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Abstract

We prove that for any non-planar graph H, we can choose a two-colouring G of
H such that G is intrinsically chiral, and if H is 3-connected and is not K3,3 or K5,
then G is intrinsically asymmetric. No such asymmetric two-colouring is possible for
K3,3 or K5.

The study of graphs embedded in S3 is an extension of knot theory which is also
related to chemistry. In particular, a molecule can be modelled as a graph inR3 where
the vertices represent atoms and the edges represent bonds. For such a molecular
graph, different coloured edges can be used to represent molecular chains of different
types. Symmetries are important in analysing embedded graphs, just as they are in
analysing knots. From a chemical point of view, symmetries are significant because
they play a role in determining the chemical properties of the molecule. Colouring
the edges of a graph with two distinct colours can have the effect of eliminating some
of the symmetries of the graph. In this paper, we will discuss how to two-colour most
non-planar graphs so that none of their embeddings has any symmetries.

We begin with some definitions. A graph G is a collection of vertices V and edges
E, such that there is at most one edge between a pair of vertices, and every edge
has two distinct vertices. An automorphism of G is a permutation of the vertices of
G which preserves adjacency. Suppose that f is an automorphism of a graph G, and
suppose that v1 and w1 are adjacent vertices. If f (v1) = v2 and f (w1) = w2 we shall
abuse notation slightly and write f (v1w1) = v2w2. A two-coloured graph G is a graph
where each edge of G is either coloured black or white. An automorphism f of a
two-coloured graph preserves coloured adjacency. That is, if v and w are connected
by a black edge, then f (v) and f (w) are connected by a black edge, and if v and w
are connected by a white edge, then f (v) and f (w) are connected by a white edge.
Suppose G is a graph which is embedded in S3. We define a graph homeomorphism
h: (S3, G)→ (S3, G) to be a homeomorphism of S3 such that h(G) = G, h(V ) = V and
h(E) = E. If G is a two-coloured graph then a graph homeomorphism of (S3, G) is
also required to be colour preserving. We are interested in which automorphisms of
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a graph are induced by a homeomorphism of S3. Some graphs have automorphisms
which cannot be induced by a homeomorphism of S3 no matter how the graph
is embedded [2]. A graph G which is embedded in S3 is said to be asymmetric if
no non-trivial automorphism of G can be induced by a graph homeomorphism of
(S3, G). An embedded graph G is said to be topologically achiral if there exists an
orientation reversing graph homeomorphism h: (S3, G) → (S3, G). If no such graph
homeomorphism exists, then we say that this embedding of G is topologically chiral.
If all embeddings of G in S3 are topologically chiral, then we say G is intrinsically
chiral; and if all embeddings of G in S3 are asymmetric, then we say that G is
intrinsically asymmetric.

We prove the following results:

Theorem 1. Let H be a non-planar graph. Then there is a two-colouring G of H such
that G is intrinsically chiral, and if H is 3-connected and is not K3,3 or K5, then G is
intrinsically asymmetric.

Theorem 2. Let H be either K3,3 or K5. Then there does not exist a two-colouring of
H which is intrinsically asymmetric.

Motivated by the definition of the molecular symmetry group given by Longuet-
Higgins [4], Simon [6] introduced the concept of the topological symmetry group of a
graph G embedded in S3. Simplifying his definition slightly we define the topological
symmetry group of a graph G embedded in S3 to be TSG(G) = {automorphisms of G
which are induced by a homeomorphism of S3}. Observe that a graph G is intrinsi-
cally asymmetric if and only if TSG(G) is trivial for each embedding of G in S3. We
define a graph to be n-connected if at least n vertices together with their incident
edges must be removed in order to disconnect the graph or reduce it to a single
vertex. Thus, we can interpret our main result to say that if H is a non-planar 3-
connected graph which is not K3,3 or K5, then there is a two-colouring G of H such
that for each embedding of G in S3, TSG (G) is trivial.

Two topological tools that we will make use of are the Automorphism Theorem,
which allows us to focus attention on finite order homeomorphisms of S3, and Smith
Theory, which characterizes the fixed point sets of such homeomorphisms. We state
both of these results below.

Automorphism Theorem ([1]). Let G be a graph which is 3-connected, and let φ be
an automorphism of the vertices of G. Suppose that G can be embedded in S3 in such
a way that φ is induced by a graph homeomorphism h of (S3, G). Then there exists an
embedding of G in S3 such that φ is induced by a finite order graph homeomorphism f of
(S3, G). Furthermore, f is orientation reversing if and only if h is orientation reversing.

Smith Theory ([7]). Let f be a non-trivial finite order homeomorphism of S3. If f
is orientation preserving then the fixed point set of f is either the empty set or is a
set which is homeomorphic to S1. If f is orientation reversing then the fixed point
set of f is either two points or a set which is homeomorphic to S2.

We begin by proving the following corollary of the Automorphism Theorem.

Homeomorphism Lemma. Let G be a 3-connected graph. Suppose that G is embedded
in S3 in such a way that there exists a graph homeomorphism h: (S3, G) → (S3, G). If
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there exists a non-planar subgraph T of G all of whose vertices are fixed by h, then h
must fix all of the vertices of G.

Proof. Since G is 3-connected, we can apply the Automorphism Theorem to get
an embedding of G in S3 which has a finite order graph homeomorphism f that
induces the same automorphism as h on the vertices of G. Note that f fixes all of
the vertices of T and since f has finite order, this means that f fixes every point
of T . By hypothesis, T is non-planar, so it cannot be contained in 6, S0, S1 or S2.
Therefore, by Smith Theory, f must be the identity homeomorphism. Hence h fixes
all of the vertices of G. This concludes the proof of the Homeomorphism Lemma.

The graph K5 consists of five vertices together with an edge between each pair of
vertices. We prove another corollary of the Automorphism Theorem, which we shall
also use in the proof of our main theorem.

K5 Theorem. No matter howK5 is embedded in S3, there does not exist an orientation
reversing graph homeomorphism of (S3,K5), which either fixes every vertex of K5, or
induces an automorphism of K5 of order 2 with only one fixed vertex.

Proof. Suppose that K5 is embedded in such a way that there is an orientation
reversing graph homeomorphism h: (S3,K5)→ (S3,K5). Note thatK5 is 3-connected.
First we assume that h induces the identity automorphism on the vertices of K5.
Then we can apply the Automorphism Theorem to get an embedding of K5 in S3

such that the identity automorphism on K5 is induced by a finite order orientation
reversing graph homeomorphism f of S3. Since f is of finite order, this means that
f fixes every point of K5. But this contradicts Smith Theory, since K5 is non-planar
and f cannot be the identity since it is orientation reversing.

Now assume that h induces an automorphism φ on the vertices of K5 which is
of order 2 and has only one fixed vertex. Let the vertices of K5 be denoted by
1, 2, 3, 4, 5. Without loss of generality, let φ = (12)(34)(5). Again, we apply the
Automorphism Theorem to get an embedding of K5 in S3 such that φ is induced
by a finite order orientation reversing graph homeomorphism f of (S3,K5). Note
that f fixes a point on the edge 12, a point on the edge 34 and vertex 5, so f fixes
at least three points of S3. Therefore, by Smith Theory, the fixed point set of f is
homeomorphic to a 2-sphere S, which separates S3 into two components A and B.
Without loss of generality, let vertices 1 and 3 be in A, then vertices 2 and 4 must
be in B. Note that the edge 14 must intersect S. Thus a point on the edge 14 must
be fixed by f , which implies that vertices 1 and 4 are interchanged by f . This is
a contradiction, since f interchanges vertices 1 and 2. Therefore, h cannot induce
either the identity automorphism on the vertices of K5, or an automorphism of order
2 with only one fixed vertex. This concludes the proof of the K5 Theorem.

The graph K3,3 consists of two disjoint sets of three vertices, with the edges being
precisely those joining a vertex in one set to a vertex in the other set. Liang and
Mislow [3] showed that the particular two-coloured embeddings of K5 and K3,3,
illustrated in Figs. 1 and 2, respectively, are topologically chiral.

The abstract graph of a three-rung Möbius ladder M3 is defined to be a simple
closed curve K containing six vertices called the loop, together with edges joining
antipodal vertices on K called rungs. Thus, a three-rung Möbius ladder M3 is just a
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Fig. 1. A topologically chiral embedding of K5.

Fig. 2. A topologically chiral embedding of K3,3.

K3,3 with a specified simple closed curve containing all of the vertices. For example,
the embeddedK3,3, shown in Fig. 2, is an embedded three-rung Möbius ladder, where
the rungs are the two black edges together with the edge 45, and the loop is 1256341.

We make the following observations about the two-colourings in Figs. 1 and 2.
When K5 is coloured as in Fig. 1, (12)(34)(5) is its only non-trivial automorphism,
hence by the K5 Theorem, this two-colouring is actually intrinsically chiral. Now
consider the two-colouring of the K3,3 in Fig. 2. The edge 45 in Fig. 2 is unique
because it is the only white edge which is not adjacent to any black edge. Thus any
automorphism of the two-coloured M3 in Fig. 2 must take the white loop 1256341
to itself. It follows from the following theorem that this two-colouring of K3,3 is
intrinsically chiral.

Möbius Ladder Theorem ([2]). Let M3 be a 3-rung Möbius ladder which is embed-
ded in S3 with loop K. Then there is no orientation reversing graph homeomorphism
h: (S3,M3)→ (S3,M3) such that h(M3) = M3 and h(K) = K.

Every non-planar graph G must contain a subgraph T which is homeomorphic to
either K3,3 or K5. However, T may not be graph homeomorphic to K3,3 or K5, since
it might contain additional vertices of valence 2. With this in mind we make the
following definitions.

Definition. Let T be a graph which is homeomorphic to K3,3 or K5. A simple path
is a union of edges in T which has no vertices of valence more than 2 in its interior.
A path-edge is a simple path whose end-vertices have valence more than 2.
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The path-edges of T correspond to the edges of K3,3 or K5.
In order to avoid confusing the coloured and uncoloured versions of a graph, we

will use the letter H to denote an uncoloured graph and the letter G to denote the
same graph after it has been two-coloured. We shall refer to G as a two-colouring of
H. Let G be a two-coloured graph whose black subgraph is connected. A black tail
L is a black tree which can be disconnected from the rest of the black subgraph of
G by removing one vertex from G. If p is a path, we shall let |p| denote the number
of edges contained in p.

Now we prove our main result.

Theorem 1. Let H be a non-planar graph. Then there is a two-colouring G of H such
that G is intrinsically chiral, and if H is 3-connected and is not K3,3 or K5, then G is
intrinsically asymmetric.

Proof. Since H is non-planar, it must contain a subgraph which is homeomorphic
to eitherK3,3 orK5, possibly with extra vertices. IfH contains a component which is
K3,3 orK5, then we colour this particularK3,3 orK5 as in Fig. 2 or Fig. 1, respectively,
and colour the rest of H white. This two-colouring of H is intrinsically chiral. So we
shall assume throughout our proof that no component of H is K3,3 or K5.

We begin by picking a subgraph T of H which is homeomorphic to either K3,3

or K5. The strategy of our proof will be to colour almost all of H white except
for a small black piece, whose edges are either contained in, or adjacent to T . This
black piece will be chosen in such a way that it forces every automorphism of the
two-colouring G to fix each vertex of T . It will then follow from either the Möbius
Ladder Theorem or the K5 Theorem that G is intrinsically chiral. Furthermore, if
H is 3-connected, then it will follow from the Homeomorphism Lemma, that G is
intrinsically asymmetric.

We divide the proof into two parts depending on whether the subgraph T is K3,3

or K5. We will further divide each of these parts into cases and within each case we
will specify how to colour H. First we suppose that H contains a subgraph T which
is homeomorphic to K3,3.

We label the vertices of T corresponding to the vertices of K3,3 by the numbers
1–6 in such a way that the vertices 1, 3 and 5 are each connected to each of the
vertices 2, 4 and 6. We shall divide the proof into two cases according to whether or
not the path-edges of T are all single edges.

Case I. Every path-edge of T is a single edge.

In this case T is the graph K3,3. Since K3,3 is not a component of H, there is some
edge e in H − T which is connected to T . Without loss of generality, we can assume
that one end-vertex of e is vertex 6. Let m denote the other end-vertex of e.

First suppose that vertexm is on T . Since vertex 6 is already connected to vertices
1, 3 and 5, m can only be 2 or 4. Without loss of generality, say vertex m is vertex 2.
Then we colour T x {e} as in Fig. 3 and we colour the rest of H white. Let G denote
H after it has been coloured and let T denote T after it has been coloured. Let h
be an automorphism of G. Note that the simple closed curve 1261 is the only black
simple closed curve in G, so h(1261) = 1261. Also, the two black tails 23 and 654
cannot be interchanged by h since they have different lengths. Thus the vertices on
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Fig. 3. Case I (m is on T ).

Fig. 4. Case I (m is not on T ).

each tail are fixed by h. In particular, vertices 2 and 6 are both fixed by h. Hence
h(26) = 26 since 26 is a single edge. It follows that h fixes every vertex of T.

Now suppose that vertex m is not on T . Then we colour T x {e} as in Fig. 4 and
colour the rest of H white. The argument is then analogous to the above paragraph.

Case II. T contains at least one path-edge which is not a single edge.

We subdivide this case according to how many mutually non-adjacent path-edges
there are in T which are single edges.

Subcase 1. T contains at least three mutually non-adjacent path-edges which are each
single edges.

Without loss of generality we can assume that 14, 25 and 36 are single edges, and
16 is not a single edge. Let x be the vertex on the path-edge 16 such that 6x is a
single edge. If 1x is not a single edge, let y be the vertex on the path-edge 16 such
that xy is a single edge. We mark each path-edge which is known to be a single edge
by a letter ‘S’. If vertex y exists, then we colour T as in Fig. 5 and colour the rest
of H white. If vertex y does not exist, then we modify the colouring in Fig. 5 by
colouring the edge 1x white. The argument is now analogous to that of Case I.

Subcase 2. T contains two non-adjacent path-edges which are each single edges, but T
does not contain three mutually non-adjacent path-edges which are each single edges.

Without loss of generality we assume that the path-edges 25 and 34 are single
edges, while 16 is not a single edge. By the hypothesis of this case, since 25 is a single
edge, at least one of 14 and 36 is not a single edge. So without loss of generality we
assume that 14 is not a single edge. If 36 is not a single edge let x be the vertex on
36 such that x6 is a single edge, otherwise let x = 3. Since 16 is not a single edge, we
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Fig. 5. Case II, subcase 1.

Fig. 6. Case II, subcase 2 (|123x|� |1456z|).

Fig. 7. Case II, subcase 2 (|123x| = |1456z|).

let y denote the vertex on 16 such that 1y is a single edge. If y6 is not a single edge
we let z denote the vertex on y6 such that yz is a single edge, otherwise we let z = 6.
Now if |123x|� |1456z| then we colour T as in Fig. 6 and colour the rest of H white.

Suppose that |123x| = |1456z|. Let w be a vertex on z5 such that zw is a single
edge. Note thatw might be 6, or if z = 6 thenw might be 5. Then |1456z| = |145w|+1,
since zw is a single edge. So |123x| > |145w|. Also |1yz| = 2, and |145w| > 3, since
14 is not a single edge. Now we colour T as in Fig. 7 and colour the rest of H white.

LetG denote the two-colouring ofH indicated in Fig. 6 or Fig. 7, and let T denote
T after it has been coloured. The black subgraph of G is a tree with three branches,
all of different lengths. Every vertex of T is contained in this black tree. Let h denote
an automorphism of G. Then h fixes every vertex of this black tree, and thus h fixes
every vertex of T.

Subcase 3. T does not contain a pair of non-adjacent path-edges which are single
edges.
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Fig. 8. Case II, subcase 3.

Without loss of generality, assume that the vertex labels have been chosen so
that path-edge 25 has minimal length among all path-edges and |63| 6 |14|. By the
hypothesis of this subcase, neither 63 nor 14 is a single edge and at least one of 12
or 45 is not a single edge. We shall assume without loss of generality that 12 is not
a single edge.

Let vertices o, n and m on 12, 63 and 14, respectively, denote the vertices such
that 1o, 3n and 4m are single edges. We colour T as in Fig. 8 and colour the rest
of H white. We shall let G denote H after it has been coloured and let T denote T
after it has been coloured. Let h be an automorphism of G. First observe that the
black subgraph of G consists of a simple closed curve 23452 with two disjoint tails 2o
and 56nx 61m which are not homeomorphic to each other. Thus h fixes each of the
vertices on 2o and 56. Since |63| 6 |14| by hypothesis, we know that |6n| < |61m|.
Thus h cannot interchange 6n and 61m. So h fixes all of the vertices on 6n and
61m. Since 25 has minimal length among all path-edges, we have |25| < |2345|. So, h
cannot exchange 25 and 2345. Therefore h(25) = 25 and h(2345) = 2345. Thus every
vertex on T is fixed by h.

From these cases, it follows that if a graph H does not have a component which is
K3,3 but contains a subgraph T homeomorphic to K3,3, then a two-colouring G can
be chosen such that any automorphism of G induces the identity automorphism on
T . It follows from the Möbius Ladder Theorem that G is intrinsically chiral. If in
addition, H is 3-connected, then by the Homeomorphism Lemma, G is intrinsically
asymmetric.

Now we suppose that H contains a subgraph T which is homeomorphic to K5.
We label the vertices of T which correspond to those of K5 by the numbers 1–5. In
order to help us talk about the parts of a two-coloured graph which are black, we
will make the following definitions.

Definition. Let G be a two-coloured graph whose black subgraph is connected. A
black edge is non-trivial if it is not part of a black tail. The non-trivial black valence
of a vertex v ∈ G is the number of non-trivial black edges which are incident to v.
A major black neighbour of v is a vertex which has black valence more than 2 and is
connected to v by a simple black path.

Case I. There exists a path in H − T from a vertex in the interior of a path-edge of T
to one of the vertices numbered 1–5.

Without loss of generality, assume that the vertex labels have been chosen so that
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Table 1. Case I, subcase 1

Vertex Non-trivial black valence of MBN Number of MBN with a black tail

m 3 1
1 3, 4, 5 0
3 4, 4, 5 0
x 3, 4, 5 1
2 3, 3, 4, 5 1
5 3, 3, 4, 5 0
4 3, 3, 3, 4, 4 1

Fig. 9. Case I, subcase 1.

there is a path in H − T from a vertex in the interior of the path-edge 15 to vertex
4. We now divide this case into the following two subcases.

Subcase 1. At least one of the path-edges 12, 13, 52 and 53 is not a single edge.

Note that the positions of the above four path-edges are identical relative to the
path 4x. So, without loss of generality, we can assume that the vertex labels have
been chosen so that the path-edge 13 is not a single edge. Let vertex m be the vertex
on 13 such that 3m is a single edge. We colour T as in Fig. 9 and colour the rest of
H white.

We shall let G denote H after it has been coloured and let T denote T after it has
been coloured. Let h be an automorphism of G. Table 1 lists vertices numbered 1–5,
together with vertices m and x, and enumerates the non-trivial black valence of each
of their major black neighbours (MBN) and the number of their MBN which has a
black tail. All the information in Table 1 will be preserved by the automorphism h.

Note that every vertex in Table 1 has some unique property that will be preserved
by h. Thus, the vertices in Table 1 are all fixed by h. It follows that every vertex in
T is fixed by h.

Subcase 2. The path-edges 12, 13, 52 and 53 are all single edges.

If the path-edge 14 is not a single edge, we let vertex m be the vertex on 14 such
that 4m is a single edge. Similarly if the path-edge 34 is not a single edge, we let
vertex n be the vertex on 34 such that 3n is a single edge. If vertices m and n exist,
then colour T as in Fig. 10 and colour the rest of H white. If vertex m does not
exist, modify the colouring of Fig. 10 by colouring 14 white, and if vertex n does
not exist, modify the colouring of Fig. 10 by colouring 34 white.



276 E. Flapan and D. L. Li

Fig. 10. Case I, subcase 2.

Table 2. Case I, subcase 2

Vertex Non-trivial black valence of MBN Number of black tails of vertex

2 3, 4 0
x 3, 4 1
4 2, 3, 4 0 or 1
5 2, 3, 3 0

We shall let G denote H after it has been coloured and let T denote T after it has
been coloured. Let h be an automorphism of G. Table 2 lists all of the vertices in T

with black valence at least 3, and enumerates the non-trivial black valence of each
of their MBN and the number of black tails attached to each vertex.

Note that each of the vertices in Table 2 is fixed by h since each has some unique
property that will be preserved by h. Consequently vertex 1 is fixed and hence vertex
m is fixed (if it exists). Also, if vertex n exists, then it is fixed since vertex 4 is fixed.
Since 25 is a single edge and the paths 25 and 235 are the only simple black paths
between vertices 2 and 5. It follows that h maps 235 to itself and vertex 3 is fixed.
Thus, h induces the identity automorphism on the vertices of T.

Case II. There does not exist any path in H − T from a vertex in the interior of a
path-edge of T to one of the vertices numbered 1–5.

Subcase 1. There exists some path-edge of T which is not a single edge.

Without loss of generality, we can assume that the vertex labels have been chosen
so that path-edge 12 is not a single edge. Let vertex m be the vertex on 12 such that
2m is a single edge. If either 23 or 34 is not a single edge, we let vertices n or o on
23 or 34, respectively, denote vertices such that 3n or 4o is a single edge. If vertices
n and o exist, then colour T as in Fig. 11 and colour the rest of H white. If either
vertex n or o does not exist, modify the colouring of Fig. 11 by colouring the edge
23 or 34 (respectively) white.

We shall let G denote H after it has been coloured and let T denote T after it
has been coloured. Let h be an automorphism of G. First note that vertex 5 must be
fixed by h since it is the only vertex of G with non-trivial black valence 4. Similarly,
vertex 1 is fixed by h since it is the only vertex with non-trivial black valence 3 and
a black tail, and vertex 4 is fixed by h since it is the only vertex with non-trivial
black valence 3 and no black tail. Note that vertex 3 cannot be mapped to vertex 2,
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Fig. 11. Case II, subcase 1.

Fig. 12. Case II, subcase 2.

since vertex 3 is connected to vertex 1 by a simple black path while vertex 2 is not.
Suppose that vertex 3 were mapped to a vertex in the interior of 15. Then vertex o
would not exist and 34 would be a single white edge. Since h(4) = 4, there must be a
single white edge from vertex 4 to a vertex in the interior of 15. Such an edge must
be contained in H − T . This is contrary to the hypothesis of Case II. Thus we must
have h(135) = 135. So vertex 3 is fixed and vertex o is fixed if it exists. By a similar
argument, vertex 2 is also fixed by h, and vertex n is fixed if it exists. Therefore
every vertex of T is fixed by h.

Subcase 2. Every path-edge of T is a single edge.

Since T is just K5, it follows from the beginning of our proof that T is not a
component of H. Hence, there must be some vertex in H − T which is connected to
T by a single edge. Without loss of generality, let x be a vertex in H − T which is
connected to vertex 5 by a single edge. We colour T x {5x} as in Fig. 12 and colour
the rest of H white.

We shall let G denote H after it has been coloured and let T denote T after it
has been coloured. Let h be an automorphism of G. By considering non-trivial black
valence together with the existence of a black tail, it is easy to see that h fixes vertices
1, 2 and 5. Also the single edge 35 is black while the single edge 45 is white. Thus, h
induces the identity automorphism on the vertices of T.

In all of the above cases it follows that if a graph H does not have a component
which is K5 but contains a subgraph T homeomorphic to K5, then a two-colouring G
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Fig. 13. An embedding of K5.

Fig. 14. An embedding of K3,3.

can be chosen such that any automorphism of G induces the identity automorphism
on T . Then, by the K5 Theorem, G is intrinsically chiral. Furthermore, if H is 3-
connected, then by the Homeomorphism Lemma,G is intrinsically asymmetric. This
concludes the proof of Theorem 1.

We show below that the hypothesis of Theorem 1 that H was neither K3,3 nor
K5 was strictly necessary to guarantee the existence of an intrinsically asymmetric
two-colouring.

Theorem 2. Let H be either K3,3 or K5, then there does not exist a two-colouring of
H which is intrinsically asymmetric.

Proof. We will show that for every two-colouring G of the embeddings illustrated
in Figs. 13 and 14 there is a graph homeomorphism of (S3, G) which induces a non-
trivial automorphism of G. For any two-colouring G of H, we let T denote its black
subgraph. Note that K5 contains precisely ten edges and K3,3 contains precisely
nine edges; so, without loss of generality, we can assume that T contains at most
five edges since otherwise we could consider the white subgraphs of G instead of the
black subgraphs. We can also assume that T has at least one edge, since otherwise
G is entirely white and obviously has a non-trivial automorphism induced by a
homeomorphism of S3 for the embeddings illustrated in Figs. 13 and 14. Tables 3
and 4 list all possible subgraphs of K5 and K3,3 which have the given number of
edges (indicated at the top of each column). We do not distinguish between different
numberings of the vertices. It follows by inspection that every T in Table 3 has a
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Table 3. Black subgraphs of K5 containing up to five edges

Table 4. Black subgraphs of K3,3 containing up to five edges

non-trivial automorphism. If H is K5, we extend this non-trivial automorphism of
T to K5 by fixing those vertices in H − T . This extension is an automorphism of
K5 because each vertex in K5 is connected to all other vertices. If H is K3,3, then
there is a unique way to partition H into two sets A and B which are each mutually
non-adjacent. Hence, every automorphism of K3,3 either leaves the sets A and B
invariant or interchanges the sets A and B. We observe that every T in Table 4 has
a non-trivial automorphism which either takes Aw T to Aw T and B w T to B w T ,
or exchanges the sets Aw T and B w T . We extend a non-trivial automorphism of T
of the first type to an automorphism of K3,3 by fixing each of the vertices in H − T .
We extend a non-trivial automorphism of T of the second type to an automorphism
of K3,3 by interchanging the vertices in (H−T )wA with the vertices in (H−T )wB.
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Fig. 15. (210 + 1) copies of K5 sharing one common vertex.

Given any two-colouring G of the abstract graph of K5 or K3,3, we embed G as
is shown in Figs. 13 or 14 respectively. By our above argument, G has a non-trivial
automorphism φ. It follows from [5] that every automorphism φ of K5 or K3,3, is
induced by a homeomorphism of S3 for the embeddings shown in Fig. 13 or 14. Thus
we have a homeomorphism of S3 which induces a non-trivial automorphism φ of G.
Hence, H cannot be two-coloured to be intrinsically asymmetric. This concludes the
proof of Theorem 2.

Finally, we note that if H is not 3-connected, then there does not necessarily exist
an intrinsically asymmetric two-colouring of H. For example, consider the graph H
in Fig. 15, consisting of (210 +1) copies ofK5 which share one common vertex, but are
otherwise disjoint. Since there are at most 210 possible two-colourings of a K5 graph,
no matter how we two-colour H, there will exist at least one pair of K5 graphs in
H with identical colourings. So, no matter how we two-colour H, we can embed H
in S3 in such a way that there exists a graph homeomorphism h: (S3, H)→ (S3, H),
which interchanges two K5 graphs with identical colourings and fixes the rest of H
pointwise. Thus H has no intrinsically asymmetric two-colouring.

Similarly, we can create a 2-connected graph which is not 3-connected consisting
of (210 + 1) copies of K5 which all share a common edge. By an analogous argument,
there does not exist a two-colouring of this graph which is intrinsically asymmetric.
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