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Abstract

Relationships between genetic alterations, such as co-occur-
rence or mutual exclusivity, are often observed in cancer, where
their understanding may provide new insights into etiology and
clinical management. In this study, we combined statistical anal-
yses and computational modeling to explain patterns of genetic
alterations seen in 178 patients with bladder tumors (either
muscle-invasive or non–muscle-invasive). A statistical analysis
on frequently altered genes identified pair associations, including
co-occurrence or mutual exclusivity. Focusing on genetic altera-
tions of protein-coding genes involved in growth factor receptor
signaling, cell cycle, and apoptosis entry, we complemented this
analysis with a literature search to focus on nine pairs of genetic
alterations of our dataset, with subsequent verification in three
other datasets available publicly. To understand the reasons and
contexts of these patterns of associations while accounting for the

dynamics of associated signaling pathways, we built a logical
model. This model was validated first on published mutant mice
data, then used to study patterns and to draw conclusions on
counter-intuitive observations, allowing one to formulate predic-
tions about conditions where combining genetic alterations ben-
efits tumorigenesis. For example, while CDKN2A homozygous
deletions occur in a context of FGFR3-activating mutations, our
model suggests that additional PIK3CA mutation or p21CIP
deletionwouldgreatly favor invasiveness. Furthermore, themodel
sheds lighton the temporalordersof genealterations, for example,
showing howmutual exclusivity of FGFR3 and TP53mutations is
interpretable if FGFR3 is mutated first. Overall, our work shows
how to predict combinations of themajor gene alterations leading
to invasiveness through two main progression pathways in blad-
der cancer. Cancer Res; 75(19); 4042–52. �2015 AACR.

Introduction
Accumulated data show specific patterns of genetic and

epigenetic changes associated with each cancer type. These

patterns include particular sets of altered genes, types (muta-
tions, amplifications, losses) and relationships (mutual exclu-
sivity or co-occurrence) between alterations. The underlying
molecular network should, at least partly, explain such obser-
vations. So far, these patterns have been explained in terms of
linear pathways: co-occurring mutations tend to target genes in
parallel signaling pathways, whereas mutual exclusive altera-
tions may implicate genes involved either in a common path-
way, or in different progression pathways, i.e., in different
tumor types (1–5). Mutual exclusivity could also involve genes
that are synthetically lethal (6). These explanations are only
hand waving arguments, though. Indeed, the static network
structure-based analysis of these patterns has its limitations.
Pathways involved in tumorigenesis are complex and intercon-
nected, and it is therefore difficult to define the borders of a
signaling pathway, and the notion of parallel or common
pathways. Mathematical modeling may help to go further in
these interpretations.
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Major Findings
Statistical analyses of bladder cancer genetic data reveal co-

occurring or mutually exclusive genetic alterations for genes
frequently altered in this cancer. The interactions between these
genesareorganized intoan influencenetworkbasedon literature
analysis. We find that the sole network topology is not sufficient
to explain some of the nine identified associations. To assess
these associations while accounting for the dynamics of associ-
ated signaling pathways, we have developed a logicalmodel. For
the identified patterns, our model sheds light on aberrant
activation of signaling pathways and provides predictions.
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Quick Guide to Equations and Assumptions
Influence network

In an influence network, details of synthesis, degradation, phosphorylation, acetylation, or ubiquitination are abstracted into
binary relations. Nodes (biochemical species or phenomena) are connected through directed, signed edges (denoting regulatory
interactions). For instance, RB1 is known to sequester E2F1 by forming an inactive complex. This reaction is interpreted as RB1
inhibiting E2F1. Another example is the phenomenological node Proliferation, which is activated by both CyclinE1 and CyclinA.
Throughout the article,when referring to the genes, their nameswill be italicized (e.g.,CCND1), and the nodes of the networkwill be
written in standard format (e.g., CyclinD1).

Dynamical, logical model
From the influence network, we define a discrete, dynamicalmodel using the logical formalism.Our qualitative representation of

genomic data (mutation, loss, or amplification of a gene locus) justifies a discrete modeling approach. Each node of the network is
associatedwith adiscrete variable representing its qualitative functional level. A Boolean variable is often sufficient to convey the role
of the corresponding node: species are either active (ON) or inactive (OFF), thus able, or not, to act upon their targets. In some cases,
more than two levels are needed to convey distinct functional roles. For instance, E2F1mediates the transcription of cell-cycle genes,
but when overexpressed, it activates genes of the apoptotic pathway. To distinguish between these two situations, E2F1 is associated
with a multivalued variable (values 0, 1, or 2).

The variables describe the current node states, which evolve depending on logical rules. More precisely, the target level of each
node is defined by a set of logical statements on the levels of the regulators of that node using logical connectors (denoted ! forNOT,
& for AND, and j for OR).

For example, the Boolean variable associated with Proliferation evolves as follows:

Proliferation ¼ 1IF ðCyclinE1 j CyclinAÞ ðAÞ

Statement (1) indicates that Proliferation is ON if one of the cyclins is present (otherwise Proliferation is OFF). The case of the
multivalued variable associatedwith E2F3 (which stands for the isoformE2F3a) ismore complex. Its logical rule includes one logical
formula for each level:

E2F3 ¼ 1IF ð!RB1 &!CHEK1 2:2 &RASÞ ðBÞ

E2F3 ¼ 2IF ð!RB1 &CHEK1 2 : 2 &RASÞ ðCÞ

Statement (2) specifies under which conditions the target level of E2F3 is 1: simultaneous absence of RB1 (inhibitor of E2F3), of
CHEK1_2 (which stands for either CHEK1 or CHEK2) at its maximum value, and presence of RAS. Statement (3) specifies under
which conditions E2F3 level is 2: E2F3a is induced by DNA damage in a CHEK1/2-dependent manner in the absence of RB1 and in
the presence of RAS. For any other situation, the target value of E2F3 is 0.

Given a state of the model, that is, a vector of all node levels, some of the nodes may be called to update their levels as
prescribed by their logical rules. Because we have no information about the velocities of these changes, we opt for the
asynchronous update that defines as many successor states as the number of updated nodes. The resulting discrete dynamics is
nondeterministic (a state may have several successors) and covers all potential behaviours of the network, compatible with the
logical rules.

The attractors of the logicalmodel refer to long-termbehaviors (sets of states inwhich the dynamics is trapped). These attractors
are stable states (all nodes are stable) or complex attractors (some nodes display oscillations).

In this modeling framework, perturbations of gene activity are defined as follows: variable associated with the perturbed node
is constrained, overriding its logical rule. A gain of function, amplification, or overexpression is specified by maintaining a
variable at 1 (or at its maximal level in the case of a multivalued variable), and is denoted by the broad term "overexpression,"
whereas a loss of function or deletion is defined by maintaining a variable at 0 (denoted KO).

Assessing phenotypes
To interpret the model results, we associate observed biologic phenotypes with attractors of the discrete model. These

attractors correspond to phenotypes specified by the states of the output nodes: Proliferation, Apoptosis (E2F1 or TP53-
dependent), and Growth_arrest. From a given set of initial conditions, the possible fates of a cell are assessed in terms of the
phenotypes that can be reached from these conditions and the probabilities associated to those phenotypes. Associating a
phenotype with a stable state is straightforward, whereas a cyclic attractor may include oscillations between several phenotypes
when the cell decision cannot be made. The probability of a phenotype is estimated as the proportion of trajectories leading to
any attractor matching this phenotype. Input components are maintained constant (corresponding to external signals). While
some input values lead to multistability (several possible phenotypes), some others drive the cell, deterministically, to a unique
phenotype; for example, in most cases, the sole Apoptosis is possible when DNA_damage is ON.
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Here, we show how dynamical modeling can relate complex
networks with observable biologic data (genomic alterations,
mutations). Computational modeling allows to integrate and
validate current knowledge about molecular mechanisms under-
lying cellular decisions. It supports mechanistic understanding
and helps to formulate predictions when the network complexity
defies intuition. This is particularly true when dealing with dis-
eases such as cancer, which involve the deregulation of multiple
and intricate pathways (7). Numbers of models have already
proved useful in elucidating questions related to cancer biology
(8–13).

Bladder cancer is frequent in Europe andNorth America, where
it represents the fourthmost common cancer inmenand theninth
in women in terms of incidence (14). The high recurrence rate
makes bladder cancer one of themost costly cancers to treat.Many
observations of the patterns of genetic changes identified in
bladder cancer studies remain unexplained or only partially
explained in terms of underlying molecular mechanisms (15,
16). Bladder tumors progress along two main pathways: Ta and
CIS (carcinoma in situ) pathways (17, 18). About 50% of diag-
nosed bladder carcinomas are Ta tumors, generally of low grade;
20% are T1 tumors and 30% are muscle-invasive tumors (T2–4).
CIS consists of flat, high-grade lesions, rarely found in absence of
other bladder tumors. Ta tumors often recur andprogress rarely (5
to 10% of cases) but unpredictably to T1 and then to muscle-
invasive tumors (T2–4), whereas CIS often progress to T1 and
then to muscle-invasive tumors in circa 50% of the cases. It is
believed that about 80% of muscle-invasive tumors develop
through the CIS pathway. In bladder cancer, as in many cancer
types, an important fraction of genetic alterations concerns genes
coding for growth signaling factors and for G1–S regulators.
Activating mutations of the fibroblast growth factor receptor 3
(FGFR3) gene are associated with the Ta pathway with a high
frequency, but are rarely found in the CIS pathway (17). Besides
FGFR3, mutated in about 45% of tumors (19), common genes
recurrently genetically altered include other oncogenes such as the
small GTPases HRAS (9% of cases) and KRAS (4% of cases),
PIK3CA (subunit of the PI3K, 18% of cases), as well as tumor
suppressors such as CDKN2A (16% of cases) and RB1 (20% of
cases; ref. 52). Mutations affecting oncogenes are recurrent point
mutations, whereas CDKN2A is mostly affected by losses involv-
ing the whole gene (20). RB1 is targeted by both point mutations
and deletions (21).

Our goal is to understand how genetic alterations (mutations,
homozygous deletions, or amplifications) combine to promote
cancer tumorigenesis. More precisely, we aim to explore patterns
(mutual exclusivity or co-occurrence), focusing on components
often altered in bladder cancer and involved in growth factor
signaling, cell-cycle entry, and triggering of apoptosis in response
to DNA damage with the focus on the E2F pathway. It has been
shown recently that the E2F pathway is not only involved in the
control of proliferation but also in invasion and metastasis (22–
24), justifying the study of this pathway to explore invasiveness in
bladder tumors.

This study combines literature search, statistical analysis of
relevant datasets and logical modeling of the related signaling
network. Using an initial dataset of 178 tumors (CIT series) and
three public datasets, statistical tests on pairs of alterations iden-
tify a list of co-occurring or mutually exclusive alterations. With
our computationalmodel, we analyze each association to identify
the deregulated pathways and their contribution to tumorigen-

esis. In some cases (e.g., co-occurrence of FGFR3 and PIK3CA
mutations), we found that the sole network topology cannot
explain the alteration patterns identified by statistical analysis. It
appears necessary to build a dynamical model to accurately and
formally identify mechanisms activated in these patterns (25).
When the model cannot straightforwardly account for these
patterns, we search for contexts (other activating or inactivating
mutations, amplifications or losses) that could explain the sta-
tistical results. Mathematical modeling provides insights into
properties of involved cellular pathways. It is thus useful to
understand mechanisms at play, as a complement to statistical
methods, which uncover patterns of alterations. Here, our main
goal is to highlight mechanisms affected in bladder tumors to
propose successive events that may lead to high-stage tumors in
both Ta and CIS progression pathways.

Materials and Methods
Data production and analysis
Bladder samples (CIT series). One hundred seventy-eight bladder
carcinomas, including 90 non–muscle-invasive tumors (50 pTa,
40 pT1) and 88muscle-invasive tumors (32 pT2, 37 pT3, 19 pT4),
were collected from patients treated surgically between 1988 and
2006 atHenriMondorHospital (Cr�eteil, France), Institut Gustave
Roussy (Villejuif, France) and Foch Hospital (Suresnes, France).
All tumors were pathologically reviewed, staged according to the
2002 TNM classification (26, 27), and graded according to the
1973 WHO classification (28). All patients provided written
informed consent, and ethics committees of all hospitals
approved the study (Comit�e de Protection des Personnes de
l'hôpital Henri Mondor, Comit�e de Protection des Personnes de
Boulogne—Ambroise Par�e, and Comit�e de Protection des Per-
sonnes de Bicêtre). All analyses were performed on the basis of
anonymous patient data.

DNA extraction from tissues. Immediately after surgery, tissue
samples were frozen in liquid nitrogen and stored at�80�C until
nucleic acid extraction. DNA were extracted from frozen human
bladder tissues as described in (26).

Gene mutation analysis. FGFR3 mutations were studied with the
SNaPshot method (29). TP53 (exons 2–11), KRAS (exons 2–3),
NRAS (exons 2–3), HRAS (exons 2–3) and PIK3CA (exons 2, 9,
and 20) gene mutations were screened by direct sequencing with
previously described primers and protocols (30, 31), available on
request. Allmutationswere confirmedby sequencingboth strands
of a second, independent PCR product.

CGH array analysis. DNA copy number was analysed for the 178
bladder tumors on the human genome-wide CIT-CGH array (V6)
designed by the CIT-CGH Consortium. This array contains 4,434
sequence-verified bacterial artificial chromosome (BAC) and P1-
derived artificial chromosome (PAC) clones. Genomic alterations
were determined using GLAD algorithm (32).

Multiplex ligation-dependent probe amplification analysis. DNA
copy number at the CDKN2A and RB1 loci was determined using
a MLPA assay, as described in ref. 33. Bladder tumor DNA was
analyzed with the P024B kit and P047 kits (MRC-Holland,
Amsterdam, the Netherlands) for genomic analysis of
CDKN2A/B and RB1, respectively. Two of the 14 control probes
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spanning chromosomal regions 9q21 and 11p12 were excluded
from the RB1 copy number analysis because these regions are
frequently altered in bladder tumors.

Testing mutual exclusivity and co-occurrence of genetic alterations.
Table 1 reports P values of the Fisher exact tests for all pairs of
selected genetic alterations. For each alteration, we split the tumor
samples into two groups with and without the alteration, and
analyzed the corresponding contingency tables for pairs of altera-
tions. The significance threshold was set to 5%.We performed the
tests using R software.

Computational network modeling. The modeling framework is
presented in the Quick Guide to Equations and Assumptions.
Model construction andanalysiswere donewithGINsim software
(34); probabilities for wild-type and mutant phenotypes were
calculated using Avatar (35) and MaBoSS (36).

Results
Figure 1 depicts the workflow designed for this study. We first

searched the literature on published co-occurrence and mutual
exclusivity patterns, focusing on genetic alterations (mutations,
homozygous losses, and amplifications) of genes known to be
frequently altered in bladder cancer and reported in previous
studies (37, 38). These genes codemainly for proteins involved in
growth factor receptor signaling (EGFR, FGFR3, HRAS/KRAS/
NRAS, PIK3CA), cell-cycle entry (RB1, RBL2, CDKN2A, CCND1,
E2F3), and in triggering apoptosis in response to DNA damage
(TP53, MDM2; Fig. 2B; Supplementary Material S1). Among the
selected genes, we performed a statistical analysis on our dataset,
referred to as CIT dataset, including 178 samples of bladder
carcinomas, with non–muscle-invasive and muscle-invasive
tumors (Fig. 2A; Supplementary Table S9). We finally verified
the patterns deduced from both the literature search and the
statistical analysis in three additional independent bladder tumor
datasets [referred to as the Lindgren dataset (37), the Iyer dataset
(38), and the TCGA dataset (39)].

Amodel including the selected genes was built usingmolecular
facts extracted from scientific publications. It was validated
against published phenotypes of mice mutants (Supplementary
Table S3). Both the topological analysis of the network and the
mathematical model were used to explain the patterns of altera-
tions, formulate predictions such as expected effect of genetic
contexts, or yet probe results from the data analysis. When
possible, model predictions were verified in the datasets.

Data analysis of patterns of co-occurrence and mutual
exclusivity

The identified associations concern: FGFR3, RAS, PIK3CA,
CCND1, E2F3 (oncogenes) and RB1, TP53, CDKN2A (tumor
suppressors). We organized these associations into four groups
(Table 1): (1) mutual exclusivity or co-occurrence of FGFR3
mutations and genetic alterations of another oncogene; (2) co-
occurrence or mutual exclusivity of FGFR3 mutations and altera-
tions of tumor suppressors; (3) co-occurrence of TP53mutations
and E2F3 amplifications; and (4) co-occurrence of CDKN2A
homozygous deletions and oncogenes besides FGFR3.

We found associations between genetic alterations in the lit-
erature (Table 1, column 2): exclusivity of FGFR3 and RAS-
activating mutations (Table 1; row 1.1; ref. 16); co-occurrence ofTa
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FGFR3 and PIK3CA-activating mutations (Table 1; row 1.4;
refs. 15, 40); co-occurrence of FGFR3 mutations and CDKN2A
homozygous deletions in muscle-invasive tumors (Table 1, row
2.1; ref. 33); exclusivity of FGFR3 and TP53 mutations, found
when considering all tumors but disappearing when stratifying by
stage (Table 1, row 2.2; ref. 19); and co-occurrence of E2F3
amplifications and RB1 deletions (or CDKN2A deletions as pre-
sented in ref. 41).

On CIT dataset, we performed the Fisher exact test of indepen-
dence for each pair of alterations (Table 1, columns 3–5). Because
some associations depend on the stage, we considered all tumors
and separately: non–muscle-invasive (sup) and muscle-invasive
tumours (inv). Note that stratifying tumors by both stage and

grade would have resulted in subgroups too small to achieve
statistically significant tests.We found associations not previously
reported in the literature for bladder cancer: exclusivity of FGFR3
mutations and E2F3 amplifications (Table 1, row 1.2); exclusivity
of FGFR3 mutations and CCND1 amplifications (Table 1, row
1.3); co-occurrence of TP53 mutations and E2F3 amplifications
(Table 1, row 3); co-occurrence of CCND1 amplifications and
CDKN2A homozygous deletions (Table 1, row 4.1, reported in
other cancer types; refs. 42, 43); and co-occurrence of PIK3CA
mutations and CDKN2A deletions (Table 1, row 4.2).

Proceeding with our workflow, we mined three publicly avail-
able datasets, searching for associations found in the literature
and/or in our CIT dataset. We considered each dataset separately

Figure 1.
Flowchart of our study to explain
patterns of genetic alterations. Gray
boxes denote data sources while
folded corner rectangles denote the
seven steps of our workflow, in the
sequence indicated by the tokens. Gray
boxes concern data. White boxes
include statistical analyses or
computational modeling.

A

B

Figure 2.
Overview of genes frequently altered
in bladder cancer. A, mutations and
copy number alterations for 11 genes
are shown for each tumor of the CIT
dataset. B, pathways involving these 11
genes: percentage of each alteration
identified in the CIT dataset is
indicated; black, somatic mutations;
blue, homozygous deletions; red,
amplifications of genes. Edges
between genes represent known
influences; normal arrows, positive
effects; blunt arrows, negative effects.
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(Table 1, columns 6–10), as well as an ensemble gathering all
muscle-invasive datasets (Lindgren, Iyer, and TCGAmuscle-inva-
sive tumors; Table 1, column 11). Non–muscle-invasive tumors,
besides the CIT dataset, are only found in the Lindgren dataset.
Among the published associations, all were confirmed in at least
one of the four datasets, except for the last one: co-occurrence of
E2F3 amplifications and RB1 deletions was not found significant
in any dataset (not shown). We thus chose not to further study it.
Eight out of these nine remaining patterns were verified in at least
one of the three public datasets (Table 1, rows 1.1 and 4.1). Figure
3 recapitulates these associations.

Computational network modeling
From the influence network to the logical model.On the basis of an
extensive literature search and on our previous work (44), we
built a generic simplified influence network around E2F-acti-
vating transcription factors in response to cell receptor activa-
tion (EGFR and FGFR3), growth inhibition (mainly represent-

ing TGFb) and DNA damage, yet focusing on genes altered in
bladder cancer. We considered the major players involved in
both RB/E2F and TP53 pathways, controlled by the same
transcription factor, E2F1, which included the genes identified
in the data analysis.

The network of Fig. 4 summarizes information from the liter-
ature and frompathway databases, such as Reactome (45) or Atlas
of Cancer Signaling Network (53). It includes 30 nodes and 84
interactions. The inputs, DNA_damage, EGFR_stimulus,
FGFR3_stimulus and Growth_inhibitors, trigger different
responses (also referred to as phenotypes): Apoptosis, Prolifera-
tion, and Growth_arrest. Readouts for these phenotypes are:
presence of CyclinE1 (CCNE1) or CyclinA (CCNA2) for prolif-
eration, of TP53 for E2F1-independent apoptosis, of E2F1 for
E2F1-dependent apoptosis, and of p21CIP (CDKN1A), RBL2 or
RB1 for growth arrest. Thesemolecular readouts are considered as
phenotype triggers, possibly followed by downstream events, not
described here. For example, when either CyclinE1 or CyclinA is

Oncogenes

Tumor suppressor genes

Mutual exclusivity
Co-occurrence
Contradiction between model simulations and statistical results

Figure 3.
Representation of the statistical
results for co-occurrence and mutual
exclusivity patterns. Arrow labels
correspond to association number
of Tables 1 and 2. Dashed association
between FGFR3 and CCND1 (1.3)
denotes a contradiction between
model simulations and statistical
analysis.

Figure 4.
Influence network of the species involved in entry into apoptosis and cell cycle, through E2F1. Nodes denote species or phenotypes; edges denote influences.
Gray arrows, positive influences; T-shaped arrows, negative influences. Rectangular nodes depict multivalued variables and ellipsoid nodes Boolean variables.
Input and output nodes are in gray.
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active, it indicates that the cell enters S-phase. Similarly, TP53
activationdoes not necessarily lead to apoptosis but rather triggers
it (Supplementary Material S1).

Growth factors are separated into two stimuli, EGFR_stimulus
and FGFR3_stimulus, the first activating EGF receptor (EGFR),
and the second activating FGFR3. Pathways downstream of the
two receptors differ basedonSPRYactivity. This interplay between
EGFR and FGFR3 has been abstracted fromGrieco and colleagues
(12).

From the influence network, we defined the logicalmodel, with
25 Boolean variables andfive ternary variables. Each combination
of input values thus defines a region of the state space with over
109 states. The logical rules governingmodel dynamics (seeQuick
Guide to Equations and Assumptions) are described in Supple-
mentary Table S1. The model has 20 stable states and 5 cyclic
attractors (Supplementary Table S2). These attractors correspond
to phenotypes described by the values of Apoptosis, Proliferation,
and Growth_arrest. In some cases, the input combination fully
determines the resulting phenotype: for DNA_damage ON, there
is a unique attractor where Apoptosis and Growth_arrest are ON
and, conversely, this phenotype is only possible in the presence
of DNA_damage. Some input values lead to two stable states
(multistability): for DNA_damage OFF, FGFR3_stimulus and
Growth_inhibitors ON, either Proliferation or Growth_arrest is
possible. Some complex attractors show oscillations between two
of the phenotypes: for EGFR_stimulus ON and the other inputs
OFF, oscillations between Growth_arrest and Proliferation are
observed.

To test the model coherence, we challenged it with published
experiments on diverse cell types (mouse embryo and rat fibro-
blasts,murine retina, etc.) by targeting the corresponding network
nodes, and checking that our model qualitatively reproduces
mutant phenotypes (Supplementary Table S3).

Data interpretation using the model
In the light of the model properties, we verified the possible

cooperating or exclusive mechanisms corresponding to associa-
tions. To support our findings, for each association, we con-
sidered the corresponding mutants and quantified the related
phenotypes (Material and Methods, Table 1; Supplementary
Fig. S1).

Mutual exclusivity between FGFR3 and RAS mutations is con-
firmed by our model. As shown in the network (Fig. 4), FGFR3 is
upstream of RAS (in our model, FGFR3 directly activates RAS).
Hence, for FGFR3-overexpressedmutant, RAS is active in all stable
states and, consequently, additionalmutations ofRASdonot alter
these phenotypes; there is no advantage for the tumor to mutate
RAS when FGFR3 is already mutated. Note that single RAS-over-
expressed mutant has a higher probability of Proliferation phe-
notype, which can also be reached through EGFR signaling (Table
2; Supplementary Fig. S1). In the case of single FGFR3 mutant,
EGFR is always OFF (due to mutual inhibition of FGFR3 and
EGFR through PKC; ref. 12), which implies that there are less
trajectories leading to Proliferation. The model thus confirms the
exclusivity of the two alterations: if FGFR3 is mutated, there is no
advantage to furthermutate RAS. For the same reasons, we predict
that EGFR amplifications and RASmutations are mutually exclu-
sive. This could not be verified in the datasets due to the low
percentage of both genetic alterations (46).

Mutual exclusivity between FGFR3 mutations and E2F3
amplifications, not reported in the literature but suggested

in the CIT dataset, is also found in the Lindgren dataset and in
pooled muscle-invasive samples. Because FGFR3 is upstream
of E2F3 (Fig. 4), we expect that the genes activated by E2F3
are also activated by FGFR3. Indeed, the model shows that
E2F3 is activated when FGFR3 activity is forced and simula-
tions confirm that there is no advantage for the cancerous cell
to amplify E2F3 if FGFR3 is already mutated (Table 2; Sup-
plementary Fig. S1). Proliferation probability slightly
decreases in the double mutant compared with single E2F3
overexpressed mutant for reasons similar to those evoked for
the previous association.

Mutual exclusivity of FGFR3mutations and CCND1 amplifica-
tions is suggested in CIT superficial tumors but has not been
reported so far in the literature, and is not confirmed in other
datasets. Our model shows an increase in proliferation when
further amplifying CCND1 in an FGFR3-mutated tumor (Table 2;
Supplementary Fig. S1), thus contradicting the exclusivity
observed in our CIT data but in agreement with absence of this
pattern in other datasets. CCND1 can be activated by FGFR3, but
may have additional beneficial roles for the tumor, not explained
by themodel straightforwardly (dashed line in Fig. 3). Indeed, we
find that in the single FGFR3mutant (withDNAdamageON), the
apoptotic phenotype is TP53-dependent, whereas it is also E2F1-
dependent in the single CyclinD1 mutant. CyclinD1 presumably
plays an additional role in triggering apoptosis by forcing E2F1
activation or inhibiting RBL2. The role of CCND1 gene in bladder
would require further investigation.

Co-occurrence of FGFR3 and PIK3CA mutations is reported in
the literature (15, 40) and found significant in the CIT and
Lindgren datasets. As CyclinD1, PI3K is downstream of FGFR3
(Fig. 4). Consequently, when FGFR3 is active, so should be PI3K,
which is not the case, because GRB2 is needed for PI3K activation.
The sole interpretation of the network topology is thus not
enough to explain the advantage tomutate both PI3K and FGFR3.
To investigate this co-occurrence, we simulated the singlemutants
FGFR3-overexpressed or PI3K-overexpressed, and the double
mutant FGFR3 PI3K overexpressed. From a qualitative point of
view, no striking difference appears between the three mutants:
the same phenotypes are reached, the only difference being the
appearance of E2F1-dependent apoptosis in PI3K-overexpressed
mutant (not shown) as previously observed with CyclinD1-over-
expressedmutant. It seems advantageous in terms of Proliferation
probabilities to mutate FGFR3 in PI3K-mutated tumours ("Null"
phenotype corresponds to stable states with inputs all OFF, AKT
pathway forced, and thus survival probably activated). From the
single FGFR3-overexpressed to the double FGFR3 and PI3K-over-
expressed mutant, only a slight increase in proliferation is
observed (Table 2; Supplementary Fig. S1). We would expect
PI3K-activating mutations to favor uncontrolled growth in an
FGFR3-mutated context by promoting survival and blocking
apoptosis. However, our model shows that it is not the case: to
fully lead to uncontrolled proliferation, other checkpoints need to
be deleted, for example, CDKN2A. The systematic analysis of
multiple mutants predicts that indeed, a third deletion of
CDKN2A (equivalent to p16INK4a KO in our simulations)
abolishes all Growth_arrest stable states and thus, in absence of
DNA damage, the sole reachable phenotype is Proliferation
(Supplementary Tables S4–S7). We verified this observation in
the data, but unfortunately, there are too few samples with the
three alterations to perform significant statistical tests; however,
among the 12 samples that carry thedoublemutations FGFR3 and
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PIK3CA, the two samples that are muscle-invasive have lost the
two copies of CDKN2A.

Co-occurrence of FGFR3mutations andCDKN2Ahomozygous
deletions has been documented; Rebouissou and colleagues (33)
reports that CDKN2A (hemizygous and homozygous) losses
predict progression of FGFR3-mutated tumors, and CDKN2A
homozygous deletion is associated with muscle-invasive tumors;
Lindgren and colleagues consider CDKN2A deletions as a late
event in tumorigenesis in FGFR3-mutated tumors (data from
2010; ref. 37). This co-occurrence is found in the CIT dataset and
confirmed in the Iyer and TCGA datasets, suggesting that it is
indeed prevalent in muscle-invasive tumors. In our model, in an
FGFR3-mutated context, loss of CDKN2A shows a slight increase
in proliferation (Table 2; Supplementary Fig. S1), hence no clear
advantage for co-occurrence of these two alterations. As men-
tioned above, mutations of PIK3CA, but also deletions of
CDKN1A (p21CIP) would drastically favour proliferation (Sup-
plementary Tables S4 and S8). Recall that RB/E2F pathway is not
only involved in proliferation but also in invasion andmetastasis
(22–24); thus, we anticipate that highly proliferative tumors are
invasive (Supplementary Fig. S2 shows that expression of gene
targets of the E2F1-3 transcription factors is correlated to tumor

stages). p21CIP seems to be a good candidate for progression
toward invasiveness. This is supported by the reported association
of p21CIPwith poor clinical outcome in urothelial bladder cancer
(47). Unfortunately, there are two few samples to achieve statis-
tical significance for p21CIP alterations in the CIT or TCGA
datasets, even though among the five tumors that are both
FGFR3-mutated and p21CIP-altered in TCGA (i.e., mutated or
deleted), four are CDKN2A homozygously deleted.

The model also suggests that the double mutant EGFR over-
expressed and CDKN2A deleted (equivalent to EGFR amplifica-
tions and CDKN2A homozygous loss) gives similar results as
the triple mutant FGFR3-mutated, PI3K-mutated, and CDKN2A
deletion: only Proliferation phenotypes are reached in absence of
DNA damage. In the CIT dataset, EGFR-amplified tumors (which
belong to the basal-like bladder tumor subtype; ref. 48) do not
seem to lose CDKN2A more frequently than FGFR3-mutated
tumors, and, more surprisingly, CDKN2A expression is increased
when compared with the nonbasal tumors. This suggests two
things: (i) CDKN2Amay compensate transcriptionally for the loss
of RB activation in these tumors; and (ii) in bladder, FGFR3
activates the cell cycle through CDK4/6 (CDKN2A-dependent),
whereas EGFR activates the cell cycle in a CDKN2A-independent

Table 2. Effect of single and doublemutations with respect to wild type for single mutants (Single_Mut/WT) and with respect to single mutants for double mutants
(Double_Mut/Single_Mut)

Mutants Prolif Apop GA P/GA Null

1.1 FGFR3/WT þþ Same �� Disappear Same
RAS/WT þþ Same �� Disappear Same
Double mutant/FGFR3 Same Same Same Same Same
Double mutant/RAS �� Same þþ Same Same

1.2 FGFR3/WT þþ Same �� Disappear Same
E2F3/WT þþ Same �� Disappear Same
Double mutant/FGFR3 Same Same Same Same Same
Double mutant/E2F3 � Same þ Same Same

1.3 FGFR3/WT þþ Same �� Disappear Same
CyclinD1/WT þþ Same �� Same þþ
Double mutant/FGFR3 þ Same Same Same Same
Double mutant/CyclinDl þþ Same þ Same Disappear

1.4 FGFR3/WT þþ Same �� Disappear Same
PI3K/WT þþ Same �� Disappear þþ
Double mutant/FGFR3 þ Same Same Same Same
Double mutant/P13K þþ Same � Same Disappear

2.1 FGFR3/WT þþ Same �� Disappear Same
CDKN2A/WT þ Same �� þþ Same
Double mutant/FGFR3 þ Same � Same Same
Double mutant/CDKN2A þþ Same � Disappear Same

2.2 FGFR3/WT þþ Same �� Disappear Same
TP53/WT Same �� þþ Same Same
Double mutant/FGFR3 Same �� þþ Same Same
Double mutant/TP53 þþ þ �� Disappear Same

3 TP53/WT Same �� þþ Same Same
E2F3/WT þþ Same �� Disappear Same
Double mutant/TP53 þþ Same �� Disappear Same
Double mutant/E2F3 Same �� þþ Same Same

4.1 CDKN2A/WT þ Same �� þþ Same
CyclinD1/WT þþ Same �� Same þþ
Double mutant/CDKN2A þþ Same �� �� þþ
Double mutant/CyclinD1 þþ Same �� Same Same

4.2 CDKN2A/WT þ Same �� þþ Same
PI3K/WT þþ Same �� Disappear þþ
Double mutant/CDKN2A þþ Same Disappear Disappear þþ
Double mutant/PI3K þþ Same Disappear Same þþ

NOTE:þþ, increase higher than 10% (in absence of DNA damage);þ, an increase higher than 5%;��, decrease higher than 10% (in absence of DNA damage);�, a
decrease higher than 5%.
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manner. In agreement with this idea, CCNB1 and CCNE2, whose
actions are CDKN2A-independent, are both overexpressed in
basal-like bladder tumors presenting an activation of EGFR target
genes (48).

Mutual exclusivity of FGFR3 and TP53 mutations has been
reported for all tumors rather than tumors separated by stage
(19). In our model, when TP53 is mutated, Apoptosis is still
reachable through E2F1, whereas Apoptosis is only TP53-
dependent in FGFR3 single mutant (not shown). Model simu-
lations indicate that TP53 mutations in an FGFR3-mutated
context have little impact on proliferation (Table 2; Supple-
mentary Fig. S1); however, mutating FGFR3 in a TP53-mutated
context clearly increases Proliferation probability. The model
shows that, when TP53 is already mutated, it is advantageous to
mutate any gene from the cell-cycle machinery (here FGFR3,
but amplification of any oncogene from our network would
serve, as shown in the next association). From these results, we
can only conclude that mutual exclusivity may concern FGFR3-
mutated tumors.

We anticipate that EGFR amplifications andmutations of TP53
would be associated in muscle-invasive tumors. In the data, the
amplifications for EGFR are rare (4 in CIT, 1 in Lindgren, 0 in Iyer,
10 in TCGA). But, recently, a subgroup of tumors was identified
with overexpression of EGFR (either through transcriptional
mechanisms or amplification) and indeed enriched with TP53
mutations (48).

Co-occurrence of TP53 mutations and E2F3 amplifications
has not been reported but appears significant in CIT data. The
model shows an increase in proliferation when comparing
TP53 single mutant with the double mutant TP53-deleted
E2F3-overexpressed, which is not the case when comparing
E2F3 single mutant with the double mutant (Table 2; Supple-
mentary Fig. S1). In other words, this co-occurrence is bene-
ficial for the tumor cell when mutations of TP53 appear first.
We looked more closely at the CIT dataset: There are 58 TP53-
mutated and 11 E2F3-amplified samples in total. We found
that among the 11 E2F3-amplified tumors, 9 are TP53-mutat-
ed, and 7 out of these 9 are muscle-invasive. In the Iyer dataset,
15 of 20 E2F3-amplified tumors are also TP53-mutated. As
mentioned in the previous association, amplifying E2F3might
be one way to favor proliferation when tumors are already
TP53-mutated.

Co-occurrence of CCND1 amplifications and CDKN2A homo-
zygous deletions has been reported for head and neck squamous
cell carcinomas (42, 43) and is found in CIT data. Simulations
show that amplifying CCND1 (CyclinD1 overexpressed) alone
has already an advantage over deleting CDKN2A (p16INK4a and
p14ARF deletions in the model) alone in terms of proliferation
(Table 2; Supplementary Fig. S1). It is known that CDKN2A
inhibits CCND1 by forming a complex with the CDKs, CDK4 or
CDK6. As a consequence, its loss facilitates the activation of
CCND1 but does not necessarily promote proliferation. The
doublemutant shows an increase in proliferationwhen compared
with both single mutants (Table 2; Supplementary Fig. S1). Our
model thus confirms co-occurrence of these alterations. The role
of CDKN2A in senescence is not considered here, and we antic-
ipate that itmayplay an additional role thatwe cannot account for
in this model.

Co-occurrence of PIK3CA mutations and CDKN2A homozy-
gous deletions is similar to the previous case. The double muta-
tion increases the probability to reach proliferation compared

with single mutants. Indeed, the double mutant PI3K overex-
pressed and CDKN2A deleted (p16INK4a and p14ARF deletions)
suppresses the Growth_arrest attractors (Table 2 and Supplemen-
tary Table S6; Supplementary Fig. S1).

Discussion
By performing literature search and data mining of four inde-

pendent bladder cancer datasets, we identified nine patterns of co-
occurrence and mutual exclusivity in genetic alterations affecting
growth factor signaling pathways, cell cycle, and apoptosis. To
explain the reasons and contexts for these patterns, we defined a
mathematical model derived from an influence network encom-
passing the frequently altered genes (Fig. 4). We simulated the
mutants corresponding to the patterns and provided different types
of predictions. First, we concluded that, in some cases, co-occur-
rence needs tobe accompanied by a thirdmutation to be associated
with invasiveness, for example, PIK3CAmutations or p21CIP dele-
tions in an FGFR3-mutated andCDKN2A-deleted context. Next, we
found that the order of mutations might explain associations and
concluded that some events occur late during tumorigenesis (e.g.,
co-occurrence of TP53 mutations and E2F3 amplifications).

In some cases, our model suggests that co-occurring genetic
alterations prepare a context for more aggressive tumors (e.g.,
FGFR3 and PIK3CA mutations) or lead to more invasive tumors
(e.g., E2F3 amplifications and TP53 mutations); and mutually
exclusive alterations show redundant effect of the alterations on
proliferation probabilities (e.g., FGFR3 and RAS mutations) or
maybe involved in different tumor types (FGFR3-mutated tumors
associated to Ta pathway vs. TP53-mutated associated to CIS
pathway). However, the model shows its limitations when it
comes to distinguishing between the two hypotheses for mutual
exclusivity. For instance, FGFR3 mutations and E2F3 amplifica-
tions are found mutually exclusive. In the model, they have the
same downstream effect. Thus, we could conclude that one
alteration only should be selected or the two alterations belong
to different progression pathways as suggested by Lindgren (49).
Because of Lindgren's results and the fact that E2F3 amplifications
are co-occurringwithTP53mutations, we are tempted to associate
E2F3 alterations to CIS progression pathway.

Looking at all nine associations studiedwith themodel (Fig. 3),
we can deduce (and confirm) that FGFR3 and PIK3CAmutations
along with CDKN2A homozygous deletions are more associated
with Ta progression pathway, whereasEGFR,E2F3 amplifications,
and TP53 mutations are more associated with CIS progression
pathway. p21CIP alterations (mutations or loss) seem to be
associated with the Ta progression pathway in absence of PIK3CA
mutations. The assignment of RAS mutations to one of the
progression pathways was more difficult.

Because cancer is a disease involving multiple alterations and
because our model only includes simplified representations of
pathways, results frommodel analysis have to be interpreted with
care. Moreover, the model refers to a single, idealized cell, thus
ignoring crucial effects from its microenvironment. It would be
tempting to suggest that phenotype probabilities predicted by the
model for mutation patterns can have improved association to
patient survival compared with mutational profile. Cox propor-
tional hazard regression for the model probabilities of the phe-
notypes (Proliferation, Growth_arrest, Apoptosis) showed a sig-
nificant association to patient survival. However, the same regres-
sionmodel estimated for the rawmutational profiles gives slightly
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more significant results (not shown). It is not yet realistic to expect
that our mechanistic model would outcompete statistical
approaches in predicting patient survival. This could be explained
by the complexity of factors, which affects survival. Our model
only focuses on the prediction of cancer cells to become invasive.
Nevertheless, this does not compromise the cognitive value of the
model to provide mechanistic insights into patterns of gene
alterations observed in groups of patients, which is the main
focus of the current study.

What the model shows with confidence is that reasoning in
terms of pathways is not enough to explain the studied patterns.
Linear signaling pathways, as often described inbiology, are highly
interconnected, and it becomes difficult to reasonwithout amodel
to formally conclude on the roles of frequentmutations.While the
model does not provide straightforward explanations for all asso-
ciations, or cannot confirm some results of the CIT dataset statis-
tical analysis (seeCCND1 amplifications and FGFR3mutations), it
allows to explore the effects of single, double, or even triple
mutations on the studied phenotypes. For these cases, it can
provide qualitative trends (e.g., increase in Proliferation) and lead
to the formulation of predictions. Themodel can propose contexts
in which particular mutations lead to extreme cases. For instance,
we can interpret proliferative phenotypes, if they are the only
reachable stable states, as a very invasive situation in which the
cell would have lost all protections against uncontrolled growth
(this is the case for the triple mutant FGFR3 overexpressed and
PI3K overexpressed and CDKN2A deleted). Our approach com-
bining data analysis and mathematical modeling is able to shed
some light on the mechanisms leading to tumorigenesis and
allows an alternative interpretation of the genomic data.

Of course, some predictions remain to be checked in other
public datasets, as soon as they aremade available (e.g., the role of
p21CIP in invasiveness). To draw our conclusions, we considered
copy number and sequencing data, but many other events can
happen downstream of gene activity. It would be appropriate to
include other types of data, such as mRNA expression, DNA
methylation, and protein level. We plan to include at least
transcriptomic data in future analyses and anticipate that other
genes will appear to play a role in the process of invasiveness.

Finally, we analyzed association patterns limiting ourselves to
cell cycle and apoptosis entries. Some of our explanations may be
incomplete because of the involvement of important genes in
other cell fates such as senescence (e.g.,TP53,CDKN2A,RBL2, etc.;
ref. 50). Similarly, PTEN role will need to be further explored in
pathways other than PI3K/AKT as reported in refs. 26, 51.
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Correction

Correction: A Modeling Approach to Explain
Mutually Exclusive and Co-Occurring Genetic
Alterations in Bladder Tumorigenesis

In this article (Cancer Res 2015;75:4042–52), which appeared in theOctober 1, 2015
issue of Cancer Research (1), the authors have changed the description of the
Supplementary Logical Model to improve accessibility of the model file; the model
itself has not been changed, but Supplementary Table S1 has been updated to clarify
some logical rules and thus to ease model reconstruction.
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