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Abstract

Deformations of liquid interfaces by the optical radiation pressure of a focused
laser wave were generally expected to display similar behavior, whatever the direc-
tion of propagation of the incident beam.

Recent experiments showed that the invariance of interface deformations with
respect to the direction of propagation of the incident wave is broken at high laser
intensities. In the case of a beam propagating from the liquid of smaller refractive
index to that of larger one, the interface remains stable, forming a nipple-like shape,
while for the opposite direction of propagation, an instability occurs, leading to a
long needle-like deformation emitting micro-droplets. While an analytical model
successfully predicts the equilibrium shape of weakly deformed interface, very few
work has been accomplished in the regime of large interface deformations. In this
work, we use the Boundary Integral Element Method (BIEM) to compute the evo-
lution of the shape of a fluid-fluid interface under the effect of a continuous laser
wave, and we compare our numerical simulations to experimental data in the regime
of large deformations for both upward and downward beam propagation. We con-
firm the invariance breakdown observed experimentally and find good agreement
between predicted and experimental interface hump heights below the instability
threshold.

Key words: Opto-hydrodynamics – Optical radiation pressure – Boundary
integral element method – Interfacial flow.
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1 Introduction

The deformation of liquid-liquid interfaces by the optical radiation pressure
has received increasing attention in the past few years as many practical ap-
plications of laser-induced surface deformation are now under development.
Among others, we can cite interfacial characteristics measurements such as
viscosity [1] or surface tension [2], as well as fluid membranes manipulation
with optical tweezers [3; 4]. Effects of the radiation pressure have been also
recognized as an appealing non-intrusive tool for local manipulation of liquid
or soft materials giving birth to many applications in biotechnologies [5; 6].

Historically, the deformation of fluid-fluid interfaces resulting from the radia-
tion pressure induced by an impinging focused laser beam was first identified
in the early 70’s by Ashkin and Dziedzic [7]. Later, Zhang & Chang [8] il-
luminated a 50 µm radius water drop with a 100 − 200 mJ laser pulse and
showed strong distortion of the droplet surface at its front and rear regions. At
low pulse energy, the droplet interface exhibited oscillations that damped out
on time scales of tens of microseconds, whereas at high energy a disruption
generating a jet of micro-droplets was observed at the rear part of the drop.
The drop distortion was theoretically studied by Lai et al. [9] and later by
Brevik et al. [10]. Based on a linear wave theory adapted to low energy pulses,
their analysis predicted drop oscillations very similar to those observed in the
experiments. However, drop deformations under higher energy pulses were not
modelled as their linear model can no longer be used to describe the droplet
shapes in the regime close to disruption.

Thus, current existing theoretical descriptions of optically induced flow and
surface deformations are restricted to small amplitude deformations. However,
recent experiments on very soft interfaces have evidenced several regimes,
ranging from the so-called classical linear regime for small beam intensity,
in which the height of the deformation linearly depends on the radiation to
Laplace pressure ratio referred to in the following as ξ [11], to nonlinear regimes
[12; 13] with a possible interface breakup for even larger beam intensities [14].
In these recent experiments, a continuous Ar+ laser wave (wavelength in vac-
uum λ0 = 514.5 nm) of waist ω0 ≈ 3 to 15 µm was used to bend the interface
between two liquid phases in coexistence close to their liquid-liquid critical
point. Two reasons motivated this choice. As the separated phases of these
near-critical mixtures have very low surface tension (γ ∼ 10−7 N/m), a laser
beam of moderate power P ∼ 1 W becomes sufficient to induce large inter-
face deformations of typical size ∼ 10 − 100 µm. Moreover, near-criticality
raises universality concepts demonstrating the generality of the purpose. As
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predicted from the photon momentum balance at the interface, in the linear
regime the radiation pressure induces the same deformations for upward or
downward laser propagation [11; 13]. However, in the nonlinear regime the
invariance of the interface deformation with respect to the direction of propa-
gation of the wave breaks down. Stable nipple-like deformations were observed
in the case of a propagation from the less refractive fluid (marked as (1)) to
the more refractive one (marked as (2)) (upward propagation) [12], while in the
other case where the laser wave propagates from the more refractive fluid to
the less refractive one (downward propagation), the interface becomes unstable,
leading to the formation of a needle-like deformation emitting micro-droplets
[14] (see Fig. 1).

Fig. 1. Interface deformations induced at (T −TC) = 3.5K by a laser beam of waist
ω0 = 5.3µm. (a) Laser propagating upward from the less refractive fluid to the more
refractive fluid as indicated by the white arrow. P increases from top to bottom and
is successively equal to 120, 240, 360, 390 and 720 mW . (b) Downward direction of
propagation. P= 124, 248 and 372 mW from top to bottom; the bottommost picture
(405 mW ) shows the destabilization of the interface leading to the formation of a
stationary jet similar to that illustrated in (c).

The aim of the present work is to investigate whether the differences in in-
terface deformation with respect to the direction of propagation of the wave
(called hereafter invariance breakdown) is numerically predictable and if the
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predicted interface shapes and heights agree with experiments. Our paper
is structured as follows. In Section 2, we briefly describe the experimental
setup, sample properties, and the physical model for laser-induced interface
deformations. This model assumes an axisymmetric Stokes flow in each liquid
and a boundary condition at the interface describing the competition between
viscosity, optical radiation pressure, capillarity and gravity effects. A brief de-
scription of the Boundary Integral Element Method (BIEM) is presented in
Section 3, emphasizing the advantages of its application to interfacial flows. In
Section 4, comparisons between numerical and experimental results are shown
and discussed for both the linear/nonlinear regimes of deformation and both
directions of propagation, illustrating by the way the efficiency of our approach
to investigate the subtle coupling between the effects of light and flow.

2 Experimental configuration and physical model

Exhaustive experimental details on the configuration and protocol used here
were reported earlier [11; 13].

2.1 Experiments

In figure 2 we have represented a picture of a typical liquid-liquid interface
deformation induced by a laser beam propagating upward, together with the
notations used throughout this work. Cylindrical coordinates (er, ez, eα) with
their origin O located at the intersection of the beam axis with the initial flat
interface are chosen for this study and are shown in Fig. 2. A point x is thus
marked by the space coordinates (r, z, α).

Incidence and transmission angles of light are respectively denoted by θi and
θt.

The two-phase liquid sample is enclosed in a fused-quartz cell of optical path
length l = 2 mm. The bending of the liquid-liquid meniscus is driven by a
linearly polarized continuous Ar+ laser (wavelength in vacuum λ0 = 514.5 nm)
in the TEM00 gaussian mode. The beam is weakly focused on the interface by
a 10× microscope objective to ensure a cylindrical distribution of the intensity
near the meniscus. Thus, in the vicinity of the liquid-liquid interface, the laser
beam intensity I has the following distribution:

I(r, z) ≈ I(r) =
2P

πω2
0

exp

(

−2
(

r

ω0

)2
)

, (1)
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Fig. 2. Liquid-liquid interface deformation by a focused laser wave propagating
upward. T − Tc = 3.5K; ω0 = 5.3µm ; P = 240mW . The laser light scattered
towards the camera has been filtered. See text for notations.

where P is the laser beam power. The beam waist ω0 can be adjusted from 3
to 15 µm. Depending on the setup configuration, the laser beam propagates
vertically either upward from fluid (1) to fluid (2) or downward from fluid (2)
to fluid (1).

2.2 Two-phase sample properties

The investigated fluid-fluid interface is obtained according to the following
procedure. Using a quaternary liquid mixture made of toluene, sodium do-
decyl sulfate, n-butanol and water, we prepare a water-in-oil micellar phase
of microemulsion whose composition is such that at room temperature it is
close to a critical consolute line. Close to the liquid-liquid critical temperature,
TC = 308 K, the critical thermodynamic behavior of the mixture belongs to
the universality class (d=3 n=1) of the Ising model [15]. For a temperature
T > TC it separates in two micellar phases of different concentrations ϕ1 and
ϕ2. The use of a near-critical two-phase fluid is motivated by the fact that
significant interface deformations by electromagnetic radiation, without non-
linear propagation effects [15] or disturbing thermal coupling, require weak
interfacial tension and buoyancy. With our fluids, both effects are fulfilled
since they vanish when the critical point is neared. Moreover, the interfacial
tension γ of phase-separated near-critical supra molecular fluids is intrinsi-
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cally smaller than that of near-critical pure fluids, thus enhancing even more
interface deformations.

The mixture is thermally controlled at a temperature T above TC . Since the
density (index of refraction) of water is larger (smaller) than that of toluene,
the micellar phase of largest concentration ϕ1, density ρ1 and smallest refrac-
tive index N1 is located below that of lower micellar concentration ϕ2, density
ρ2 and of refractive index N2. Given the temperature range investigated in
the reported experiments T − TC = 2 to 15 K, thermophysical properties of
the two-phase sample can be satisfactorily evaluated using usual asymptotic
scaling laws of near-critical phenomena. For interfacial tension:

γ = γ0

(

T − Tc

Tc

)2ν

, (2)

with γ0 = 10−4 N/m and ν = 0.63. Assuming that (i) a scaling law accurately
describes the variations of ∆ϕ = ϕ1 − ϕ2 in the investigated broad tempera-
ture domain T − TC and that (ii) the coexistence curve is symmetric versus
the critical concentration ϕc, the micellar concentration in each phase can be
estimated by:

ϕ1 = ϕc +
∆ϕ

2
, (3)

ϕ2 = ϕc −
∆ϕ

2
, (4)

with ϕc = 0.11 and:

∆ϕ = ∆ϕc

(

T − Tc

Tc

)β

, (5)

with β = 0.325.

The value of the critical amplitude ∆ϕc, can be estimated theoretically for
this system with the main assumption that our mixture is binary ∆ϕc =√

16πϕcR+ = 1.458 [16; 17]. R+ = 0.37 being a universal ratio in microemul-
sions [18]. As micellar phases are in fact quaternary components fluids, their
phase diagram presents some asymmetry in ϕ leading either to over or under-
estimate the critical amplitude ∆ϕc depending on which side of the coexistence
curve is chosen. The theoretical value of ∆ϕc leads to an overestimation of the
optical index contrast ∆N . Consequently a modified value for ∆ϕc, 0.42, has
been adopted in this study, based on a quantitative comparison between nu-
merical and experimental interface steady hump heights in the linear regime
of deformations. This modified value gives acceptable predictions for the con-
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centrations ϕ1 and ϕ2. In fact, ∆ϕc should be understood as a free parameter
in the estimation of phases properties.

The density of each phase ρi, i = 1, 2 can be written as a function of ϕi:

ρi = ρmicϕi + ρcont(1 − ϕi), (6)

where ρmic = 1045 kg.m−3 and ρcont = 850 kg.m−3 are the densities of the
micelles and continuous phases respectively. At T − TC = 3.5K the estimated
density contrast is ∆ρ = ρ1 − ρ2 =≃ 20kg/m3.

As the average distance between two micelles is small compared to the wave-
length of the laser wave, the mixture can be regarded as homogeneous from
the electromagnetic point of view. Thus, the mean-field model for the relative
dielectric permittivity ǫi of the mixture predicts [21]:

ǫi(ϕi) = ϕiǫmic + (1 − ϕi)ǫcont −
ϕi(1 − ϕi)(ǫmic − ǫcont)

2

3(ϕiǫmic + (1 − ϕi)ǫcont)
. (7)

This relation is used to estimate Ni taking into account the fact that:

ǫi = N2
i , i = 1, 2. (8)

along with ǫmic = 1.86 and ǫcont = 2.14, ǫmic and ǫcont being the relative
permittivity of the micelles and continuous phases respectively.

At T − TC = 3.5K, the optical indices are N1 = 1.447 and N2 = 1.457.

In addition, since concentrations are weak, we use Einstein’s relation to esti-
mate the dynamic viscosity µi of each phase:

µ1 = µ0

(

1 + 2.5
∆ϕ

2

)

(9)

µ2 = µ0

(

1 − 2.5
∆ϕ

2

)

, (10)

with µ0 = 1.269 Pa.s.

Nevertheless, these values could be shifted by possible laser heating of the
fluids. In order to estimate the resulting change in the physical properties such
as interfacial tension γ or viscosity µi due to temperature increase, we consider
the steady diffusion equation in cylindrical coordinate with the absorbed laser
intensity as a source term:

∇2TI(r) +
αth

Λth
I(r) = 0, (11)
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We assume stationary conditions since the thermal diffusion time scale is much
smaller than the viscous one. TI(r) is the local increase of temperature due to
local heating of the laser wave. αth ≃ 3 10−4cm−1 is the thermal absorption
and Λth = 1.28 10−3Wcm−1K−1 is the thermal conductivity. Using a Fourier-
Bessel transform to solve equation (11) [19; 16], we find that the maximum
increase in temperature is:

TI(r = 0) ≃ αthP

4πΛth
ln(100Γ) (12)

where Γ = 1.781 is the Euler constant. Considering now equation (2), we can
estimate the change of interfacial tension due to the increase in temperature:

∂γ

∂T
= γ

1.26

T − TC
. (13)

At T − TC = 3.5K and for P = 1W , we find that
∂γ

∂T
≃ 1.3 10−7Nm−1K−1

and TI(r = O) ≃ 0.1K which leads to
∆γ

γ
≃ 3.6%. Thermocapillary effects

can thus be confidently discarded.

Considering now the viscous dependance on temperature, we use the following
empirical law given for microemulsions [20]:

µ(T ) = [1.934 − 0.019(T − 273)]10−3. (14)

Consequently,
∂µ

∂T
= −0.019 10−3 and thus for P = 1W we find

∆µ

µ
≃ 2%.

This second estimation ensures negligible thermal effects.

2.3 Electromagnetic force and pressure

As expressed in [21], the total electromagnetic force per unit volume exerted
by the laser in each phase is given by:

femi = −1

2
ǫ0Ei

2∇ǫi +
1

2
ǫ0∇

[

Ei
2ρi

∂ǫi

∂ρi

]

+
ǫi − 1

c2

∂

∂t
(Ei ×Hi). (15)

In this expression, E (respectively H) is the electric (respectively magnetic)
field associated to the laser wave, ǫ0 is the permittivity of vacuum and c =
3 108m/s is the celerity of light in vaccum.
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The first term, whose jump across the liquid interface results in the usually
called optical radiation pressure, is due to the change in photon momentum
from one fluid to the other. This momentum change is due to the disconti-
nuity of permittivities across the interface. As both fluids are assumed to be
homogeneous, the optical radiation term cancels within each phase and only
acts on the interface.

The second term, referred to as the electrostrictive force, also undergoes a
jump at the interface due to the difference in both the optical properties and
the electric fields E between the two liquids in contact. However, this force
also acts as a bulk force within each phase because of the radial dependence of
the electric field E. We will demonstrate, in adequation with previous theoret-
ical investigations [9; 10], that the electrostriction does not contribute to the
motion and shape of the interface as its bulk contribution is compensated by
its surface one. The quantity ∂ǫi

∂ρi
, which depends on the density of each phase

through a nonlinear relationship can be deduced from equations (6) and (7).

Finally, in equation (15), the third term is called the Abraham term, and is
undetectable at optical frequencies [9; 10] and thus cancels out for our purpose.

In the following, we denote E2 =< E2 > the quadratic value of the electric
field averaged over an optical period.

Assuming incompressible fluids (ρi is homogeneous throughout each phase i,
i = 1, 2), we can include contributions of the bulk forces (gravity and elec-
trostriction) in the pressure field and define a pseudo-pressure pi given by:

pi = pi0 + ρigz − 1

2
ǫ0

(

Ei

2ρi
∂ǫi

∂ρi

)

, i = 1, 2, (16)

where pi0, i = 1, 2, is the pressure in each phase and g = 9.81 m.s−1 is the
acceleration of gravity.

The electromagnetic stress tensor defined by Landau [21] such that ∇.Tem

i
= femi

can be expressed as:

Tem

i
=

1

2
ǫ0

(

Ei

2ρi
∂ǫi

∂ρi

)

I − 1

2
ǫ0ǫiEi

2I + ǫ0ǫiEiEi, i = 1, 2. (17)

In the case of a steady interface, the jump from fluid 1 to fluid 2 of the
local pressure and of the electromagnetic stress are balanced by the Laplace
pressure:

(p20 − p10)n + [Tem

1
− Tem

2
].n = γκ(r)n, (18)
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where n is the unit vector directed from liquid 1 to liquid 2 and normal

to the interface and κ(r) =
1

r

d

dr

rz′√
1 + z′2

is the curvature of the interface in

cylindrical coordinates, z′ = dz
dr

is the local slope of the interface.

Rewriting Eq. (18) in terms of pseudo-pressures leads to:

(p2 − p1) + (ρ1 − ρ2)gz +
1

2
ǫ0(E2

2ρ2
∂ǫ2

∂ρ2
− E1

2ρ1
∂ǫ1

∂ρ1
)

+n.[Tem

1
−Tem

2
].n = γκ(r). (19)

Therefore, the bulk contribution of the electrostriction is balanced by its sur-
face contribution and the interface shape does not depend on electrostriction.
Consequently, the equilibrium equation of the interface can be written as:

(p2 − p1) + (ρ1 − ρ2)gz − 1

2
ǫ0(ǫ1E1

2 − ǫ2E2

2) + ǫ0(ǫ1E1E1.n − ǫ2E2E2.n).n = γκ(r).(20)

At final equilibrium, only normal stress act on the interface, consequently
there is no flow within the phases and this equilibrium in each phase is char-
acterized by:

∇pi = 0, i = 1, 2. (21)

In the experiments, the laser wave was linearly polarized so that the electric
field E = Eeα was perpendicular to the plane of observation of azimuthal
coordinate α = 0. Therefore E is continuous across the interface in this plane.

Conversely, in the plane defined by α = π/2, the electric field is within the
plane of propagation (parallel polarization) and thus is no longer continuous
across the interface. However, as shown in [12], the first term of the electro-
magnetic force, which is responsible for the optical radiation pressure acting
on the interface, is quasi-independent of beam polarization as long as refrac-
tive indices are sufficiently close to each others (N1

N2

∼ 1). We can then assume
as in a previous investigation [22] a circular polarization of the electric field E.
Therefore, using the definition of the irradiance I(r) = ǫ0

2
NicEi

2 in the case
of a beam propagating upward, the radiation pressure can be written as:

Πup(r, θi, θt) = −I(r)

c
cos θi(2N1 cos θi − T up(N1 cos θi + N2 cos θt)), (22)
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while in the case of a downward beam propagation it is given by:

Πdown(r, θi, θt) =
I(r)

c
cos θi(2N2 cos θi − T down(N2 cos θi + N1 cos θt)).(23)

Here, T up and T down are the Fresnel transmission coefficients in energy. In the
case of a circular polarization, they are expressed as:

T up = T down = (2N1N2 cos θi cos θt)
(

1

(N1 cos θi + N2 cos θt)2
+

1

(N2 cos θi + N1 cos θt)2

)

(24)

As a final remark, note that the expression of the electromagnetic pressure
in the case of a downward propagation is valid until achieving the condition
of total reflection θi¡θTR = arcsin

(

N1

N2

)

. What occurs when light is totally
reflected by a highly deformed interface is out of the scope of the present
numerical study.

2.4 Flow equations and boundary conditions

We consider a cylindrical domain of radius R and height H as depicted in
Figure 3. We choose to treat all the governing equations in a dimensionless
form by using the laser waist ω0 as the characteristic length scale and the
viscous relaxation velocity u∗ = γ/µ2 as the reference velocity associated to
the characteristic timescale τ ∗ = µ2ω0/γ. The reference pressure is taken as
p∗ = µiu

∗

ω0

, i = 1, 2. Since the weak absorption of light at laser frequency
ensures negligible thermal effects, we consider all liquid properties (γ, ρi, µi,
i = 1, 2) constant in adequation with our estimation of the change in inter-
facial tension and viscosity due to a local increase in temperature. Moreover,
given the value of the Reynolds number of the flow ρ2u

∗ω0/µ2 ∼ 10−3, iner-
tia is negligible compared to viscous forces, allowing a quasi-steady creeping
flow assumption. Thus, flow in each liquid is governed by Stokes and mass
conservation equations respectively given by:

−∇pi + ∇2ui = 0 (25)

∇.ui = 0 , i = 1, 2. (26)

ui is the dimensionless velocity in fluid i and pi is the dimensionless value
of the pseudo-pressure defined in Eq.(16). The hydrodynamic divergence free
stress tensor Ti is:

Ti = −piI + (∇ui +t ∇ui). (27)
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According to Eq. (16), the normal stress jump across the interface SI , which is
compensated by gravity, optical radiation pressure and capillarity forces can
be expressed in the following form:

(λT1.n− T2.n).n = κ(r) − Π(r) − Bo z. (28)

In this equation, λ = µ1/µ2 is the viscosity ratio and Bo = (ρ1 − ρ2)gω2
0/γ

is an optical Bond number which represents the ratio of gravity to capillary
forces, Π(r) is the dimensionless expression of the optical radiation pressure
resulting from equations (22) and (23). We denote Π(r) = Π(r)upω0/γ for the
upward direction of propagation and Π(r) = Π(r)downω0/γ for the downward
direction. In order to quantify the effects of the laser wave on the interface,
we define ξ as the electromagnetic to Laplace pressure ratio on beam axis at
normal incidence:

ξ = Π(r = 0, θi = 0, θt = 0) =
4P

πcω0γ

N1(N2 − N1)

(N2 + N1)
. (29)

A no-slip condition at the interface along with the fact that fluids are immis-
cible implies continuity of the velocity u on the interface SI :

u = u1 = u2 for x ∈ SI . (30)

Moreover, we assume the classical no-slip boundary condition on the lateral,
upper and lower solid walls SC1 and SC2 (see figure 3). This leads to:

ui = 0 for x ∈ SCi , i = 1, 2. (31)

In order to reproduce the experimental configuration, R must be large enough
compared to ω0 to meet the hypothesis of an infinite extent in the horizontal
direction. Several tests were performed with different values of the dimension-
less radius β = R

ω0

of the computational domain, and a value β = 70 was found
to be large enough to satisfy this constraint. The interface motion is obtained
using a Lagrangian approach. It consists in tracking each fluid particle on the
interface in its Lagrangian motion according to:

dx

dt
= u(x) for x ∈ SI . (32)

That is, the interface is advected along with the flow until equilibrium is
reached for which velocities normal to the interface are zero, i.e. u(x).n = 0

for t → t∞.
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3 Numerical method

A brief description of the numerical algorithm is presented in this section. For
more extensive details on the Boundary Integral Element Method (BIEM) ap-
plied to two-phase axisymmetric flow, the reader may refer to the review by
Tanzosh et al. on the solution of free surface flow problems using this tech-
nique [23]. The BIEM reveals to be an excellent tool to solve interfacial flow
problems with high resolution as reported in the analysis of flow involving
electric and magnetic fields [24] or buoyancy [25; 26].

−75 −60 −45 −30 −15 0 15 30 45 60 75
r

−25

−15

−5

5

15

25

z

SI

SC1
   ρ1,µ1,Ν1

ρ2,µ2,Ν2

SC2

Fig. 3. Typical configuration of the computational domain showing the two fluids
and the liquid interface. The domain is assumed to be axisymmetric along ez.

Because solutions to the Stokes problem can be formulated in terms of Green’s
functions [27], we can rewrite the governing equations as a system of integral
equations over the boundaries of the computational domain. Once boundary
conditions on SI , SC1 and SC2 are used, the two-phase Stokes problem can be
written in the following compact form:

1 + λ

2
u(x) =

∫

SI

U.n(κ(ry) − Π(ry) − Boz(ry))dSy+

(1 − λ)
∫

SI

n.K.udSy + λ
∫

SC1

U.(T1.n)dSy −
∫

SC2

U.(T2.n)dSy. (33)

Here, U and K are Green kernels for velocity and stress respectively and are
given by [27]:
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U(d) =
1

8π
(
1

d
I +

dd

d3
), (34)

K(d) =− 3

4π
(
ddd

d5
), (35)

where d = x − y, y(ry, zy) is the integration point. In Eq. (33), the first term
in the right hand side describes the flow contribution from interfacial tension,
radiation pressure and gravity, whereas the second term accounts for shear
rates contrast on the interface. This term vanishes when λ = 1. The third and
fourth terms account for shear occurring on (SC1) and (SC2) as a result of the
no-slip boundary condition.

Velocities on the interface as well as stress over all the boundaries SI , SC1

and SC2 are determined by solving the discrete form of this equation using a
numerical procedure. This procedure requires first the discretization of all the
boundaries SI , SC1 and SC2. Due to integral formulation and axial symmetry,
the problem is reduced to one dimension and only line boundaries, as repre-
sented in Figure 3, need to be discretized. In this work, the mesh is made of
constant boundary elements i.e. line segments with centered nodes. The fluid-
fluid interface SI is parameterized in terms of arc length and is approximated
by local cubic splines, so that the curvature can be accurately computed. Dis-
tribution and number of points are adapted to the shape of the interface, so
that the concentration of elements is higher in regions where the variation of
curvature of the interface is large. The number of mesh points is about 70 for
a typical computation of a small interface deformation. The solid boundaries
SC1 and SC1 are meshed using about 40 uniformly distributed points. An in-
crease in the mesh resolution for the interface and the solid boundaries do not
show any significant change in the results.
Azimuthal integration of Eq. (33) is performed analytically [28; 29] reducing
Eq. (33) to a line integration which is finally performed using Gauss quadra-
tures [30]. Elliptic integrals resulting from the azimuthal integration are eval-
uated using power series expansions [31].
The motion of the interface is followed using the kinematic condition (32)
which is discretized using an explicit first-order Euler time scheme. A typical
computation begins with a flat interface at rest. The laser beam is switched on
at t = 0, and the interface deforms towards fluid 1 of smallest refractive index.

Computation stops when an equilibrium state is reached (
dz(r=0,t)

dt
→ 0). The

time step is chosen to be about 20 times smaller than τ ∗.

4 Results and discussion

In this section, we compare equilibrium hump heights and interface shapes ob-
tained experimentally to their numerical predictions in both linear and non-
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linear regimes and for both directions of propagation. We also present the
dynamics of hump formation expected in the nonlinear regime for both up-
ward and downward propagations.
As mentioned before, few work were dedicated to the modelling of optical de-
formations of liquid interfaces in the nonlinear regime. Hallanger et al. [22]
used a finite difference method to solve the equation describing the equilib-
rium state of the interface for a laser wave propagating from the fluid of
smallest refractive index (here fluid 1) and Wunenburger et al. [13] used a
simple model where gravity was neglected (Bo << 1) to predict the equilib-
rium hump heights in the nonlinear regime.
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Fig. 4. Variation of the reduced hump height h = |z(r = 0)| versus the reduced
pressure ratio ξ when light propagates upward and downward for ω0 = 5.3µm and
T − Tc = 3.5K (Bo = 0.015). Comparison is made between experimental results
(symbols) and the numerical resolution (lines). The bold dashed line is the prediction
for the linear model. ξ

exp
t and ξnum

t respectively represent the experimental and
numerical thresholds of instability in the case of downward propagation.

In Figure 4, we have represented the variation of the dimensionless equilibrium
interface hump height h as a function of the pressure ratio ξ for upward and
downward propagations. Experiments (symbols) and numerical predictions
(lines) are shown together.
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4.1 Steady-state deformations, linear regime

Previous experiments [11; 32] performed in the linear regime of deformations
showed that, for ξ < 2.5, h varies linearly with ξ for both directions of propa-
gation (symbols) and that the linear variation of h(ξ) does not depend on the
direction of propagation for N1/N2 ≃ 1. A linear theory assuming N1 ≃ N2

was proposed [11; 13] which quantitatively agree with these observations. In-
deed, the linear theory gives:

z(r) = −ξ

4

∞
∫

0

e−k2/8

Bo + k2
J0(kr)kdk, (36)

where J0 is the zeroth-order Bessel J function. We deduce:

h(r = 0) =
ξ

8
e

Bo

8 E1(
Bo

8
), (37)

where E1(x) is the one-argument exponential function [E1(x) =
∫

∞

x
e−k

k
dk].

In the version published in European Journal of Mechanics, there is an error
on the equation (37) where h(r = 0) = ξ

2
..... This is corrected in this postprint.

When N1 and N2 are calculated using Eqs. (7) and (8), we find that the
predicted h(ξ) variation perfectly agrees with experiments for both directions
of propagation when ξ < 2.5 (i.e. in the linear regime), as shown in Fig. 4 in the
particular case ω0 = 5.3µm, T − TC = 3.5K, i.e. Bo = 0.015 (dashed straight
line). As shown in Fig. 4, the numerical predictions h(ξ) for both upward
(dot-dashed line) and downward propagations (solid line) are also found to
agree with both the linear theory and experiments. In addition, Fig. 5 shows
good agreement between the experimental interface shape (dark symbols) and
its prediction using both the linear theory (open square) and the numerical
simulation (solid line) at ξ = 1.35 for both the upward (Fig. 5a) and the
downward propagation (Fig. 5b). This validates the numerical code versus
linear analytical predictions as well as its accuracy versus experimental results.

4.2 Steady-state deformations, nonlinear regime

Experimentally, for ξ ≥ 2.5, h(ξ) gradually deviates from linearity. For an
upward propagation (open circles in Fig. 4) h(ξ) increases with a larger slope
than that predicted by the linear theory when 2.5 ≤ ξ < 3.4. For larger values
of ξ, h(ξ) increases again nonlinearly with a slope lying between that of the
linear regime and the above mentioned nonlinear one.
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Conversely, in the case of downward propagation (dark squares), h increases
with ξ up to ξ ≃ 3.4, where its slope diverges. The divergence of h′(ξ) leads to
the jetting instability studied in details in [13; 14; 32] and illustrated in Fig.
1 .

The invariance breakdown of the hump height below the instability threshold
can be qualitatively explained by considering how the electromagnetic pres-
sure Π(r, θi, θt) varies with the incidence angle θi for both propagations [12].
Whereas the electromagnetic pressure, which varies as cos θi

cos θt
, monotonously de-

creases with θi in the case of upward propagation because θt = arcsin(N1

N2

sin θi),
conversely it continuously increases with θi in the case of downward propa-
gation because θt = arcsin(N2

N1

sin θi), as shown in the inset in Fig. 6. Thus,
a downward propagating laser beam exerts an electromagnetic pressure on a
strongly deformed interface (along which sin θi can reach values comparable
to unity) larger than an upward propagating beam. The jetting instability
occurring for the downward propagation can be explained by the fact that the
beam propagates in this case from the large to the low refractive fluid which
makes total reflection of light at the interface achievable [13; 14].

The comparison between numerical simulation results and experimental data
in the nonlinear regime indicates that, in the case of the upward propagation,
a satisfactory agreement is found regarding h(ξ) (see Fig. 4) for the exper-
imentally investigated values of ξ. Moreover, good agreement regarding the
interface shape is observed up to ξ ≃ 5, as shown in Fig. 5a for the particular
value of ξ = 2.9 and ξ = 4.6. This represents a noticeable progress, since previ-
ous work on the subject [22] qualitatively reproduced interface shapes (in the
case of upward propagation) but did not compare experiments to numerical
predictions.

For ξ larger than 3.5, nipple-like interface shapes, shown in Fig. 1, are ex-
perimentally observed. They are not reproduced by the numerical simulations
suggesting an additionnal coupling or feedback effect between the exciting
beam and the soft interface that is not investigated in the present work. As
also shown in Fig. 4, in the case of downward propagation, the numerical
simulation qualitatively reproduces the experimentally observed monotonous
behavior of h(ξ) up to the jetting instability occurring at ξ = ξnum

t , as well as
the divergence of its slope at the instability threshold. Instability of the inter-
face is numerically predicted to occur when the wave undergoes total reflection
and is a priori focused toward the hump tip, i.e. when θi reaches θTR at the
inflection point of the interface. As a matter of fact, since total reflection and
focusing of the incident wave by the interface is assumed to be responsible
for the jetting instability [12], we assume that beyond ξnum

t the interface will
actually become unstable. Moreover, beyond ξnum

t the physical model used in
the numerical model fails, in particular due to Eq. (23) because the numerical
simulation of the jet formation and stability should include the description of
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the complex interplay between wave propagation and interface deformation
acting as a wave guide, which is beyond the scope of the present investigation.
Still, the discrepancy between the values of ξnum

t at which total reflection oc-
curs along the interface (ξnum

t = 3.9 in Fig. 4) and ξexp
t just beyond which the

bell-shaped interface actually loses its stability (ξexp
t = 4.43 in Fig. 4) calls for

a study of the interface shape.
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Figure 5b shows that there is also a noticeable discrepancy between the exper-
imental and numerically predicted interface shapes for the case of the down-
ward propagation in the nonlinear regime. More precisely, the experimental
hump is wider than the numerically predicted one, and the experimental slope
of the interface shape is smaller than the numerically predicted one all along
the interface, even when the experimental hump height is well predicted nu-
merically, as it is the case for ξ = 3.75 and shown in Fig. 5b. This observation
can explain the discrepancy observed on h(ξ) obtained experimentally and
predicted numerically. As a matter of fact, since the actual slope of the inter-
face shape is all along the interface smaller than numerically predicted, the
actual incidence angle θi is also smaller than that numerically predicted. Con-
sequently, the total reflection of the wave by the interface reaching a slope
equal to θTR and the associated jetting instability are expected to experimen-
tally occur at a value of ξ larger than that numerically predicted.

Nevertheless, the reason for this discrepancy between the actual interface
shape and its numerical prediction in the case of a downward propagation
is still unexplained. In Ref. [13] several possible causes were discussed and
discarded. Among them are the effect of thermocapillary flows due to light
absorption, the role of optical nonlinearities, and the additional electromag-
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Fig. 5. Comparison between experimental and numerical interface profiles for up-
ward (a) and downward (b) propagations. ω0 = 5.3µm and T − Tc = 3.5K
(Bo = 0.015).

netic pressure applied on the hump tip due to the partial reflection of light
by the interface below the instability threshold. A more probable cause may
be the viscous stress applied on the interface by the flow induced by the scat-
tering of light as a result of refractive index inhomogeneities occurring in the
bulk of each phase [33]. Indeed, the resulting scattering force is known (i) to
be oriented in the direction of propagation and (ii) of radial extension much
larger than the beam diameter. However, the exact effect of such a flow on
finite size humps, in particular the interplay between viscous effects on the
deformed interface and the feed back of the hump shape on the flow field in
its vicinity, remains misunderstood and calls for further study.

4.3 Dynamics of hump formation, nonlinear regime

Previous work has recently shown that in the linear regime the interface dy-
namics is accurately described by a linear theory of overdamped interfacial
circular waves [32], and that the interface dynamics is independent of the di-
rection of propagation.
However, in the nonlinear regime, the interface dynamics actually depends on
the wave propagation.
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Fig. 6. Time evolution of the interface hump height for downward and upward
propagation. ω0 = 5.3µm , T − Tc = 3.5K (Bo = 0.015) and ξ = 3.75. Time t is
dimensional. The inset shows the variation of the radiation pressure normalized by
its value at normal incidence, versus the incidence angle for both propagations. The
dashed line (inset) shows the total reflection threshold θTR.

In Fig. 6, the time evolution of the hump height h(t) is plotted for both the
upward (dot-dashed line) and downward propagations (solid line) for ξ =
3.75, a value belonging to the nonlinear regime. We note that (i) both curves
coincide during the first 500 ms of the dynamics and eventually separates,
(ii) the transient is significantly shorter in the case of upward propagation
and the equilibrium state is reached much faster. The first observation can be
explained by noting that for t < 500 ms both interface deformations are small
enough to be described by a linear theory which is precisely independent of
the beam propagation. The second observation can be qualitatively explained
by considering the increase of the electromagnetic pressure with the incidence
angle θi in the case of downward propagation (as shown in the inset of Fig. 6).
As θi increases along the interface the associated overpressure applying on the
growing hump increases its final height and thus increases the delay for the
hump to reach equilibrium. On the contrary, the fact that the electromagnetic
pressure decreases when θi increases in the case of an upward propagation
leads to the opposite conclusion. Consequently, the analysis of the dynamics
shows that, beyond the regime of linear deformations, our numerical approach
becomes predictive for the complex nonlinear regime, thus calling for new
experimental investigation and providing indications on how to perform these
experiments.
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5 Conclusions

A Boundary Integral Element Method has been used to simulate the defor-
mation of a fluid-fluid interface induced by a focused laser beam. Since inter-
face deformations with azimuthal invariance were expected, an axisymmetric
model has been developed. Comparisons between numerical predictions and
experimental data showed two main results. First, our model can satisfac-
torily reproduce the variations of interface equilibrium hump height h with
respect to the ratio of electromagnetic to capillary pressure ξ in regimes of
small as well as of large deformations. In the case of an upward propagation,
nipple-like interface shapes were not reproduced, while in the case of a down-
ward propagation, instability threshold was overestimated probably because
actual interface shapes are wider than numerically predicted. This could be
due to bulk steady flows induced by light scattering as a result of liquid index
inhomogeneitiy which deserves further experimental characterization before
numerical implementation. A study of the dynamics of the interface for both
directions of propagation was also performed showing a shorter characteris-
tic time for the interface reaching its steady state in the case of an upward
propagation. Future work should take into account the total reflection and
focusing of light by the deformed interface in order to potentially predict hy-
drodynamic instability leading to jet formation and micro-droplet emission at
the tip. Another interesting investigation would be to study the effect of light
scattering induced flow [33] on jetting instability. Our first results are thus
very encouraging since they illustrate the accuracy of our numerical model to
describe and predict intriguing properties of nonlinear behaviors of the cou-
pling between light and liquid interfaces, a subject of increasing interest due
to its wide range of applications in soft matter physics on the one hand and
scarce theoretical results on the other hand.
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[16] A. Casner. Déformation, manipulations et instabilités d’interfaces liquides
induites par la pression de radiation d’une onde laser. PhD thesis, Université
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