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Notation

I All rings are left Noetherian, associative with identity. Given
such a ring R:

I R -mod: category of finitely generated left modules.

I K−(R), Kb(R): (right) bounded homotopy category of chain
complexes of finitely generated left R-modules.

I K−(RP), Kb(RP): (right) bounded homotopy category of
chain complexes of finitely generated left projective
R-modules.
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Motivation

I The global dimension of an ordinary group algebra over a field
k is either 0 or ∞.

I (Aljadeff) A skew group ring A#G with commutative A and
finite group G has finite global dimension if and only so does
A and the trivial representation A is projective.

I (Li) If a finite dimensional k-algebra A has a complete set of
primitive idempotents closed under the action of G , A#G has
finite global dimension if and only if so dose A and a Sylow
p-group S 6 G acts freely on this set, where p is the
characteristic of k .
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Question

I Q1: Drop the condition that A is commutative.

I Q2: Consider crossed products which include skew group rings
as special examples.
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Definition of Crossed products

I Let A be a left Noetherian ring with identity, and G be a
group. Given two maps: σ : G → Aut(G ) and
α : G × G → U(A), the set of invertible elements in A,
satisfying the following conditions:

I σxσy = ια(x ,y)σxy , where ια(x ,y) is the inner automorphism
induced by α(x , y) ∈ U(A);

I α(x , y)α(xy , z) = σx(α(y , z))α(x , yz);

I α(x , 1) = α(1, y) = 1.

I The crossed product is defined to be AσαG =
⊕

x∈G Aσx , a
direct sum of free modules with multiplication
(aσx) ∗ (bσy ) = aσx(b)α(x , y)σxy .
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Remarks

I The two conditions imposed on σ and α are equivalent to the
associativity of AσαG .

I Note that A is a G -module via σ if and only if α(x , y) is in
the center of A for all x , y ∈ G .

I If σ is trivial, this gives twisted group rings; if α is trivial, this
gives skew group rings.

I A is an AσαG -module if and only if α is trivial. This is called
the trivial representation of a skew group ring.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Remarks

I The two conditions imposed on σ and α are equivalent to the
associativity of AσαG .

I Note that A is a G -module via σ if and only if α(x , y) is in
the center of A for all x , y ∈ G .

I If σ is trivial, this gives twisted group rings; if α is trivial, this
gives skew group rings.

I A is an AσαG -module if and only if α is trivial. This is called
the trivial representation of a skew group ring.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Remarks

I The two conditions imposed on σ and α are equivalent to the
associativity of AσαG .

I Note that A is a G -module via σ if and only if α(x , y) is in
the center of A for all x , y ∈ G .

I If σ is trivial, this gives twisted group rings; if α is trivial, this
gives skew group rings.

I A is an AσαG -module if and only if α is trivial. This is called
the trivial representation of a skew group ring.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Remarks

I The two conditions imposed on σ and α are equivalent to the
associativity of AσαG .

I Note that A is a G -module via σ if and only if α(x , y) is in
the center of A for all x , y ∈ G .

I If σ is trivial, this gives twisted group rings; if α is trivial, this
gives skew group rings.

I A is an AσαG -module if and only if α is trivial. This is called
the trivial representation of a skew group ring.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Homological dimensions

Given a left Noetherian ring R, a complex X • ∈ K−(RP) has
amplitude amp(X •)

sup{i ∈ Z | X i 6= 0} − inf{i ∈ Z | X i 6= 0}

and length l(X •)

inf{amp(Y •) | X • is quasi-isomorphic to Y •}.
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Homological dimensions

I gl.dimR = sup{l(P•) | P• ∈ K−(RP) and H i (P•) 6=
0 for at most one i};

I fin.dimR = sup{l(P•) | P• ∈ Kb(RP) and H i (P•) 6=
0 for at most one i};

I sgl.dimR = sup{l(P•) | P• ∈ Kb(RP) is indecomposable}.
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Induction and Restriction on module categories

Let G be a finite group, and H 6 G be a subgroup.

I For M ∈ AσαH -mod, M ↑GH= AσαG ⊗Aσ
αH M.

I For N ∈ AσαG -mod, N ↓GH= Aσ
αHN.

I Since Aσ
αHA

σ
αGAσ

αH = AσαH ⊕ B, the induction and restriction
functors are exact and preserve projective modules.
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Chain maps

I For M ∈ AσαH -mod, define:

δ : M → M ↑GH↓GH= AσαG ⊗Aσ
αH M, v 7→ 1⊗ v ;

I and η : M ↑GH↓GH→ M determined by

η(σx ⊗ v) =

{
σxv if x ∈ H;

0 otherwise.

I They are AσαH-module homomorphisms and commute with
differentials, and η ◦ δ is the identity.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Chain maps

I For M ∈ AσαH -mod, define:

δ : M → M ↑GH↓GH= AσαG ⊗Aσ
αH M, v 7→ 1⊗ v ;

I and η : M ↑GH↓GH→ M determined by

η(σx ⊗ v) =

{
σxv if x ∈ H;

0 otherwise.

I They are AσαH-module homomorphisms and commute with
differentials, and η ◦ δ is the identity.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Chain maps

I For M ∈ AσαH -mod, define:

δ : M → M ↑GH↓GH= AσαG ⊗Aσ
αH M, v 7→ 1⊗ v ;

I and η : M ↑GH↓GH→ M determined by

η(σx ⊗ v) =

{
σxv if x ∈ H;

0 otherwise.

I They are AσαH-module homomorphisms and commute with
differentials, and η ◦ δ is the identity.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Chain maps - Continuation

I Suppose that |G : H| is invertible in A. For N ∈ AσαG -mod,
define ϕ : N → N ↓GH↑GH :

v 7→ 1

|G : H|
∑

x∈G/H

α(x , x−)−1σx ⊗ σx−v ;

I and define ψ : N ↓GH↑GH→ N :

σx ⊗ v 7→ σxv .

I They are AσαG -module homomorphisms and commute with
differentials, and ψ ◦ ϕ is the identity.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Chain maps - Continuation

I Suppose that |G : H| is invertible in A. For N ∈ AσαG -mod,
define ϕ : N → N ↓GH↑GH :

v 7→ 1

|G : H|
∑

x∈G/H

α(x , x−)−1σx ⊗ σx−v ;

I and define ψ : N ↓GH↑GH→ N :

σx ⊗ v 7→ σxv .

I They are AσαG -module homomorphisms and commute with
differentials, and ψ ◦ ϕ is the identity.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

Chain maps - Continuation

I Suppose that |G : H| is invertible in A. For N ∈ AσαG -mod,
define ϕ : N → N ↓GH↑GH :

v 7→ 1

|G : H|
∑

x∈G/H

α(x , x−)−1σx ⊗ σx−v ;

I and define ψ : N ↓GH↑GH→ N :

σx ⊗ v 7→ σxv .

I They are AσαG -module homomorphisms and commute with
differentials, and ψ ◦ ϕ is the identity.

Liping Li Homological dimensions of crossed products



Preliminaries
Induction and Restriction
Classify global dimensions

Open questions

The first main result

Theorem: Let H 6 G be a subgroup.

I The induction and restriction functors lift to functors between
homotopy categories K−(AσαH) and K−(AσαG ).

I For X ∈ K−(AσαH), it is a direct summand of X ↑GH↓GH .

I If |G : H| is invertible in A, then every Y ∈ K−(AσαG ) is a
direct summand of Y ↓GH↑GH .

I The same conclusions hold for pairs

I Kb(AσαH),Kb(AσαG ),

I K−(Aσ
αHP),K−(Aσ

αGP)

I Kb(Aσ
αHP),Kb(Aσ

αGP),

I K−0 (Aσ
αHP),K−0 (Aσ

αGP),

I and Kb
0 (Aσ

αHP),Kb
0 (Aσ

αGP).
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A corollary

I If H 6 G , then h.dimAσαH 6 h.dimAσαG .

I If |G : H| is invertible in A, then h.dimAσαH = h.dimAσαG .
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Open questions

Trivial representations

I Let I be the left AσαG -ideal generated by elements in
{σx − 1 | 1 6= x ∈ G}.

I Define T = AσαG/R to be the trivial representation of AσαG .

I Note that T ∼= A if α is trivial. Otherwise, it is not true since
I contains all α(x , y)− 1 for x , y ∈ G .

I For M ∈ AσαG -mod, there is a natural isomorphism
MG ∼= HomAσ

αH(T ,M) of AG -modules, where
MG = {v ∈ M | σxv = v ,∀x ∈ G}.
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Trivial representations - continue

I Proposition: If T is projective, then an AσαG -module M is
projective if and only if AM is projective.

I One direction is trivial. For the other direction, note that
HomAσ

αG (M,−) ∼= HomA(M,−)G . But both HomA(M,−)
and −G ∼= HomAσ

αG (T ,−) are exact.

I Proposition: If T is projective, then AσαG and A have the
same global dimension and finitistic dimension.
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Open questions

Global dimension of crossed products

I Proposition: For M ∈ AσαG -mod, pdAσ
αG

M is either infinity or
equal to pdAM. Consequently, gl.dimAσαG is either infinity or
equal to gl.dimA.

I Proof. Using the following isomorphisms:
AσαG ⊗A − ∼= HomA(AσαG ,−);
ExtiAσ

αG
(M,AσαG ⊗A −) ∼= ExtiA(M,−).
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Open questions

Skew group rings

I Theorem: Let AσG be a skew group ring such that A is a left
Noetherian associative ring with identity and G is a finite
group. Then:

I The global dimension of AσG is either infinity or equal to that
of A;

I The global dimension of AσG is finite if and only if so is
gl.dimA and the trivial representation A is projective.
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Open questions

Questions

I If gl.dimAσαG <∞, then gl.dimA <∞ and pdAσ
αG

T <∞. Is
the converse true? (This holds for skew group rings.)

I If pdAσ
αG

T = 0, what can we say about sgl.dimAσαG and
sgl.dimA?

I What can we say about the homological dimensions of AG?
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