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Abstract: Folate is found naturally in foods or as synthetic folic acid in dietary 
supplements and fortified foods. Adequate periconceptional folic acid intake can prevent 
neural tube defects. Folate intake impacts blood folate concentration; however, the  
dose-response between natural food folate and blood folate concentrations has not been well 
described. We estimated this association among healthy females. A systematic literature 
review identified studies (1 1992–3 2014) with both natural food folate intake alone and 
blood folate concentration among females aged 12–49 years. Bayesian methods were used 
to estimate regression model parameters describing the association between natural food 
folate intake and subsequent blood folate concentration. Seven controlled trials and  
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29 observational studies met the inclusion criteria. For the six studies using microbiologic 
assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval 
(CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 
1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase 
in natural food folate intake. Using modeled results, we estimate that a natural food folate 
intake of ≥450 μg dietary folate equivalents (DFE)/day could achieve the lower bound of 
an RBC folate concentration (~1050 nmol/L) associated with the lowest risk of a neural 
tube defect. Natural food folate intake affects blood folate concentration and adequate 
intakes could help women achieve a RBC folate concentration associated with a risk of  
6 neural tube defects/10,000 live births. 

Keywords: food folate; serum/plasma folate; RBC folate 
 

1. Introduction 

Folate, the umbrella term used to describe both natural food folate and synthetic folic acid, is 
necessary for basic cellular functions. Natural food folate can be found in liver, dark green leafy 
vegetables, legumes, and some fruits, such as oranges [1]. Natural food folate’s bioavailability is less 
than synthetic folic acid [1–3] in part because it must undergo deconjugation before it can be absorbed 
and made available for metabolic reactions and/or storage. Research has indicated that relative to the 
consumption of folic acid with food, the bioavailability of natural food folate is approximately 50% [2]. 
The difference in bioavailability can be described using the following equation: 1 μg Dietary Folate 
Equivalents (DFE) = 0.6 μg folic acid [2]. DFEs are a unit of measurement that reflect the greater 
bioavailability of folic acid compared to natural food folate [2]. 

Folate status can be assessed using either serum/plasma folate (short-term indicator) or red blood 
cell (RBC) folate (long-term indicator) concentrations [1–3]. Folate deficiency, defined by the World 
Health Organization (WHO) as serum/plasma folate concentrations <10 nmol/L or RBC folate 
concentrations <340 nmol/L, is based on elevated circulating homocysteine concentrations [4]. 
However, it has been shown that folate-preventable birth defects of the brain and spine (neural tube 
defects) can occur at blood folate concentrations above the defined deficiency cut-offs [5]. For the 
“optimal” prevention of neural tube defect-affected pregnancies among women of childbearing age, 
RBC folate concentrations of ≥906 nmol/L [5] and ≥ about 1000 nmol/L [6] have been suggested. 

Although research has shown that folic acid intake increases blood folate concentrations [7,8] and 
periconceptional folic acid supplementation and folic acid fortification of staple foods reduces the risk 
of a neural tube defect-affected pregnancy [9–13], there are limited data available on the unique 
contribution of natural food folate intake to blood folate concentrations and the potential to reach 
“optimal” blood folate concentrations to prevent neural tube defects through natural food folate intake 
alone. A better understanding of the associated dose-response between natural food folate intake and 
blood folate concentrations could improve the development, monitoring, and evaluation of neural tube 
defect prevention programs. This is of particular interest in settings where periconceptional folic acid 
supplement use is low or folic acid fortified staple foods are not available. 
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Thus, the objective of our analysis was to determine the association and estimate the dose-response 
between natural food folate intake and blood folate concentration using a meta-analysis of studies 
identified through a systematic literature review. 

2. Subjects and Methods 

Many of the methods, including the search strategy, screening criteria, and quality assessment 
methods, for this review are shared with a separate systematic review conducted by our review team, 
and have been described previously [14]; however, these methods are detailed below and in the 
protocol developed by all coauthors (Supplementary S1). We adhered to guidelines from the Cochrane 
Handbook for Systematic Reviews [15] and the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) statement [16]. The methods below are summarized in brief. 

2.1. Search Strategy 

A research librarian from CDC’s Public Health Library and Information Center conducted a search 
for English language studies published between 1 January 1992 and 7 March 2014. The year 1992 was 
set as a limit because it corresponds to the US Public Health Service recommendation for all women of 
childbearing age to consume 400 μg of folic acid daily for the prevention of neural tube defects [10]. 
The following databases were searched: PubMed (includes Medline), Embase, Cumulative Index to 
Nursing and Allied Health (CINAHL), Cochrane Library, Web of Science, and Population Information 
Online (POPLINE). The search strategy for Embase included keywords in the following areas: Folic acid, 
blood folate (blood folate or folic acid blood level, serum folate or plasma folate or red blood cell folate), 
intake (intake or diet * or supplement *, folic acid intake), and women of childbearing age (childbear * or 
women * or female * or girl * or pregnant *). This method was adapted for the other databases searched. We 
also hand-searched reference lists from articles selected for abstraction for additional relevant citations not 
captured in the database searches. 

2.2. Inclusion and Exclusion Criteria 

Population eligibility criteria were nonpregnant, nonlactating females aged 12–49 years who had 
not consumed folic acid containing supplements or folic acid fortified foods during the period of 
dietary intake assessment. If pregnancy/lactation status was not explicitly stated for the studied 
population, we assumed the participants were not pregnant or lactating. Required reported data were 
blood folate data (serum, plasma, or RBC folate concentration), blood folate assay methodology, and 
natural food folate intake amount. 

We contacted authors for stratified data if populations were a mix of males and females, had 
participants outside the 12–49 target age range, indicated inclusion of pregnant/lactating women, 
and/or included participants who had consumed folic acid containing supplements or fortified foods.  
Studies (unique articles/publications) were excluded if they did not meet the inclusion criteria, targeted 
an unhealthy population, or if stratified data were not available due to author nonresponse. 
Subsequently, studies were classified as either Tier 1 or Tier 2; Tier 1 studies pertained to data for 
nonpregnant, nonlactating females 12–49 years of age only. Tier 2 studies were classified as such if 
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age/sex stratified data were unavailable but more than half of the participants (at least 51%) were 
female and the mean or median female age was between 12 and 49 years. Tier 2 studies were not 
included in the meta-analysis. 

2.3. Selection of Articles 

Abstract and title review consisted of a “Wave 1” and “Wave 2” screening (Figure 1). In Wave 1, 
three teams of two reviewers (Claire M. Marchetta + Jorge Rosenthal; Robert J. Berry + Heather C. 
Hamner; Patricia Mersereau + Joe Mulinare) independently screened a third of the titles and abstracts 
for inclusion, using criteria relevant for this review as well as the aforementioned Tsang et al. review [14]. 
In Wave 2, inclusion/exclusion criteria specific to this review were applied independently by three 
reviewers (Claire M. Marchetta, Jorge Rosenthal, Robert J. Berry). Full text review was conducted by the 
same three reviewers. Reviewers resolved any disagreement regarding inclusion/exclusion by discussion. 
Two attempts were made to contact authors for additional information. 

2.4. Data Extraction 

Three reviewers (Claire M. Marchetta, Jorge Rosenthal, Robert J. Berry) each took a third of all 
identified studies and used a prepiloted abstraction form to extract data on study design, intervention 
(if applicable), selection of population, natural food folate intake, dietary measurement method, blood 
folate concentrations at baseline and follow-up (if applicable), and blood folate assay method. Other 
extracted information included study location, sample size, study years, country fortification status, 
and participant characteristics (age and ethnicity). A fourth investigator (Heather C. Hamner) reviewed 
all studies and abstracted data to check for accuracy and consistency. 

2.5. Quality Assessment of Studies 

Risk of bias assessment methods in detail have been previously described [14]. In brief, a risk of 
bias assessment was conducted separately according to outcome (RBC folate and/or serum/plasma 
folate) for all studies included in the systematic review using one of two methods. For controlled trials, 
the risk of bias was assessed using the Cochrane Handbook for Systematic Reviews of Interventions 
tool [15]. Cohort and cross-sectional studies were assessed using the Item Bank on Risk of Bias and 
Precision of Observational Studies from RTI International (Table S1) [17]. Both tools were adapted to 
the objectives of this review and piloted before use. Two researchers who had not participated in study 
selection independently conducted the risk of bias assessment in duplicate (Yan Ping Qi, Jing Guo). 
Any disagreements were resolved by discussion. 

2.6. Data Standardization 

Natural food folate intake measurements and blood folate concentrations were standardized prior to 
meta-analysis because the information extracted from the selected studies was comprised of differing 
measures of central tendency and variability on differing scales (e.g., means, medians, geometric 
means, log transformed and untransformed data, standard deviations, 95% confidence intervals, etc.). 
In this analysis, we standardized the reported study results (i.e., natural food folate intake and blood 
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folate concentrations) so that the information extracted from each study corresponded to the mean and the 
standard error of that mean on the natural log scale for both intake and blood folate concentration. This 
standardization to matching summary statistics on the log scale was conducted using previously published 
formulae [18]. 

 

Figure 1. Record management and selection flow diagram for the systematic review on 
natural food folate intake and blood folate concentrations. Wave 1 screening was a review 
of abstracts with a more broad focus. Wave 2 screening was a review of abstracts using the 
specific objectives from this study. Full text articles excluded (n = 183) is the sum of the 131 
articles initially rejected after the full text review plus the 52 articles rejected after contacting 
authors. The final number of studies included in the qualitative synthesis (n = 36) is the 
sum of records accepted from full-text eligibility screening (n = 14), records eligible for 
inclusion through author contact (n = 19) and additional records identified through author 
contact (n =3). 

To account for documented variations between microbiologic assay (MA) methods [19], blood 
folate concentrations were adjusted to increase comparability between two different MA methods. To 
illustrate, let X be the MA value derived using the assay method of Tamura [20] and Y be the 
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concentration derived using the assay method of Molloy/O’Broin [21,22]. The association between the 
MA approaches has been estimated as the following (C. Pfeiffer, Personal communication, 2014): 

Serum folate (nmol/L): Y = 1.4209 × X + 0.7854  

RBC folate (nmol/L): Y = 0.7297 × X + 352.219  

We used these models to transform all results to those that would have been derived under the 
Molloy/O’Broin method. To reflect the uncertainty in this conversion, the sampling variability of the 
coefficients in the above models were incorporated into the standardized SEMs of the transformed log 
concentration using Taylor Series approximation [23]. 

Blood folate concentrations from commercial protein binding assays (PBA) have demonstrated 
limited inter-assay comparability [24,25]; and because no validated adjustment formulae exist, no 
attempt was made to standardize blood folate concentrations to account for differing PBA methods 
across studies. 

Although dietary intake assessment methods can vary substantially [26], we did not attempt to 
standardize these values to a specific method because no validated adjustment formulae were 
available. It was beyond the scope of our study to ensure that validated questionnaires were used in 
each study or that dietary analyses were done using specific statistical methodologies. 

All data presented in Tables S2 and S3 represent the original study data, with blood folate 
concentrations presented in nmol/L and the different dietary intake assessment methods noted. 
Standardized measures of central tendency and standardized blood folate data were used for the  
meta-analysis only. 

2.7. Meta-Analysis Study Inclusion/Exclusion 

Tier 1 studies were eligible for the meta-analysis; of these, several were excluded. One study [27] 
was excluded because of implausibly low blood folate data for the reported amount of natural food 
folate intake (attempts to verify data from the author were unsuccessful). Two studies [28,29] were 
excluded from the meta-analysis because they reported using a PBA to assess RBC folate 
concentrations; analyses for RBC folate concentrations were limited to those studies using MA. 

Several controlled trial studies were also excluded based on potential exposure to folic acid 
consumption prior to the study’s initiation. There was potential exposure to folic acid because these 
studies took place in the United States of America (USA) where there is folic acid fortification of 
enriched cereal grain products. These studies included depletion/restriction phases; however, these 
depletion/restriction phase data points were not used if the depletion/restriction phase was less than  
120 days (i.e., the lifespan of an RBC) [30–33]. These folate “restriction” or “depletion” phases ranged 
from two to seven weeks and were thus too short to reflect true blood folate concentrations at the level 
of natural food folate intake provided in the study. Given that these studies took place in a setting with 
mandatory folic acid fortification, without an adequate washout period of at least 120 days, the data 
were susceptible to contamination by previous folic acid consumption from foods fortified with folic 
acid or supplements containing folic acid. Therefore, available data from Abratte et al., [30], Perry  
et al. [32], and Shelnutt et al. [33] and the restriction data point from Hung et al. [31] were not 
included in the meta-analysis. Intervention time points only from Wright et al. and Hung et al. [31,34] 

 



Nutrients 2015, 7 2669 
 
were used in the meta-analysis. Baseline values from Wright et al. [34] were not used to avoid the 
introduction of potential systematic bias using multiple time points for the same population. 

Exploratory analysis indicated that two studies, Kwanbunjan et al., [35] (Supplementary S2: 
Figures S1 and S3) and Pathak et al., [36] (Supplementary S2: Figure S4) had natural food folate 
intake and blood folate concentration estimates that were outliers and could be of questionable validity. 
We were unable to verify the findings from the study authors. Therefore, results from these two studies 
were omitted from the primary analyses. Sensitivity analyses were conducted to determine the impact 
on overall interpretations of data (Supplementary S2). 

Of the 11 studies that used the MA method, six were included in the meta-analysis, representing a 
total of nine observations for RBC folate and serum/plasma folate concentrations [31,34,37–40]. Of 
the 20 studies that used a PBA method, 17 studies with 22 observations for serum/plasma folate 
concentrations were included in the meta-analysis [41–57]. Some studies contributed multiple data points 
(e.g., data were presented for different age or race/ethnic groups). 

2.8. Statistical Analyses 

The standardized data pairs of the log of reported mean natural food folate intake and blood folate 
concentrations (i.e., serum/plasma folate and/or RBC folate) and the associated standardized SEMs 
were used to build the models. In usual regression analysis, the independent variable is assumed to be 
known without error. In the analysis presented here, however, both the independent variable (i.e., log 
of reported mean natural food folate intake) and the dependent variable (i.e., log of reported mean 
blood folate concentration) are estimates and are, therefore, subject to sampling variability. This 
sampling variability is assumed to be summarized by the standardized SEM associated with each 
estimate. We used a Bayesian approach to estimate the parameters of the assumed model to reflect the 
fact that both the independent and dependent variables in our regression model are subject to sampling 
variability. We illustrate the approach using RBC folate concentrations as the dependent variable in the 
regression, but an identical method was used to model the serum/plasma folate concentrations outcomes. 

Under the Bayesian regression approach, we assumed that the true unknown values of log of the 
mean RBC folate concentration and natural food folate intake were related by the model: 

  

where  is the unknown true value of the log of the mean RBC folate concentration for the jth 
result in study i,  is the corresponding unknown true value for the log of the mean natural food 

folate intake,  is an error term reflecting lack of fit of the regression model and  and  are the 

regression model parameters we wish to estimate and  reflects the level of association between natural 
food folate intake and RBC folate concentrations, the relationship we are most interested in describing.  

Note that back transforming the model from the log scale results in the nonlinear model: 

  

where RBCij and Intakeij are the untransformed mean blood folate concentration and natural folate 
intake values, respectively. 
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To complete the model, we assumed that the observed values for log of the mean natural food folate 
intake and log of the mean RBC folate concentration (which are the standardized transformations of 
the data reported in the selected studies) are samples from a Normal distribution with the mean given 
by  for RBC folate concentrations and  for natural food folate intakes and standard 

deviations corresponding to the observed transformed SEMs. 

2.9. Statistical Modeling 

Estimates of the regression parameters were derived using Markov Chain Monte Carlo (MCMC) 
methods using Open BUGS 3.2.2 software [58]. Three sampling chains, with widely dispersed initial 
values, were run for each model to enable assessment of convergence. The chains were run for 200,000 
iterations with the first 100,000 samples discarded as burn-in and every subsequent 10th sample 
retained to reduce autocorrelation. As a result, the Bayesian estimates, called posterior estimates, for 
the model parameters were based on 30,000 samples, 10,000 from each of three chains. This collection 
of estimates, referred to as the posterior distribution, reflects the uncertainty concerning the true value 
of the model parameters (i.e., natural food folate intake and blood folate concentrations). Posterior 
distributions for the model parameters, and other related estimates, are summarized using the median 
of the 30,000 samples and the 95% equal-tailed credible intervals (CrI) which are defined using the 
2.5th and 97.5th percentile of the posterior sample. 

In addition to the estimated parameters of the regression model, we were also interested in 
estimating the RBC folate concentrations at specified levels of natural food folate intake. To do this, 
we used samples from the posterior predictive distribution of RBC folate concentrations [59]. These 
values can be thought of as a collection of possible values for RBC folate concentrations at the 
specified levels of natural food folate intake values under the assumed model. 

We did not conduct analyses with data from studies that measured RBC folate concentrations with a 
PBA due to limited data and previously identified assay limitations [60–62]. The meta-analysis for 
serum/plasma folate concentrations was stratified by assay type (MA or PBA) because research has 
demonstrated PBA limitations in measuring blood folate concentrations, specifically that folate species 
are differentially recovered according to an individual’s methylenetetrahydrofolate reductase 
(MTHFR) C677T genotype [60,61]. 

We conducted sensitivity analyses to investigate the impact of including dietary intake assessment 
bias, random study-level effects, previous exposure to folic acid fortified foods in settings with a 
mandatory folic acid fortification policy, and outlier studies on the association between natural food 
folate intake and blood folate concentrations (as described above). 

To assess the potential for bias from the use of varied dietary intake assessment tools (i.e., 24 h 
recalls, food frequency questionnaires, etc.), we used an additional set of models in which bias was 
incorporated into the Bayesian model for the observed natural food folate intake values. For studies 
reporting the use of 24 h recalls or weighted food records, values were assumed to be underreporting 
true intake by 20% [63]. Studies that used a food frequency questionnaire were assumed, a priori, to 
have anywhere between a 50% underestimation and 50% overestimation of true intake [63]. 
Alternative models were also assessed to evaluate the potential for both unexplained inter-study 
heterogeneity and increased correlation among multiple data points reported in the same study by 

RBC
ijµ lIntake

ijµ
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incorporating study-level random effects into the assumed model for the true values of natural food 
folate intake. 

Lastly, although we attempted to exclude studies with participants who had been exposed to folic 
acid (i.e., folic acid fortification or folic acid containing supplements), there is the potential that some 
participants could have been exposed to folic acid prior to the study and that any depletion/restriction 
time periods of ≥120 days were still not sufficient to allow blood folate concentrations to acclimate to 
a natural food folate only diet. Therefore, we conducted sensitivity analyses in which intake data were 
stratified by the presence of a mandatory fortification policy at the time of data collection as defined by 
the Food Fortification Initiative [64]. We did not attempt to stratify or exclude studies that allowed 
voluntary folic acid fortification of specific food products (e.g., the United Kingdom); as there were no 
reliable sources of the status of voluntary fortification for all countries. 

Technical details on the modeling approach, including assumed prior distributions for model 
parameters, approaches for convergence assessment, and Directed Acyclic Graphs (DAGs) for all 
models are provided in the Supplementary S2. 

3. Results 

3.1. Study Characteristics 

The initial search retrieved a total of 11,237 records. After the removal of duplicates, 9224 titles and 
abstracts were reviewed. A PRISMA record management flow chart is presented (Figure 1). 

A total of 36 unique studies were eligible for the systematic review. Because natural food folate 
intake and blood folate data were not collected for every participant in every study, we had different 
sample sizes for the number of subjects providing data on intake and blood. Thirty-one Tier 1 studies 
provided natural food folate intake data and blood folate data on 13,659 and 9144 healthy nonpregnant, 
nonlactating women aged 12–49 years, respectively, and were eligible for the meta-analysis. Five Tier 
2 studies provided natural food folate intake data and blood folate data on 1828 and 2657 participants, 
respectively (Tables S2 and S3). Four Tier 1 studies (all controlled trials) were conducted after the 
implementation of mandatory folic acid fortification in the USA, and 27 studies were conducted in 
countries without, or prior to implementation of, a mandatory policy on folic acid fortification of staple 
foods [64]. All participants from the included studies reported nonconsumption of folic acid containing 
supplements or fortified foods during the study period. 

Studies from around the world were represented, including Austria, Belgium, Denmark, Finland, 
France, the Gambia, Germany, Greece, Hungary, India, Italy, Japan, Lebanon, Malaysia, the 
Netherlands, Nigeria, the Republic of Korea, Spain, Sweden, Thailand, the United Kingdom, and  
the USA.  

Among Tier 1 studies, there were five controlled trials (intake of natural food folate ranged from 
115 to 800 μg DFE/day; duration between 12–15 weeks), two cohort studies [37,41], and 24  
cross-sectional studies (intake of natural food folate ranged from 49 to 383 μg DFE/day). There were 
two controlled trials [65,66] and three cross-sectional studies in Tier 2 [67–69]. 
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Of the three main blood folate analytic methods [MA, PBA, liquid chromatography-tandem mass 
spectrometry (LC-MS/MS)], 11 Tier 1 studies reported using the MA, 20 reported using a PBA (e.g., 
chemiluminescent immunoassay, radioimmunoassay, etc.), and none reported using LC-MS/MS. 

Dietary intake assessment methods varied across Tier 1 studies. Twelve studies reported using 24 h 
recalls (ranging from one day to four days). Four studies reported using weighed food records (ranging 
from three days to seven days); four studies reported using food records (ranging from three days to 
seven days); four studies reported using a FFQ; four studies reported doing a feeding study. Two studies 
reported doing a combination of methods (FFQ and a recall or 24 h recall for two days) [44,48]. One 
study reported using a brief, self-administered diet history questionnaire [55]. 

3.2. Risk of Bias 

Among 14 Tier 1 studies that measured RBC folate concentrations, seven studies had a high risk of 
bias, seven had a moderate risk of bias and none had a low risk of bias (Tables S4 and S5). For Tier 1 
studies that measured serum/plasma folate concentrations, eight were classified as a high risk of bias,  
17 with a moderate risk of bias, and three studies were classified with a low risk of bias [30,32,34].  
One Tier 2 study had a moderate risk of bias for RBC folate concentrations [67]; a moderate risk of 
bias for serum/plasma folate concentrations and a high risk of bias for RBC folate concentrations [66]; 
the remaining Tier 2 studies had a high risk of bias for both outcomes [65,68,69]. Stratification by risk 
of bias was not done due to limited data eligible for meta-analysis. 

3.3. RBC Folate Concentrations 

For studies using MA, the estimated association between natural food folate intake and RBC folate 
concentrations among women aged 12–49 years old is depicted in Figure 2. Under the assumed model, 
we estimate that a 10% increase in natural food folate intake can increase RBC folate concentrations 
by approximately 6% (95% CrI: 4%, 9%). Posterior predicted values using the model were consistent 
with the data presented in the included studies. 

Table 1 shows natural food folate intake levels with the corresponding median posterior RBC folate 
concentration value under the assumed model. For example, using the model, a population in which 
the mean natural food folate intake was 450 μg DFE/day is estimated to have a mean RBC folate 
concentration of approximately 1070 nmol/L (95% CrI: 770 , 1440 nmol/L). 

3.4. Serum/Plasma Folate Concentrations 

Figure 3 shows the association between natural food folate intake and serum/plasma folate 
concentrations among women aged 12–49 years old using data from studies that assessed 
serum/plasma folate concentrations with MA. These results indicate that for every 10% increase in 
natural food folate intake, serum/plasma folate concentrations could increase by approximately 7% 
(95% CrI: 1%, 12%). Similar results are seen for studies assessing serum/plasma folate concentrations 
with PBA (Figure 4). 
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3.5. Sensitivity Analyses 

For both the RBC and serum/plasma models, incorporating study-level random effects, and 
separately, natural food folate intake assessment bias, had no meaningful effect on the predicted 
association between natural food folate intake and the resulting blood folate concentrations. 

Sensitivity analyses assessing the impact of previous exposure to folic acid via fortification 
indicated that among countries without a mandatory folic acid fortification policy, the estimated slope 
was slightly higher for both RBC and serum/plasma folate concentrations. This was most likely due to 
the removal of a study in a fortified setting with high folate intake (800 μg DFE/day) [31]. However, 
estimates of the slope were fairly consistent across intakes below ~400 μg DFE/day, regardless of the 
inclusion/exclusion of Hung et al. [31]. 

Lastly, models including/excluding data from two potential outlier studies [35,36] influenced the 
results dramatically and lowered the estimated slope of the line for both serum/plasma folate and RBC 
folate results (Supplementary S2: Figures S3 and S4). Although inclusion of these studies did affect 
model slopes, these differences did not change the overall interpretation of our results. 

 

Figure 2. Observed natural food folate intake [μg/day of DFE] versus RBC folate 
concentrations (nmol/L) among women of childbearing age from studies using a MA, no 
random study effect for intake, and posterior predicted distribution for future values of RBC 
folate concentration by natural food folate intake. Solid line represents the median value of 
the posterior predictive distribution; dotted lines represent the 95% CrI. The dots represent 
the standardized data points from the included studies. Included studies: [31,34,37–40] CrI: 
Credible interval; DFE: Dietary folate equivalent; MA: Microbiologic assay; RBC: Red  
blood cell. 
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Table 1. Natural food folate intake [μg/day of DFE] and associated RBC folate 
concentrations (nmol/L) based on Bayesian modeling of association between natural food 
folate intake and RBC folate concentrations. The shaded values (natural food folate intakes 
between 450 μg DFE/day and 650 μg DFE/day) refer to the range of intakes and RBC folate 
concentrations associated with the lowest population risk for a neural tube defect-affected 
pregnancy according to Crider et al. 2014 of 6 neural tube defects per 10,000 live births [6]. 
Intakes and concentrations above these values may not confer additional neural tube defect 
prevention benefit. 

Natural Food Median 
95% Credible Interval 

Folate Intake (μg DFE/day) RBC Folate (nmol/L) 
50 260 (160, 420) 

100 410 (280, 590) 
150 530 (380, 730) 
200 640 (460, 860) 
250 730 (540, 980) 
300 820 (610, 1100) 
350 910 (670, 1210) 
400 990 (720, 1330) 
450 1070 (770, 1440) 
500 1140 (820, 1550) 
550 1220 (880, 1670) 
600 1290 (910, 1760) 
650 1350 (950, 1870) 
700 1420 (980, 1970) 
750 1480 (1030, 2080) 
800 1550 (1060, 2180) 
850 1600 (1080, 2300) 
900 1670 (1120, 2390) 
950 1730 (1150, 2520) 

1000 1780 (1190, 2610) 
1050 1840 (1210, 2700) 
1100 1900 (1230, 2810) 
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Figure 3. Observed natural food folate intake (μg/day of DFE) versus serum/plasma folate 
concentrations (nmol/L) among women of childbearing age from studies using a MA, no 
random study effect for intake, and posterior predicted distribution for future values of 
serum/plasma folate concentration by natural food folate intake. Solid line represents the 
median value of the posterior predictive distribution; dotted red lines represent the 95% CrI. The 
dots represent the standardized data points from the included studies. Included  
studies: [31,34,37–40]. CrI: Credible interval; DFE: Dietary folate equivalent; MA: 
Microbiologic assay. 
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Figure 4. Observed natural food folate intake [μg/day of DFE] versus serum/plasma folate 
concentrations (nmol/L) among studies using a PBA, no random study effect for intake, 
and posterior predicted distribution for future values of serum/plasma folate concentration 
by natural food folate intake. Solid line represents the median value; dotted lines represent 
the 95% CrI. The dots represent the standardized data points from the included studies.  
Included studies: [41–57]. CrI: Credible interval; DFE: Dietary folate equivalent; PBA: Protein 
binding assay. 

4. Discussion 

As far as we are aware, this is the first systematic review and meta-analysis to present estimates of 
the association between natural food folate alone and blood folate concentrations in a variety of global 
settings. Overall, we found that natural food folate intake has an impact on both RBC folate and 
serum/plasma folate concentrations, although the precision of the estimates differ. Using the derived 
model for data reported using MA, we estimate that a 10% increase in natural food folate intake could 
lead to an increase in RBC folate concentration of 6% (95% CrI: 4%, 9%). Similarly, for every 10% 
increase in natural food folate intake, our models show that serum/plasma folate concentrations could 
increase by 6%–7% regardless of what assay method was used, PBA or MA. 

Our results are higher than studies that have assessed the association between total folate intake 
from mixed dietary sources (natural food folate and folic acid). A meta-analysis by Berti et al. using 
data from mostly nonpregnant, nonlactating women of childbearing age, reported that a doubling in 
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total folate intake, including folic acid, resulted in an increase in RBC folate concentrations by 23% 
and in serum/plasma folate concentrations by 47% [70]. A meta-analysis by Duffy et al. of randomized 
controlled trials in healthy adults found that blood folate concentrations increased in response to folic 
acid in a dose-response manner up to 400 μg/day [71]. Among studies with folic acid intakes in the 
range of 50 μg/day to 400 μg/day, Duffy et al. reported that a doubling of folic acid intake resulted in 
an increase in RBC folate concentrations by 31% (irrespective of assay type) and an increase in 
serum/plasma folate concentrations by 63% (71% for MA studies; 61% for non-MA studies) [71]. 
Comparatively, our findings are based on natural food folate intake alone and show higher percentage 
increases (e.g., a doubling of natural food folate intake would result in a 60% to 70% increase in RBC 
folate or serum/plasma folate concentrations). This highlights the importance of natural food folate 
intake in populations in which folic acid is not readily available or consumed (either via fortification of 
staple foods or as folic acid containing supplements). 

In the USA, there are two key recommendations related to folate intake for women of childbearing 
age. First, the Institute of Medicine (IOM) established the Recommended Dietary Allowance (RDA) 
for folate at 400 μg DFE/day [2]. This value represents the average daily amount of folate needed to 
meet the nutrient requirements for 97% to 98% of a healthy population in specific age/gender  
groups [2]. Second, the US Public Health Service, US Preventive Services Task Force, and the IOM 
recommend that all women capable of becoming pregnant consume 400 μg/day of folic acid to reduce 
the risk of having a pregnancy affected by a neural tube defect [2,10,72]. Although these 
recommendations are critical and remain important public health messages, there has been scant 
information regarding the dose-response of natural food folate intake to blood folate concentrations, 
and functionally, to the effectiveness of neural tube defect prevention. Crider et al. have modeled an 
“optimal” RBC folate concentration to prevent neural tube defect-affected births of ≥ about 1050 nmol/L 
(1180 nmol/L, 95% CrI: 1050 nmol/L, 1340 nmol/L; and have associated it with a neural tube defect 
risk of approximately 6 per 10,000 live births) [6]. Our meta-analysis results suggest that at the 
population level, women could achieve the lower bound of this RBC folate concentration range, the 
“optimal” RBC folate concentration for the prevention of neural tube defects, through a natural food 
folate intake of at least 450 μg DFE/day. Crider’s model indicates that folic acid intakes at higher 
levels could further reduce risk; however, there appears to be diminishing returns on neural tube defect 
risk reduction at RBC folate concentrations above 1300 nmol/L–1500 nmol/L [6]. 

The Food Fortification Initiative currently estimates that 77 countries report mandatory folic acid 
fortification legislation for at least one industrially milled cereal grain [64]. This leaves the majority of 
other countries with limited or no access to folic acid through fortified foods. These populations would 
need to rely on natural food folate intake or high compliance with periconceptional folic acid 
supplementation recommendations to reach recommended intake levels for general nutrient 
requirements (i.e., RDAs) or for neural tube defect prevention [2,10,72]. Though the IOM recommends 
400 μg DFE/day as the RDA [2], prior to folic acid fortification in the USA, most of the adult 
population reported consuming 200–300 μg/day of folate, which would have been predominantly in 
the form of natural food folate [73]. As seen in our review, outside of a controlled feeding study, most 
populations did not meet the IOM’s RDA recommendations from natural food folate intake alone. 
Consuming at least 450 μg DFE/day through food sources alone could be hard to achieve, as intensive 
education efforts to change dietary habits can be difficult to sustain, and such foods may be seasonal or 
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cost-prohibitive for some populations [74–76]. Additionally, about half of all US pregnancies are 
unplanned [77] and less than a third of US women of childbearing age report consuming a supplement 
containing folic acid [78]. Therefore, folic acid fortification of staple foods remains an important and 
critical contributor to meeting total folate needs in the population and reducing the risk of neural tube 
defect-affected pregnancies. Understanding how natural food folate intake contributes to blood folate 
concentrations and extrapolating to the model established by Crider et al. [6] could potentially inform 
the identification of neural tube defect risk among populations with limited or no access to folic acid. 

This systematic review and meta-analysis has several strengths. First, we stratified our analyses by 
assay type (MA or PBA) and limited RBC folate concentration models to studies utilizing MA only. 
This decision was based on previous research indicating that whole blood folate concentrations 
measured using the BioRad Quantaphase II radioimmunoassay (BRQ II RIA, a type of PBA) 
differentially recover folate species according to an individual’s methylenetetrahydrofolate reductase 
(MTHFR) C677T genotype [61]. A systematic review found that such results for RBC folate 
concentrations are not limited to the BRQ II RIA, but extend to other types of PBA [14]. While 
serum/plasma folate concentrations have not been shown to be as biased by genotype as are RBC folate 
concentrations [61,79], the within and between person variability should be considered when interpreting 
the impact of natural food folate intake on serum/plasma folate concentrations, and stratification by assay 
type is still an important consideration. 

Second, data in this review represent reported natural food folate intake and blood folate 
concentrations from populations around the world. Study authors were contacted for additional 
information, and based on this information and to the best of the authors’ knowledge, no participants 
reported any consumption of folic acid. Third, the flexibility of the Bayesian modeling approach 
allowed us to account for the fact that both the dependent variable (blood folate concentration) and the 
independent variable (natural food folate intake) in the assumed regression model were subject to 
varying levels of sampling variability. Fourth, efforts were made to standardize measures of central 
tendency and MA methods to increase comparability across studies. Fifth, given the specified levels of 
natural food folate intake, the possible values for folate concentration produced using the model were 
consistent with the collection of observed values in the selected studies. Lastly, we conducted a series 
of sensitivity analyses to assess the impact of different factors on the model-based predictions, 
including study-level random effects, the potential for bias in reported measures of natural food folate 
intake, previous consumption of folic acid fortified foods in countries with a mandatory fortification 
policy, and the exclusion of potential outlier studies. Overall, these sensitivity analyses did not change 
the interpretation of our findings. 

This study was also subject to several limitations. First, there was the potential that blood folate 
concentrations still reflected consumption of folic acid among participants in feeding studies 
conducted in countries with mandatory folic acid fortification policies. These studies often had 
depletion phases that were not long enough to bring RBC folate concentrations down to pre-
fortification concentrations. However, depletion phase data that were less than 120 days were excluded 
from the meta-analysis. Second, we did not delineate voluntary fortification status because access to 
voluntarily fortified foods is difficult to assess and often unregulated by governments. Therefore, blood 
folate concentration data from some studies could have reflected some folic acid consumption if 
voluntarily fortified foods were consumed by the study population. However, to the best of the 
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authors’ knowledge, study participants did not report consumption of fortified foods. Third, dietary 
intake methods have varying levels of measurement error [3]; thus, as research has shown, the 
assessment of natural food folate intake will also be subject to measurement error [80]. Park et al. 
reported multiple issues when assessing folate intake including error associated with the measurement 
tool, the food composition database used, and the seasonality of data collection [80]. These are serious 
limitations to our analysis; however, these issues were directly related to the study design of included 
studies and could not be altered for purposes of this analysis. We were unable to account for both the 
seasonality of data collection and the food composition database used in each study; however, we 
attempted to model the measurement error for different dietary intake assessment methods by 
incorporating varying levels of bias associated with each measurement tool into the Bayesian model 
(e.g., under-reporting for 24 h recall and under- and over-reporting for food frequency questionnaires). 
This approach was chosen because stratification by dietary assessment intake method reduced our 
sample size, and we could not be sure that each assessment method had been implemented in a similar 
fashion across studies. Additionally, assessment methods and the implementation of these methods could 
have improved over time. The Bayesian model allowed us to increase the error around our estimates of 
natural food folate intake. Even with the increased error around these estimates, we still found an 
association between natural food folate intake and blood folate concentrations. Fourth, study time 
periods were not always long enough to ensure that RBC folate status could change based on natural 
food folate intake alone. Fifth, studies in countries without a mandatory folic acid fortification policy 
tended to use the PBA method and were cross-sectional, so we were unable to conduct a comparison of 
studies in fortifying countries by assay and study design. Sixth, the MTHFR C677T genotype was not 
accounted for because not all studies genotyped their participants, so we were unable to conclude 
whether the association between natural folate intake and blood folate concentrations differed by 
genotype. Seventh, studies that used PBA were grouped together, although there are known differences 
among different types of PBA methods [24,25]. Eighth, our results demonstrate wide credibility 
intervals and are generalizable only across the range of intakes and race/ethnic groups represented by 
the data from the studies included in the analyses. Lastly, because of the limited data available for the 
meta-analyses, we were not able to stratify on certain variables (e.g., by dietary assessment method) 
and a single study has the potential to change the observed associations. However, to address the latter, 
we conducted sensitivity analyses with potential influential outlier studies and the interpretation of our 
results did not change. 

5. Conclusions 

A 10% increase in natural food folate intake is associated with a 6% to 7% increase of both 
serum/plasma and RBC folate concentrations. This information is critical for countries with limited or 
no access to folic acid through fortification or folic acid supplementation. Our results, when interpreted 
alongside models assessing RBC folate concentrations and the risk of neural tube defects, estimate that 
women could possibly achieve the lower bound of a suggested “optimal” RBC folate concentration 
with a consumption of at least 450 μg DFE/day. However, to reach this value requires careful planning 
and long-term adoption of effective dietary interventions. Prevention efforts that do not rely on 
behavior change, such as fortification of staple cereal grain products with folic acid, could allow 
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women to more easily consume adequate total folate in their diet, resulting in increased blood folate 
concentrations and reduced risk for a neural tube defect-affected pregnancy. 
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