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Abstract 
Neural Arterial Gingival Simplex is a common systemic disease linked to an invasive periodontal pathogen, Porphyromonas gingivalis as the key 

initiator. Instead of considering separate pathologic conditions as separate diseases, the health community should view this disease as a single 

entity, to diagnose and treat accordingly. We discuss the evidence for this hypothesis and the need for definitive research. A strategy to maintain a 

healthy, resilient microbiome with adjunctive support by probiotics and polyols is warranted. Newer diagnostic and monitoring technologies 

along with many possible therapeutic agents and protocols are readily available to prevent and treat Neural Arterial Gingival Simplex. 
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Introduction 
 

The importance of re-establishing a normal microbiome cannot be 

overemphasized [1,2]. Modern diet and the overuse of antimicrobials 

have resulted with a tremendous increase in autoimmune diseases that 

were virtually unheard of in the past [3-5]. This shift in diet occurred 

first in the Neolithic period, followed by another shift in the Industrial 

Era, and finally now with the combined effects of fast food and 

antimicrobials [6]. Even a number of common food preservatives and 

additives have been shown to exert negative health effects [7]. As a 

result, it is estimated that almost half of all middle-aged Americans 

have metabolic syndrome [8-10]. In short, the costs of western diet and 

life style have been significant, and unless a paradigm shift urgently 

occurs, we could be a society devoted only to extending the life span of 

the chronically ill, incapable of achieving the accomplishments of prior 

generations [11,12]. Fortunately, advances in scientific study of the 

microbiome provide hope that wellness can be restored and productive 

health span increased. 

 

The connection of oral health to systemic health is now well 

established [13]. Indeed, there is no isolated disease such as 

periodontal disease; it is simply a symptom of a systemic disease that 

may best be described as Neural Arterial Gingival Simplex (NAGS). 

Porphyromonas gingivalis, has been found to be a causative agent of 

periodontal disease, arteriosclerosis and inflammatory Alzheimer’s 

[14-16]. Because P. gingivalis can be considered the foremost or 

“keystone” initiator of periodontal disease, it is reasonable to describe 

P. gingivalis as a causal agent of NAGS, a single disease with all of its 

downstream comorbidities [17]. Such is the case for any other disease, 

for instance, viral acute gastroenteritis due to rotavirus may cause 

fever, chills, muscle aches, fatigue and nausea, and each component is 
not considered a separate disease [19,20].  

 

 

 

Addressing the microbiome may very well become the preventive 

technique of choice. Oral and systemic preventive protocols would 

include probiotic supplementation, possibly with overlapping 

beneficial bacterial, archaeon, viral or yeast probiotics. For example, it 

may be stated that an historical precedent for use of a viral “probiotic” 

would be the cowpox inoculation by Jenner to prevent the mortality 

seen with the scourge of smallpox [21]. In this sense, cowpox may be 

considered a viral probiotic as it contributed to the health and even 

survivability of the individual. 

 

Evolution Guerilla Tactics 
 

P. gingivalis has been called a “guerilla” for its notable tactics of 

slowly subverting the host’s defense mechanisms [22]. The host’s 

immunity is bypassed by the ability of P. gingivalis fimbriae to attach 

to hosts cells, such as gingival epithelial cells or endothelial cells, and 

then to invade the cell itself [23]. The ability of P. gingivalis to shift 

genomes in different strains to specifically target different host cells 

makes it particularly virulent [24]. In addition, the epigenetic influence 

of P. gingivalis allows it to open the tight junctions between cells and 

to modulate the immune response [25]. All told, P. gingivalis subverts 

a massive host immune response, and does not normally overwhelm 

the host because that would effectively limit the spread of the 

pathogen. A dead host does not propagate a pathogen. 

 

P. gingivalis is a perfect pathogen. It spreads from the older members 

of the host population to the younger members [26]. P. gingivalis is 

seen in children as young as 7-8 years of age, however, gingival 

pathology is not usually detected until age 17 [27,28]. The majority of 

young adults already have more than a millimeter of attachment loss 

[29]. It should be noted that in autopsy studies 20% of 2-15 year old 

children demonstrate atherosclerosis, and by age 21 50% will have 
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calcified aortic deposits [30-32]. This too perfectly coincides with the 

development of “periodontal disease”. In addition, research at 

Northwestern University revealed that in their early 20’s subjects were 

already developing beta amyloid plaque and tau protein deposits [33]. 

With recent publications demonstrating the correlation between 

gingipain from P. gingivalis and Alzheimer’s disease, this should not 

be the least surprising [14].  

 

With the new concept of P. gingivalis infection causing a single 

disease with multiple symptoms, it is now easy to understand the 

modes involved. The oral component is the initial infection where the 

immune system is alerted and subverted, creating an inflammatory 

environment. Circulating leukocytes carry P. gingivalis and associated 

Lipo Poly Saccharide (LPS), affecting the endothelial cells of arteries, 

and passing into the neural component, eventually reducing the 

cognitive ability of the host, which would reduce the oral hygiene of 

the host, further spreading the pathogen amongst all contacts [34]. 

 

Prevention 
 

The key to prevention will always lie with having the healthiest 

microbiome [35]. A “healthy non- western microbiome” will trigger 

the more robust response to pathogens with the least autoimmune 

consequences. Unfortunately for the civilized world, we have brought 

upon ourselves the epidemic of autoimmune disease, while decreasing 

our innate response to common pathogens [36]. Much has been said of 

the hygiene hypothesis, and of us all being “too clean” [37]. But it is 

extremely doubtful that as a society, we will all return to our hunter-

gatherer roots (barring some natural catastrophe). Probiotic 

supplementation appears to be the essential to re-establish a healthy 

resilient microbiome [38-42]. This option alone, without appropriate 

diet and lifestyle modification, is severely limited [43]. The appropriate 

diet is necessary to provide the required prebiotics that beneficial 

organisms need to thrive and to favorably influence the entire 

microbiome [44]. The microbiome metabolites then exert an epigenetic 

effect upon the host, either producing health, or illness [45]. Dysbiosis 

not only directly produces disease, but also the metabolites of the 

microbiome are messengers to the brain and the rest of the body [46]. 

The immune system responds, as does the behavior of the host [47]. 

Depression has been linked to the presence of a specific bacterial 

species, and also the lack of one species [48,49]. Schizophrenia is also 

an epigenetic disease and Autism Spectrum Disorder (ASD) has been 

linked to propionic acid producing bacterial species, such as, Clostridia 

bolteae and Clostridia histolyticum [50-54]. Conversely the presence 

of Clostridia sporogenes could help protect against ASD by combining 

propionic acid with indole to produce 3-Indole Propionate, a neural 

protective metabolite, thereby neutralizing the epigenetic effect of 

propionic acid [55,56]. It has been theorized that the absence of C. 

sporogenes is related to the use of glyphosate, known by the trade 

name Roundup [57]. Possibly the increase risk of non-Hodgkin’s 

Lymphoma seen in chronic exposure to individuals exposed to 

Roundup is due to its effect on the host’s microbiome, by removing or 

reducing the level of a protective bacterial species. 

 

With dysbiosis, the existence of disease always means not just an 

increase in the presence of a pathogen, but normally always a decrease 

in the level of commensals, allowing the pathogen to generate the 

pathological response [58]. In a perfectly balanced system, the host 

should always survive, at least long enough for the pathogen to spread. 

The host should, by evolution, develop a robust response to the 

pathogen, increasing the chance of the host species survival [59]. If this 

does not happen, the host species will disappear and the pathogen can 

only survive by becoming a zoonotic disease pathogen, jumping 

species, such as, bird flu or swine flu [60]. There is a canine version of 

P. gingivalis, Porphyromonas cangingivalis, and periodontal 

pathogens typically seen in human hosts have been detected in canines 

[61-62]. Whether this is by co-evolution or zoonotic origin is of 

interest, as it should explain the disease process with greater clarity. 

Gingipain-deficient mutant P. gingivalis may prove to be a precursor to 

an Alzheimer’s preventive probiotic. After all, this mutant strain could 

and should compete with the “wild type” strains producing gingipain. 

A further example of this would be the strains of Fusobacterium 

nucleatum that do not have the FADA gene. These strains could 

occupy that ecological niche of F. nucleatum and possibly decrease 

miscarriages (spontaneous abortions) and colorectal cancer. 

Development of these less virulent strains is similar to Jeffrey 

Hillman’s research into a low or non-lactic acid producing strain of 

Streptococcus mutans [63]. Colonization of the population with this 

safe probiotic could greatly decrease the most common disease of 

childhood, dental caries. It is estimated that over 98% of the human 

population suffers from dental caries, a totally preventable disease that 

is strictly due to dietary habits and dysbiosis [64]. Oddly enough, 

dentistry totally ignores this and concentrates only on fluoridation, 

limiting the effectiveness of prevention programs [65-72].  

 

Treatment 
 

Erythritol and xylitol are polyols that have been extensively researched 

and demonstrated to have notable anti-cariogenic and anti-periodontal 

disease properties [73]. Polyols (particularly the non-hexitol alditols or 

“sugar alcohols” erythritol and xylitol) have been found effective in 

inhibiting the transition to and maturation of biofilms from planktonic 

cells [74]. Xylitol clearly inhibited the formation of mixed species 

biofilms, which included P. gingivalis in vitro [75]. Erythritol 

suppressed the maturation of gingivitis biofilms, and contributed to a 

healthier oral ecosystem [76].  

 

P. gingivalis takes advantage of early colonizers (Streptococci and 

Candida) to provide attachment and protection within the biofilm 

matrix. Polyols can reduce extracellular polysaccharide production and 

interfere with biofilm matrix elaboration, thereby reducing adherence 

and biofilm development [77-79]. 

 

Streptococci and Candida utilize common dietary sugars sucrose and 

D-glucose for preferred energy sources, as well as for polysaccharide 

production. Higher glucose concentrations stimulate Candida growth. 

Compared with common D-sugars, xylitol induced the lowest adhesion 

and biofilm formation on either S. mutans or Candida albicans [80].  

 

Candida facilitates the colonization and proliferation of periopathic 

biofilm by co-aggregating with P. gingivalis and adhering to epithelial 

cells [81]. Patients with severe periodontitis have a higher rate of 

Candida colonization [82]. In diabetes, high levels of glucose in the 

gingival sulcus coupled with immunosuppression enhance Candida 

growth [83]. Glucose, fructose and mannose are the preferred sugars 

used for energy and biosynthesis by Candida, whereas polyols such as 

xylitol are poorly utilized. Sugar sensing drives virulence attributes, 

including adhesion, oxidative stress resistance, biofilm formation, 

morphogenesis, invasion, and antifungal drug tolerance in fungal 

pathogens [84,85]. In dual species biofilm Candida helps provide P. 

gingivalis adherence and protection against oxygen, allowing it to 

organize in shallower gingival pockets [86].  

 

The hydroxyl groups of polyols may interfere with the hydrogen 

bonding between hydroxyl groups of polysaccharides and allow greater 

penetration of antimicrobials. Polyols, especially erythritol, enhanced 

the fungicidal effect of benzethonium chloride toward in vitro candidal 

biofilms [87]. Xylitol and sorbitol at the concentrations used in 

commercial oral health care products had some levels of candidacidal 

activities [88]. Polyols can penetrate biofilms to deliver probiotics [89]. 

Erythritol delivered zinc chloride deeper into the protective three-

dimensional matrix of extracellular polymeric substances of mature 

biofilm [90]. 

 

Although P. gingivalis utilizes peptides for its main energy source, 

sugars are used by P. gingivalis for biosynthesis of macromolecules 
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[91]. Polyols can interfere with these processes. As a result, polyols 

reduce the growth and the virulence factors of P. gingivalis. Xylitol 

was found to inhibit the inflammatory cytokine expression provoked 

by LPS remnants of P. gingivalis [92]. Further, xylitol interferes with 

P. gingivalis phagocytosis by macrophages. In macrophages that are 

infected with live P. gingivalis, xylitol significantly decreased the 

production of cytokines, NO and chemokines such as TNF-α, IL-1β, 

IL-12p40, eotaxin, IP-10, MCP-1, and MIP-1α. Such potent anti-

inflammatory activities recommend use of polyols for prevention and 

mitigation of periodontal conditions [93]. Plaque grown in the presence 

of polyols has consistently been shown to be less inflammatory and 

less irritating to tissues than sucrose-grown plaque [94-99]. 

 

Polyols can suppress the growth and virulence expression of mixed 

bacterial biofilms. Erythritol was the most effective polyol in 

suppressing the growth and organization of P. gingivalis grown on a 

Streptococcus gordonii biofilm. Erythritol exerted inhibitory effects on 

several pathways-reduced growths through DNA and RNA depletion, 

attenuated extracellular matrix production, and alterations of dipeptide 

acquisition and amino acid metabolism [100]. 

 

Recognition of NAGS corresponds with newer enhancements in the 

diagnosis, prevention and treatment of periodontal diseases. 

Periodontal diagnosis goes beyond gross visual, radiographic and 

mechanical probing to include Polymerase Chain Reaction (PCR), 

DNA determination of specific pathogenic entities and quantities-the 

overall pathogenic burden. Genetic and inflammatory markers are also 

included to help construct an overall assessment of individual patient 

risk and assign targeted treatment plans. Improved salivary and 

inflammatory diagnostics can help with monitoring treatment progress 

in achieving and maintaining therapeutic end points. 

 

Awareness of NAGS likewise calls for prevention, treatment and 

maintenance that extend beyond localized mechanical strategies. 

Presence of P. gingivalis is not limited to those with bleeding gums 

and deep pockets [101]. P. gingivalis in dental biofilms is associated 

with expression of virulence factors leading to progression of 

periodontal disease [102]. P. gingivalis biofilms are not easily 

controlled by purely mechanical means and are more resistant to 

antimicrobials than planktonic cells [74]. Treatment of Periodontal 

disease and the prevention of dental caries should include a very strong 

polyol component [103- 108]. This therapy would not only prevent the 

oral disease, but should also help prevent the development of systemic 

disease, atherosclerosis and the scourge of the elderly, Alzheimer’s 

disease [109,110]. Certainly, it would be advantageous to prevent 

NAGS, as the cost to society is enormous, and the cost to the 

individual can be devastating. Polyols are available in many forms such 

as tabletop sweeteners and as ingredients in commercial foods and 

beverages. More direct “polyol delivery systems” for oral care include 

toothpaste, lozenges, chewing gum, mouth rinses and oral sprays. 

 

Further research is warranted and necessary to reduce the burden of 

this devastating disease on modern society. We should first perform a 

number of retrospective review of patients who have been diligent 

users of polyol products, especially the reviewing the children’s health 

records of those that were subjects in the early Finnish studies of 

xylitol and erythritol supplements. Unfortunately, this may be difficult 

due to human subject privacy rules. On a positive note, there are 

apparently studies that have already been started that are long term in 

scope, such as the Pussinen et al study [111]. Prospective studies could 

take many decades to irrefutably prove the long term positive effects of 

polyol and probiotic supplementation. Due to the documented early 

onset of atherosclerosis in children, newer diagnostic technologies 

should be utilized to identify and monitor risk. With the now available 

non-invasive testing for the presence of P. gingivalis and use of 

ultrasound for atherosclerosis detection, the research may be 

accomplished sooner rather than later. 

 

Conclusion 
 

A disease of neural, arterial and gingival involvement resulting from an 

infection by P. gingivalis has since prehistoric times inflicted severe 

pathological effects on the homo genus. The disease is now of an 

epidemic nature and should be prevented by probiotic therapy, dietary 

changes, and life style adjustments. Treatment should include 

supplemental polyol support. 
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