u(x) by the series

u(x)=
∞∑
n=0

un(x), (3.3)

where the components un(x) are usually determined recurrently by using the relation

u0 = f ,

uk+1 = L−1(Ruk)−L−1(Nuk
)
, k ≥ 0.

(3.4)

The nonlinear operator F(u) can be decomposed into an infinite series of polynomials
given by

F(u)=
∞∑
n=0

An, (3.5)

where An are the so-called Adomian’s polynomials that can be generated for various
classes of nonlinearities according to the specific algorithm developed in [5, 26–28] which
yields

An =
(

1
n!

)(
dn

dλn

)
F

( n∑
i=0

(
λiui

))

λ=0

, n= 0,1,2, . . . . (3.6)

For further details about the Adomian’s decomposition method, see [5, 26–28] and the
references therein.

4. Variational iteration decomposition method (VIDM)

To illustrate the basic concept of the variational iteration decomposition method, we con-
sider the following general differential (2.1):

Lu+Nu= g(x), (4.1)

where L is a linear operator, N a nonlinear operator, and g(x) is the forcing term. Accord-
ing to variational iteration method [9, 16–22, 25], we can construct a correct functional
as follows:

un+1(x)= un(x) +
∫ x

0
λ
(
Lun(s) +Nũn(s)− g(s)

)
ds, (4.2)

where λ is a Lagrange multiplier [16–20], which can be identified optimally via variational
iteration method. The subscripts n denote the nth approximation, ũn is considered as a
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restricted variation, that is, δũn = 0; (2.2) is called as a correct functional. We define the
solution u(x) by the series

u(x)=
∞∑
i=0

u(i)(x), (4.3)

and the nonlinear term

N(u)=
∞∑
n=0

An
(
u0,u1,u2, . . . ,ui

)
, (4.4)

where An are the so-called Adomian’s polynomials and can be generated for all types of
nonlinearities according to the algorithm developed in [5, 26–28] which yields

An =
(

1
n!

)(
dn

dλn

)
F
(
u(λ)

)∣∣∣∣
λ=0

, (4.5)

or equivalently,

A0 = F
(
u0
)
,

A1 = u1F
′(u0

)
,

A2 = u2F
′(u0

)
+

1
2!
u2

1F
′′(u0

)
,

A3 = u3F
′(u0

)
+u2u1F

′′(u0
)− 1

3!
u3

1F
′′′(u0

)
,

A4 = u4F
′(u0

)
+
(

1
2!
u2

2 +u3u1

)
F′′
(
u0
)− 1

2!
u2

1u2F
′′′(u0

)
+

1
4!
u4

1F
(iv)(u0

)
,

A5 = u5F
′(u0

)
+
(
u2u3 +u4u1

)
F′′
(
u0
)

+
(

1
2!
u1u

2
2 +

1
2!
u3u

2
1

)
F′′′

(
u0
)

− 1
3!
u3

1u2F
(iv)(u0

)
+

1
5!
u5

1F
(v)(u0

)

...
(4.6)

Hence, we obtain the following iterative scheme for finding the approximate solution:

u(n+1)(x)= u(n)(x) +
∫ t

0
λ
(
Lu(n)(x) +

∞∑
n=0

An− g(x)
)
dx. (4.7)

This method is called as the variational iteration decomposition method (VIDM) and
may be viewed as an important and significant improvement as compared with other
similar methods.

5. Numerical applications

In this section, we first rewrite that the eighth-order boundary value problem is an equiv-
alent system of integral equations by using a suitable transformation. The variational iter-
ation decomposition method (VIDM) is applied to solve the resultant system of integral
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equations. The proposed method is an elegant combination of the variational iteration
method and Adomian’s decomposition method.

Example 5.1 [3, 5]. Consider the nonlinear boundary value problem of eighth-order as

y(viii)(x)= e−x y2(x), 0 < x < 1, (5.1)

with boundary conditions

y(0)= y′′(0)= y(iv)(0)= y(vi)(0)= 1, y(1)= y′′(1)= y(iv)(1)= y(vi)(1)= e.
(5.2)

The exact solution is given by

y(x)= ex. (5.3)

Using the transformation

dy

dx
= a(x),

da

dx
= b(x),

db

dx
= e(x),

de

dx
= f (x),

df

dx
= g(x),

dg

dx
= h(x),

dh

dx
= z(x),

(5.4)

we obtain the following system of differential equations:

dy

dx
= a(x),

da

dx
= b(x),

db

dx
= e(x),

de

dx
= f (x),

df

dx
= g(x),

dg

dx
= h(x),

dh

dx
= z(x),

dz

dx
= e−x y2(x).

(5.5)

The above system of differential equations can be written as the following system of inte-
gral equations with Lagrange multipliers λi = 1, i= 1,2, . . . ,8 :

y(k+1)(x)= 1 +
∫ x

0
a(k)(x)dx, a(k+1)(x)= A+

∫ x

0
b(k)(x) dx,

b(k+1)(x)= 1 +
∫ x

0
e(k)(x)dx, e(k+1)(x)= B+

∫ x

0
f (k)(x) dx,

f (k+1)(x)= 1 +
∫ x

0
g(k)(x)dx, g(k+1)(x)= C+

∫ x

0
h(k)(x) dx,

h(k+1)(x)= 1 +
∫ x

0
z(k)(x)dx, z(k+1)(x)=D+

∫ x

0
e−x

∞∑
n=0

An dx,

(5.6)

where An are Adomian polynomials for nonlinear operator F(y)= y2(x) and can be gen-
erated for all types of nonlinearities according to the algorithm developed in [5, 26–28]
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which yields

A0 = F
(
y0
)
,

A0 = y2
0(x),

A1 = y1(x)F′
(
y0
)
,

A1 = 2y0(x)y1(x),

A2 = y2F
′(y0

)
+
y2

1

2!
F′′
(
y0
)
,

A2 = 2y0(x)y2(x) + y2
1(x)

...

(5.7)

Consequently, we obtain the following approximants:

y(0)(x)= 1, a(0)(x)= A, b(0)(x)= 1, e(0)(x)= B,

f (0)(x)= 1, g(0)(x)= C, h(0)(x)= 1, z(0)(x)=D,

y(1)(x)= 1 +Ax, a(1)(x)= A+ x,

b(1)(x)= 1 +Bx, e(1)(x)= B+ x,

f (1)(x)= 1 +Cx, g(1)(x)= C+ x,

h(1)(x)= 1 +Dx, z(1)(x)= 1− e−x,

y(2)(x)= 1 +Ax+
1
2
x2, a(2)(x)=A+ x+

1
2
Bx2,

b(2)(x)= 1 +Bx+
1
2
x2, e(2)(x)= B+ x+

1
2
Cx2,

f (2)(x)= 1 +Cx+
1
2
x2, g(2)(x)= C+ x

1
2
Dx2,

h(2)(x)= 1 +Dx− 1 + x+ e−x, z(2)(x)= 1− e−x +A2(2 + 2x+ x2− 3e−x − x2e−x
)
,

y(3)(x)= 1 +Ax+
1
2
x2 +

1
3!
Bx3, a(3)(x)= A+ x+

1
2
Bx2 +

1
3!
x3,

b(3)(x)= 1 +Bx+
1
2
x2 +

1
3!
Cx3, e(3)(x)= B+ x+

1
2
Cx2 +

1
3!
x3,

f (3)(x)= 1 +Cx+
1
2
x2 +

1
3!
Dx3, g(3)(x)= C+ x

1
2
Dx2 + 1− x+

1
2
x2− e−x

...
(5.8)
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The series solution is given by

y(x)= 1 +Ax− 1
2!
x2 +

1
6
Bx3− 1

24
x4 +

1
120

Cx5− 1
720

x6 +
1

5040
Dx7

+
1

40320
x8 +

(
1

18144
A− 1

362880

)
x9 +

(
− 1

907200
A+

1
1209600

)
x10

+
(

1
1995840

B+
1

6652800
A+

1
5702400

)
x11

+
(
− 1

59875200
A− 1

59875200
B+

1
31933440

)
x12 +O

(
x13).

(5.9)

Imposing the boundary conditions at x = 1 leads to the following system of equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3742317
3742200

4989601
29937600

1
120

1
5040

283
907200

302401
302400

1
6

1
120

61
5040

1
5040

1
1
6

37
180

1
180

0
37

180

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

A
B
C
D

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e− 246378989
159667200

e− 1119787
725760

e− 61951
40320

e− 341
240

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.10)

The solution of the above algebraic system gives

A= 0.999870193, B = 1.001257423, C = 0.988438914, D = 1.086357080.
(5.11)

Consequently, the series solution is given as

y(x)= 1 + 0.999870193x+
1
2
x2 + 0.1668762372x3 +

1
24

x4

+ 0.00823699095x5 +
1

720
x6 + 0.000215547x7

+
1

40320
x8 + 2.755× 10−6x9− 2.75× 10−7x10 + 2.51

× 10−8x11− 2.1× 10−9x12 +O
(
x13),

(5.12)

which is exactly the same as obtained in [3] by using homotopy perturbation method and
in [5] by modified Adomian’s decomposition method.

Table 5.1 exhibits the exact solution and the series solution along with the errors ob-
tained by using the variational iteration decomposition method. It is obvious that the
errors can be reduced further and higher accuracy can be obtained by evaluating more
components of y(x).
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Table 5.1. Error estimates.

x Exact solution Series solution ∗Errors

0.0 1.000000000 1.000000000 0.000000

0.1 1.105170918 1.105158145 1.27E-5

0.2 1.221402758 1.221378444 2.43E-5

0.3 1.349858808 1.349825294 3.35E-5

0.4 1.491824698 1.491 785 229 3.94E-5

0.5 1.648721271 1.648679687 4.16E-5

0.6 1.822118800 1.822079168 3.96E-5

0.7 2.013752707 2.013718927 3.38E-5

0.8 2.225540928 2.225516346 2.45E-5

0.9 2.459603111 2.459590174 1.29E-5

1.0 2.718281828 2.718281829 1.00E-9
∗

Error = Exact solution-Series solution.

Example 5.2 [3, 5]. References Consider the following linear boundary value problem of
eighth order:

y(viii)(x)=−8xex + y(x), 0 < x < 1, (5.13)

with boundary conditions

y(0)= 1, y′′(0)=−1, y(iv)(0)=−3, y(vi)(0)=−5,

y(1)= 0, y′′(1)=−2e, y(iv)(1)=−4e, y(vi)(1)=−6e.
(5.14)

The exact solution of the problem is

y(x)= (1− x)ex. (5.15)

Using the transformation

dy

dx
= a(x),

da

dx
= b(x),

db

dx
= e(x),

de

dx
= f (x),

df

dx
= g(x),

dg

dx
= h(x),

dh

dx
= z(x),

(5.16)

we obtain the following system of differential equations:

dy

dx
= a(x),

da

dx
= b(x),

db

dx
= e(x),

de

dx
= f (x),

df

dx
= g(x),

dg

dx
= h(x),

dh

dx
= z(x),

dz

dx
=−8xex + y(x),

(5.17)

with boundary conditions

y(0)= 1, a(0)= A, b(0)=−1, e(0)= B,

f (0)=−3, g(0)= C, h(0)=−5, z(0)=D.
(5.18)
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The above system of differential equations can be written as the following system of inte-
gral equations with Lagrange multipliers λi = 1, i= 1,2, . . . ,8 :

y(k+1)(x)= 1 +
∫ x

0
a(k)(x)dx, a(k+1)(x)=A+

∫ x

0
b(k)(x)dx,

b(k+1)(x)=−1 +
∫ x

0
e(k)(x)dx, e(k+1)(x)= B+

∫ x

0
f (k)(x)dx,

f (k+1)(x)=−3 +
∫ x

0
g(k)(x)dx, g(k+1)(x)= C+

∫ x

0
h(k)(x)dx,

h(k+1)(x)=−5 +
∫ x

0
z(k)(x)dx, z(k+1)(x)=D+

∫ x

0
(− 8xex + y(k)(x)dx.

(5.19)

Consequently, we obtain the following approximants:

y(0)(x)= 1,

a(0)(x)= A,

b(0)(x)=−1,

e(0)(x)= B,

f (0)(x)=−3,

g(0)(x)= C,

h(0)(x)=−5,

z(0)(x)=D,

y(1)(x)= 1 +Ax,

a(1)(x)= A− x,

b(1)(x)=−1 +Bx,

e(1)(x)= B− 3x,

f (1)(x)=−3 +Cx,

g(1)(x)= C− 5x,

h(1)(x)=−5 +Dx,

z(1)(x)=D− 8 + x+ 8ex − 8xex,

y(2)(x)= 1 +Ax− 1
2
x2,

a(2)(x)= A− x+
1
2
Bx2,

b(2)(x)=−1 +Bx− 3
2
x2,

e(2)(x)= B− 3x+
1
2
Cx2,
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f (2)(x)=−3 +Cx− 5
2
x2,

g(2)(x)= C− 5x+
1
2
Dx2,

h(2)(x)=−5 +Dx− 16 + 8x+
1
2
x2 + 16ex − 8xex,

z(2)(x)=D− 8 + x+ 8ex − 8xex − 8 +
1
2
Ax2 + 8ex − 8xex,

y(3)(x)= 1 +Ax− 1
2
x2 +

1
3!
Bx3,

a(3)(x)= A− x+
1
2
Bx2− 3

3!
x3,

b(3)(x)=−1 +Bx− 3
2
x2 +

1
3!
Cx3,

e(3)(x)= B− 3x+
1
2
Cx2− 5

3!
x3,

f (3)(x)=−3 +Cx− 5
2
x2 +

1
3!
Dx3,

g(3)(x)= C− 5x+
1
2
Dx2− 24− 16x+

8
2!
x2 +

1
3!
x3 + 24ex − 8xex,

h(3)(x)=−5 +Dx− 16 + 8x+
1
2
x2 + 16ex − 8xex − 16− 8x+

1
3!
Ax3 + 16ex − 8xex,

z(3)(x)=D− 8 + x+ 8ex − 8xex − 8 +
1
2
Ax2 + 8ex − 8xex − 8− 1

3!
x3 + 8ex − 8xex,

y(4)(x)= 1 +Ax− 1
2
x2 +

1
3!
Bx3− 3

4!
x4,

a(4)(x)= A− x+
1
2
Bx2− 3

3!
x3 +

1
4!
Cx4,

b(4)(x)=−1 +Bx− 3
2
x2 +

1
3!
Cx3 +

1
4!
Dx4,

e(4)(x)= B− 3x+
1
2
Cx2− 5

3!
x3,

f (4)(x)=−3 +Cx− 5
2
x2 +

1
3!
Dx3− 32− 24x− 16

2!
x2 +

8
3!
x3 +

1
4!
x4 + 32ex − 8xex,

g(4)(x)= C− 5x+
1
2
Dx2− 24− 16x+

8
2!
x2 +

1
3!
x3 + 24ex − 8xex

− 24− 16x− 8
2!
x2 +

1
4!
Ax4 + 24ex − 8xex,

h(4)(x)=−5 +Dx− 16 + 8x+
1
2
x2 + 16ex − 8xex − 16− 8x+

1
3!
Ax3

+ 16ex − 8xex − 16− 8x− 1
4!
x4 + 16ex − 8xex,

z(4)(x)=D− 8 + x+ 8ex − 8xex − 8 +
1
2
Ax2 + 8ex − 8xex − 8

− 1
3!
x3 + 8ex − 8xex − 8 + 8ex − 8xex +

1
4!
Bx4

... (5.20)
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The series solution is given by

y(x)= 1 +Ax− 1
2
x2 +

1
6
Bx3− 1

8
x4 +

1
120

Cx5 +
1

144
x6

+
1

5040
Dx7− 1

5760
x8 +

(
− 1

45360
+

1
362880

A
)
x9

− 1
403200

x10 +
(
− 1

4989600
+

1
39916800

B
)
x11− 1

43545600
x12 +O

(
x13).

(5.21)

Imposing the boundary conditions at x = 1 leads to the following system of equations:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

362881
362880

6652801
39916800

51891841
6227020800

1
5040

1
5040

362881
362880

6552801
39916800

1
120

1
120

1
5040

362881
362880

1
6

1
6

1
120

1
5040

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
A
B
C
D

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2290654397
6227020800

−2e+
108569359
39916800

−4e+
2131091
362880

−6e+
51871
5040

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.22)

The solution of above system gives

A= 6.771× 10−7, B =−2.000006476,

C =−3.99994303, D =−6.00036565.
(5.23)

The series solution is given as

y(x)= 1− 6.771× 10−7x− 0.50x2− .3333344127x3− 1
8
x4

− .033332858585x− 1
144

x6− .00119054874x7

− 1
5040

x8− 2.205× 10−5x9− 1
403200

x102.505

× 10−7x11− 1
43545600

x12 +O
(
x13),

(5.24)

which is exactly the same as obtained in [3] by using homotopy perturbation method and
in [5] by modified Adomian’s decomposition method.

Table 5.2 exhibits the exact solution and the series solution along with the errors ob-
tained by using the VIDM. It is obvious that the errors can be reduced further and higher
accuracy can be obtained by evaluating more components of y(x).

6. Conclusion

In this paper, we have used the variational iteration decomposition method (VIDM)
which is mainly due to Abbasbandy for finding the solution of linear and nonlinear
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Table 5.2. Error estimates.

x Exact solution Series solution ∗Errors

0.0 1.00000000 1.0000000000 0.000000

0.1 0.99465383 0.9946538933 −6.71E-8

0.2 0.97712221 0.9771223332 −1.27E-7

0.3 0.94490117 0.9449013404 −1.75E-7

0.4 0.89509482 0.8950950252 −2.06E-7

0.5 0.82436064 0.8243608537 −2.18E-7

0.6 0.72884752 0.7288477280 −2.08E-7

0.7 0.60412581 0.6041259899 −1.78E-7

0.8 0.44510819 0.4451083155 −1.29E-7

0.9 0.24596031 0.2459603788 −6.77E-8

1.0 0.00000000 0.0000000000 0.000000
∗

Error = Exact Solution-Series Solution.

boundary value problems for eighth order. The method is used in a direct way with-
out using linearization, perturbation, or restrictive assumptions. It may be concluded
that VIDM is very powerful and efficient in finding the analytical solutions for a wide
class of boundary value problems. The method gives more realistic series solutions that
converge very rapidly in physical problems. Thus, we conclude that the variational itera-
tion decomposition technique can be considered as an efficient method for solving linear
and nonlinear problems. It is worth mentioning that the method is capable of reducing
the volume of the computational work as compare to the classical methods while still
maintaining the high accuracy of the numerical result, the size reduction amounts to the
improvement of performance of approach. This method is relatively new and may lead to
some novel and innovative applications in solving linear and nonlinear problems.
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