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Abstract
Electronic structures, the effect of the substitution, structure physicochemical property/activity relationships and 
drug-likeness applied in pyrazine derivatives, have been studied at ab initio (HF, MP2) and B3LYP/DFT (density func-
tional theory) levels. In the paper, the calculated values, i.e., NBO (natural bond orbitals) charges, bond lengths, dipole 
moments, electron affinities, heats of formation and quantitative structure-activity relationships (QSAR) properties are 
presented. For the QSAR studies, we used multiple linear regression (MLR) and artificial neural network (ANN) statis-
tical modeling. The results show a high correlation between experimental and predicted activity values, indicating the 
validation and the good quality of the derived QSAR models. In addition, statistical analysis reveals that the ANN tech-
nique with (9-4-1) architecture is more significant than the MLR model. The virtual screening based on the molecular 
similarity method and applicability domain of QSAR allowed the discovery of novel anti-proliferative activity candidates 
with improved activity.

Keywords: Pyrazine; DFT; QSAR; MLR; ANN.

1. Introduction
Pyrazine is a heterocyclic compound containing two 

nitrogen atoms in its aromatic ring with molecular formula 
C4H4N2.1 it is a symmetrical molecule with point group D2h. 

Pyrazine is less basic than pyridine, pyridazine and 
pyrimidine. Tetramethyl pyrazine (also known as ligustra-
zine) is reported to scavenge superoxide anion and de-
crease nitric oxide production in human polymorph nu-
clear leukocytes and is a component of some herbs in 
traditional Chinese medicine. Some pyrazine derivatives 
contain various pharmacological effects: anti-cancer, anti-
depressant and anxiolytic, tuberculosis, an anti-diabetic 
drug and pulmonary hypertension and cardiac valve.2–7

Quantum chemistry methods play an important role 
in obtaining molecular structures and predicting various 

properties. To obtain highly accurate geometries and phys-
ical properties for molecules that are built from electro-
negative elements, expensive Ab initio/MP2 electron cor-
relation methods are required.8 Density functional theory 
methods9–14 offer an alternative use of inexpensive com-
putational methods which could handle relatively large 
molecules.15–20

Quantitative structure-activity relationships 
(QSAR)21–25 are attempts to correlate molecular structure, 
or properties derived from molecular structure, with a 
particular kind of chemical or biochemical activity. The 
kind of activity is a function of the interest of the user. 
QSAR is widely used in pharmaceutical, environmental 
and agricultural chemistry in the search for particular 
properties. The molecular properties used in the correla-
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tions relate as directly as possible to the key physical or 
chemical processes taking place in the target activity.26

This work is planned to illuminate the theoretical de-
termination of the optimized molecular geometries, MESP, 
NBO charges of pyrazine compounds. In addition, we cal-
culated important quantities such as the HOMO–LUMO 
energy gap. 27

Lipinski’s ‘Rule of Five’28 as well as other parameters 
is useful a tools to aid in choosing oral drug candidates. 
Drug-likeness is described to encode the balance among 
the molecular properties of a compound that influences its 
pharmacodynamics, pharmacokinetics and ADME (ab-
sorption, distribution, metabolism and excretion) in a hu-
man body like a drug.29

These parameters allow estimating oral absorption 
or membrane permeability, which occurs when evaluated 
molecules obey Lipinski’s rule-of-five. Other parameters 
that are included the number of rotatable bonds, molecu-
lar volume, molecular polar surface area and the in vitro 
plasma protein binding.

The present paper deals with a specific organization-
al form of molecular matter. Other forms are given for ex-
ample in the References.30–34

Many different chemometric methods, such as mul-
tiple linear regression (MLR),35 partial least squares re-
gression (PLS),36 different types of artificial neural net-
works (ANN),37–40 genetic algorithms (GA)41 and support 
vector machine (SVM) can be employed to deduce cor-
relation models between the molecular structure and 
properties. At present, we derive a quantitative struc-
ture-activity relationship (QSAR) model using multiple 
linear regression (MLR) as well as artificial neural network 
(ANN) methods for the series of pyrazine derivatives.

The goal of the present study is to validate a suitable 
methodology for the accurate prediction of molecular ge-
ometries and energetic properties of potentially active 
compounds, and to determine the best molecular descrip-
tors to be used in conjunction with linear (MLR) and non-
linear (ANN) QSAR models to identify the best candidates 
for antiproliferative agents against the BGC823. The ob-
tained QSAR models were finally employed to identify bi-
ological activities of potentially novel active compounds 
using in silico screening procedures.

2. Materials and Methods
All calculations were performed using HyperChem 

8.0.6 software42 and Gaussian 09 program package43, Mar-
vin Sketch 6.2.1 software44, Molinspiration online data-
base45 and JMP 8.0.2 software.46

The geometries of pyrazine and their methyl, ethyl, 
bromo, fluoro derivatives were fully optimized with ab in-
itio/HF, MP2 and DFT/B3LYP methods, using both basis 
set 6-311G ++(d,p) and cc-pVDZ integrated with Gauss-
ian 09 program package. The calculation of QSAR proper-

ties is performed through the module QSAR properties 
(HyperChem version 8.0.6), which allows several proper-
ties commonly used in QSAR studies to be calculated.

Molinspiration, web-based software was used to ob-
tain parameters such as TPSA (topological polar surface 
area), nrotb (number of rotatable bonds) and drug-like-
ness.

Multiple Linear Regression MLR analysis and artifi-
cial neural networks ANN were carried out using the soft-
ware JMP 8.0.2. 

The calculated results have been reported in the 
present work.

3. Results and Discussion
3. 1.  Geometric and Electronic Structure of 

Pyrazine

The optimized geometrical parameters of pyrazine 
with ab initio/HF, ab initio/MP2 and DFT method using 
6-311G ++ (d, p) and cc-pVDZ basis set. Results concern-
ing bond length values for pyrazine are listed in (Table 1), 
bond angles are listed in (Table 2) with the experimental 
results 47 and charge densities are listed in (Table 3) are 
following the numbering scheme given in (Fig. 1). 

Fig. 1. 3D conformation of pyrazine (GaussView 5.0.8).

The efficiency of the DFT/B3LYP method with cc-
pVDZ basis set may be scrutinized by comparison with 
the results obtained by more elaborate calculations such as 
ab initio/HF and MP2 methods. A very good agreement 
between predicted geometries (bond lengths and bond an-
gles) and corresponding experimental data was obtained 
especially through the DFT/B3LYP results.

From that, we can say that the DFT method is more 
appropriate for further study on the pyrazine rings. Charge 
densities calculated by DFT/B3LYP are almost similar to 
ab initio/HF and MP2 methods. The geometry of the pyr-
azine is symmetric and planar; as all the dihedral angles 
are either nearly 0° or 180°, which makes this conforma-
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tion more stable. The total atomic charges of pyrazine ob-
tained from NBO charges with DFT/B3LYP and ab initio/
HF and MP2 methods with cc-pVDZ basis set are listed in 
Table 3. The atoms N have negative charges which lead to 
an electrophilic attack, the atoms C and H have a positive 
charges which leads to the preferential site to nucleophilic 
attack.

The molecular electrostatic potential surface (MESP) 
is a plot of electrostatic potential mapped on to the con-
stant electron density surface. In the majority of the MESP 
the maximum negative region which preferred the site for 
an electrophilic attack is indicated in red color, while the 
maximum positive region which preferred the site for a 
nucleophilic attack is symptoms indicated in blue color.48 
MESP has been found to be a very useful tool in the inves-
tigation of the correlation between the molecular structure 
and the physicochemical property relationship of mole-
cules including biomolecules and drugs.49–53

The MESP surface and contour map of pyrazine (Fig. 
2) show the three regions characterized by red color (neg-
ative electrostatic potential) around the tow cyclic nitro-
gen atoms which explain the ability of an electrophilic at-

tack on these positions, also the blue color (positive 
electrostatic potential) around the four hydrogen atoms 
which explain that these regions are susceptible for a nuc-
leophilic attack. The green color situated in the middle be-
tween the red and blue regions explains the neutral elec-
trostatic potential surface.

Fig. 2. 3D MESP surface map and 2D MESP contour map for pyrazine (Gauss view 5).

Table 1. Calculated bond lengths (angstrom) of pyrazine molecule.

Distance EXP47 DFT/B3LYP Ab initio/HF Ab initio/MP2
  6-311G ++ (d, p) cc-pVDZ 6-311G ++ (d, p) cc-pVDZ 6-311G ++ (d, p) cc-pVDZ

C-N 1.338 1.335 1.339 1.317 1.320 1.343 1.349
C-C 1.397 1.394 1.398 1.386 1.388 1.399 1.405
C-H 1.083 1.086 1.095 1.075 1.082 1.087 1.096

Table 2. Angles in degree of pyrazine molecule.

Angle EXP47 DFT/B3LYP Ab initio/HF Ab initio/MP2
  6-311G++(d, p) cc-PVDZ 6-311G++ (d, p) cc-pVDZ 6-311G++(d, p) cc-pVDZ

CCH 120.0 120.0 120.8 120.8 120.8 120.7 120.6
CNC 115.7 116.1 115.6 116.6 116.3 115.2 114.6

Table 3. NBO charges of pyrazine molecule.

 Pyrazine DFT/B3LYP Ab initio/HF Ab initio/MP2
 Atoms cc-pVDZ cc-pVDZ cc-pVDZ

 C   0.013   0.044   0.033
 N –0.456 –0.492 –0.487
 H   0.215   0.202   0.210

3. 2. Substitution Effect on Pyrazine Structure

Calculated values of the two studied series indicated 
that in the first series methyl and ethyl groups with effects 
of electron donors,however, in the second series bromo 
and fluoro groups with effects of electron acceptors in po-
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sitions C2 and C3 in the same series are given in (Table 4) 
and (Table 5),the heat of formation, dipole moment (µ) 
and HOMO (Highest Occupied Molecular Orbital) and 
LUMO (Lowest Unoccupied Molecular Orbital) energies 
of pyrazine systems are presented in (Fig. 3), NBO charges 
of pyrazine derivatives are reported in (Table 6) for the 
first series and in (Table7) for the second series. This calcu-
lation is performed with DFT/B3LYP method using the 
cc-pVDZ basis set.

is more polarizable and is generally associated with a high 
chemical reactivity, low kinetic stability and is also termed 
a soft molecule.55

For the first series, it was found that electron donors 
of compound A4 (2-ethyl pyrazine) has the lowest energy 
gap HOMO-LUMO (0.1958) and compound B3 (2,3-di-
bromopyrazine) has the lowest energy gap (0.1927) for the 
second series (Fig. 4).

From HSAB (Hard Soft Acid and Base) principle the 
lowest energetic gap allows an easy flow of electrons which 
makes the molecule soft and more reactive,56  which means 
that A4 and B3 compounds are the most reactive in the 
two series of pyrazine derivatives. For each addition of al-
kyl-substituted, the energy of the HOMO and LUMO in-
crease respectively but the addition of the fluoro, bromo 
substituted leads to the decrease of the LUMO energy an 
exception increase of the bromo substituted and decrease 
of the fluoro substituted of the HOMO. The carbon C2 has 
the most important positive charge (0.206) in the com-
pound A4 (2-ethyl pyrazine) for the first series, also for 
compound B3 (2,3-dibromopyrazine) of the second series, 
the most important positive charges are on carbon C2 
(0.102) and C3 (0.102) as shown in (Table 5), these posi-
tions C2 and C3 with the important positive charges lead 
to preferential sites of nucleophilic attack. The compound 
B3 is predicted to be the most reactive with a smaller HO-
MO-LUMO energy gap and with sites of nucleophilic at-
tack, more stable with the maximum value in the heat of 
formation.

The contour plots of the π like frontier orbital for  
the ground state of the compound B3 are shown in (Fig.  
4). 

From the plots, we can observe that the HOMO is a 
π bonding molecular orbital developed on C5 and C6 at-
oms, and the LUMO is a π* anti-bonding molecular orbit-

Series 1  Series 2
(A1) R1 = H , R2 = H (B1) R1 = H ,R2=H
(A2) R1 = CH3, R2 = H (B2) R1 = Br, R2=H
(A3) R1 = CH3, R2 = CH3 (B3) R1 = Br, R2=Br
(A4) R1 = C2H5, R2=H (B4) R1 = F, R2=H
(A5) R1 = C2H5, R2=C2H5  (B5) R1 = F, R2=F

Fig. 3. Structure of pyrazine derivatives (Marvin sketch15.8.31).

Table 4. Energies of pyrazine and methyl, ethyl-substituted pyrazine.

  ΔHf HOMO LUMO ΔE µ
  [kcal/mol] [au] [au] [au] [Debye]

A1 Pyrazine 44.09 –0.252 –0.055 0.197 0.00
A2 2-methyl pyrazine 37.05 –0.247 –0.051 0.196 0.59
A3 2,3-di-methyl pyrazine 31.78 –0.243 –0.044 0.199 0.80
A4 2-ethyl pyrazine 30.97 –0.247 –0.051 0.195 0.59
A5 2,3-di-ethyl pyrazine 20.48 –0.242 –0.045 0.196 0.69

Table 5. Energies of pyrazine and fluoro, bromo-substituted pyrazine.

  ΔHf HOMO LUMO ΔE µ
  [kcal/mol] [au] [au] [au] [Debye]

B1 Pyrazine   44.09 –0.253 –0.055 0.197 0.00
B2 2-bromopyrazine   49.73 –0.269 –0.068 0.201 1.50
B3 2,3-dibromopyrazine   55.88 –0.268 –0.075 0.192 2.05
B4 2-fluoro pyrazine   04.15 –0.272 –0.065 0.207 1.33
B5 2,3-di-fluoropyrazine –33.52 –0.280 –0.069 0.211 2.24

For each addition of methyl, ethyl and fluoro, the 
heat of formation decreases approximately 6, 12 or 39 (kcal 
∙ mol–1) respectively but the addition of the bromo group 
leads to the increase of the heat of formation with 6 (kcal ∙ 
mol–1) approximately.

The Frontier orbitals, the highest occupied molecu-
lar orbital (HOMO) and lowest unoccupied molecular or-
bital (LUMO) are important factors in quantum chemistry 
54 as these determine the way the molecule interacts with 
other species. The frontier reactivity and kinetic stability of 
the molecule. A molecule with a small frontier orbital gap 
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al developed on the N1 and C2 atoms. These further 
demonstrates the existence of the delocalization of the 
conjugated π-electron system in 2, 3-dibromopyrazine 
molecule. Dipole moment equal to zero which confirms 
the symmetry group D2h of pyrazine. The compound B5 
(2, 3-di-fluoropyrazine) also shows a high dipole moment 
value (2.2435 Debye).

3. 3.  Structure Activity/Property Relationship 
for Pyrazine Derivatives
For the series of pyrazine derivatives (Fig. 8) we have 

studied seven physicochemical properties with respect to 
their anti-proliferative activity against the BGC823 (hu-
man gastric cell).57 The properties involved are: Surface 
area grid (SAG), molar volume (V), hydration energy 
(HE), partition coefficient octanol/water (log P), molar re-
fractivity (MR), polarizability (Pol) and molecular weight 
(MW). 

The results obtained using HyperChem 8.0.8 soft-
ware are shown in Table 8. For example, Fig. 5 shows the 
favored conformation in 3D of compound 1.

Table 6. NBO charges of pyrazine series 1.

 A1 A2 A3 A4 A5

N1 –0.456 –0.472 –0.471 –0.476 –0.476
N4 –0.456 –0.452 –0.473 –0.452 –0.472
C2   0.013   0.204   0.215   0.206   0.216
C3   0.013   0.016   0.208   0.020   0.213
C5   0.013   0.003   0.010   0.004   0.013
C6   0.013   0.022   0.012   0.023   0.015
C-methyl- 2 – –0.665 –0.669 – –
C-methyl -3 – – –0.673 – –
C1-ethyl- 2 – – – –0.458 –0.459
C2-ethyl -2 – – – –0.628 –0.627
C1-ethyl -3 – – – – –0.461
C2-ethyl-3 – – – – –0.627

Table 7. NBO charges of pyrazine series 2. 

 B1 B2 B3 B4 B5

N1 –0.456 – 0.458 –0.446 –0.497 –0.485
N4 –0.456 –0.441 –0.446 –0.441 –0.485
C2   0.013   0.112   0.102   0.634   0.586
C3   0.013   0.018   0.102 –0.040   0.586
C5   0.013   0.006   0.018 –0.008   0.002
C6   0.013   0.024   0.018   0.024   0.002
Brome-2 –   0.064   0.100 – –
Brome-3 – –   0.100 – –
Fluor-2 – – – –0.338 –0.327
Fluor-3 – – – – –0.327

Fig. 4. π like frontier orbitals of the compound B3. Fig. 5. 3D Conformation of compound 1 (HyperChem 8.03).
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Molar refractivity and polarizability relatively in-
crease with the size and the molecular weight of the stud-
ied pyrazine derivatives (Table 8 and fig.6). This result is in 
agreement with the formula of Lorentz-Lorenz, which 
gives a relationship between polarizability, molar refractiv-
ity and molecular size.

From the obtained results presented in Table 8 and 
figure 6, we observed that polarizability data and molecu-
lar refractivity are generally proportional to the size and 
the molecular weight of pyrazine derivatives. This explains 
the congruity of our results with Lorentz-Lorenz expres-
sion. For instance, compound 9 and compound 12 show 
the same maximum values of polarizability (41.91 (Å³)) 
and refractivity (118.37(Å³)). These compounds have also 

high values of molecular weight (424.32 uma), and a slight 
difference in surfaces and volumes.

Hydration energy in absolute value, the most im-
portant is that of the compound 17 (14.62 kcal ∙ mol–1) and 
the smallest value is that of the compound 12 (10.63 kcal ∙ 
mol–1). Indeed, in biological environments, the polar mol-
ecules are surrounded by water molecules. They have es-
tablished hydrogen bonds between them.

Hydrophobic groups in pyrazine derivatives induce a 
decrease of hydration energy. 

However, the lipophilie increases proportionally 
with the hydrophobic features of the substituent. As seen 
in Table 8, compound 17 is expected to have the highest 
hydrophilicity, whereas compound number 12 should be 

Table 8. QSAR properties of pyrazine derivatives.

Compounds MW SAG V Pol MR LogP HE
 [amu] [A°2] [A°3] [A°3] [A°3]  [kcal/mol]

        1 288.30 466.47   770.17 28.82   79.14   1.94 –12.54
        2 304.75 474.61   791.62 30.84   83.73   2.32 –12.63
        3 349.20 485.20   810.26 31.54   86.54   2.60 –12.58
        4 304.75 498.29   809.75 30.84   83.73   2.32 –13.29
        5 349.20 505.96   828.55 31.54   86.54 2.6 –13.24
        6 320.81 512.80   828.87 33.20   90.17   2.67 –11.30
        7 304.36 486.18   800.84 31.18   85.58   2.29 –11.39
        8 320.81 498.70   822.05 33.20   90.17   2.67 –12.25
        9 424.32 628.79 1054.66 41.91 118.37   3.13 –11.55
      10 363.41 543.20   948.38 39.20 110.97   2.48 –11.54
      11 379.87 550.54   984.28 41.21 115.56   2.86 –10.69
      12 424.32 554.53   997.06 41.91 118.37   3.13 –10.63
      13 379.87 562.49   980.74 41.21 115.56   2.86 –11.45
      14 363.41 543.20   948.38 39.20 110.97   2.48 –11.54
      15 270.31 475.71   769.23 28.91   79.01   2.55 –13.67
      16 286.37 490.32   789.01 31.27   85.45   2.89 –12.89
      17 349.20 517.21   832.69 31.54   86.54   2.60 –14.62
      18 306.29 476.68   771.74 28.73   79.26   1.34 –13.64

Fig. 6. Graphical representation of physicochemical properties.
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most lipophilic. This implies that these compounds should 
have poor permeability across the cell membrane.

We noticed that compound 17 possess seven hydro-
gen bond acceptors (HBA) and no hydrogen bond donors 
(HBD), the presence of hydrophilic groups in this com-
pound result in an increase of the hydration energy. This 
property explains the ability of these compounds, not only 
to fix the receptor but also to activate it. Hydration energy 
measures the degree of agonist character of a potential 
drug molecule.

Almost (log P) of studied molecules have optimal 
values. For good oral bioavailability, the log P must be 
greater than zero and less than 3 (0 < log P < 3). For very 
high values of log P, the drug has low solubility and for very 
low values of log P; the drug has difficulty penetrating the 
lipid membranes. Thus, compound 17 has the most im-
portant hydration energy and the optimal value of log P, the 
small value of molecular weight leading to better distribu-
tion and solubility in fabrics, good oral bioavailability and 
permeability in cellular membranes respectively (Fig. 7).

3. 4.  Drug-Likeness Screening Applied in 
Pyrazine Derivatives
We have applied rules of thumb and calculated met-

rics of eighteen derivatives of pyrazine (Fig. 8) taken from 
literature with their anti-proliferative activity against the 
BGC823.57

The properties involved are: octanol/water partition 
coefficient (log P), molecular weight (MW), hydrogen 
bond donors (HBD), hydrogen bond acceptors (HBA), 
number of rotatable bonds (NRB) and polar surface area 
(TPSA). All the results have been calculated using Hyper-
Chem 8.0.8 and Marvin Sketch 6.2.1 software, which are 
listed respectively in Table 9, we have studied Lipinski and 
Veber rules to identify “drug-like” compounds:58,59

(1) There are less than 5 H-bond donors (expressed 
as the sum of OHs and NHs). 

(2) The molecular weight is under 500 DA.
(3) The log P is under 5.
(4) There are less than 10 H-bond acceptors (ex-

pressed as the sum of Ns and Os).

Table 9. Pharmacological activities and properties involved in MPO methods for drug-likeness of pyrazine derivatives.

N° pIC50BGC823 
57                                 Lipinski’s rule                               Veber rules

  logP MW HBA HBD NRB  TPSA[A°2]
  <5 [amu] <10 <5 <10 <140

  1 4.74 1.94 288.30 5 0 4 64.71
  2 4.56 2.32 304.75 5 0 4 64.71
  3 4.76 2.60 349.20 5 0 4 64.71
  4 4.8 2.32 304.75 5 0 4 64.71
  5 4.94 2.6 349.20 5 0 4 64.71
  6 4.87 2.67 320.81 4 0 4 51.57
  7 4.73 2.29 304.36 4 0 4 51.57
  8 4.69 2.67 320.81 4 0 4 51.57
  9 4.70 3.13 424.32 5 0 5 56.50
10 4.53 2.48 363.41 4 0 4 51.57
11 4.46 2.86 379.87 5 0 5 56.50
12 4.44 3.13 424.32 5 0 5 56.50
13 4.69 2.86 379.87 5 0 5 56.50
14 4.57 2.48 363.41 5 0 5 56.50
15 4.60 2.55 270.31 5 0 4 64.71
16 4.67 2.89 286.37 4 0 4 51.57
17 4.59 2.60 349.20 5 0 4 64.71
18 4.48 1.34 306.29 5 0 4 64.71

Fig. 7. Acceptor sites of proton for compound 17.
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(5) Rotatable bonds are under 10.
(6) TPSA is under 140 Å 2
All the compounds of the series have the MW under 

500 DA, thus they can easily pass through the cell mem-
brane and the better the absorption will be.

There are less than 10 H-bond acceptors and 0 
H-bond donors, the fat solubility will be high and there-
fore the drug will be able to penetrate the cell membrane to 
reach the inside of the cell. If two of these rules are unsat-
isfied, the compound will have a problem in absorption 
and permeability.60

TPSA of pyrazine derivatives was found in the range 
of 52.325–65.217 A°2 and is well below 140 Å2, indicating 
that these compounds should have good cellular plasmatic 
membrane permeability. All the screened compounds 
were flexible, especially; compounds 9 and 11–14 which 
have 5 rotatable bonds (table 9).

3. 5.  Quantitative Structure-Activity 
Relationships Studies (QSAR) of 
Pyrazine Derivatives 
When chemical or physical properties and molecu-

lar structures are derived from numbers, it is often possi-

ble to propose mathematical relations connecting them, 
which allow making quantitative predictions. The ob-
tained mathematical expressions can then be used as a pre-
dictive means of the biological response for similar struc-
tures. They are widely used in the pharmaceutical industry 
to identify promising compounds, especially at the early 
stages of drug discovery.61

Relationships between the physicochemical proper-
ties of chemical substances and their biological activities 
can be derived using QSAR (Quantitative Structure-Activi-
ty Relationships) concept. These models can also be used to 
predict the activities of new chemical entities and for their 
design.62 therefore, the biological activity is quantitatively 
expressed as the concentration of substance necessary to 
obtain a certain biological response. For that purpose, mul-
tiple linear regression, MLR, and artificial neural networks 
(ANNs) are used. The accuracy of such models is mainly 
evaluated by the correlation coefficient R2.63 The MLR and 
ANN models were generated using JMP 8.0.2 software.

The equilibrium geometries and the highest occu-
pied molecular orbital energy (EHOMO) and lowest unoc-
cupied molecular orbital energy (ELUMO) and dipole mo-
ment (µ) of pyrazine derivatives were determined at the 
B3LYP/cc-pVDZ level of theory. We list in table 10 of the 

Fig. 8. Structural comparison of pyrazine derivatives.
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supplementary material the Cartesian coordinates of the 
optimized pyrazine derivatives equilibrium structures. 
Then, the QSAR properties module from Hyper Chem 
8.08 was used to calculate: molar weight (MW), surface 
area (SAG), volume (V), molar refractivity (MR), polariz-
ability (Pol), octanol-water partition coefficient (log P) 
and hydration energy (HE).

3. 5. 1. Multiple Linear Regression (MLR)
Despite being the oldest, MLR64,65 still remains one 

of the most popular approaches to build QSAR models. 
This is due to its simple practicaluse, ease of interpretation 
and transparency. Indeed, the key algorithm is available 
and accurate predictions can be provided. 66 The values of 
the calculated descriptors are those listed in Table 10. Data 
were randomly divided into two groups: a training set (in-
ternal validation) and a testing set (external validation) at 
a ratio of 80:20. A correlation matrix between parameters 
was performed on all nine descriptors. Nevertheless, the 
analysis revealed six independent descriptors for the de-
velopment of the model. The significant correlation analy-
sis between biological activity and descriptors is represent-
ed by the following equation:

pIC50BGC823 =  –6.878+0.0115
V-0.0134HE + 0.1763MR-0.0087
SAG-0.004355MAG-0.5185Pol-15.46   (1)

EHOMO-66.309ELUMO-0.067 µ   

Where, pIC50 is the response or dependent variable 
(V, HE, MR, SAG, MAG, Pol, EHOMO, ELUMO and µ) are 

descriptors (features or independent variables). Within the 
regression, the coefficients in front of these descriptors are 
optimized.

The F value (F = 11.84) was found to be statistically 
significant at 95% level, since all the calculated F value is 
higher as compared to tabulated values. 

For validation of the model, we plot in Fig. 9 the ex-
perimental activities against the predicted values as deter-
mined by equation (1). We can observe that the predicted 
pIC50 values are in an acceptable agreement and regular 
distribution with experimental ones with correlation coef-
ficient (R2) for the training set (R2

inter = 0.955) and test set 
(R2

ext = 0.930) indicate the significant correlation between 
different independent variables with anti-proliferative ac-
tivity against the BGC823.

Table 10.Values of molecular descriptors.

N° pIC50BGC823
57 V HE Log P MR SAG MW Pol EHOMO ELUMO µ

  [A°3] [kcal/mol]  [A°3] [A°2] [amu] [A°3] [au] [au] [Debye]

  1 4.740 770.170 –12.540 1.940 79.140 466.470 288.300 28.820 –0.239 –0.079 0.886
  2 4.560 791.620 –12.630 2.320 83.730 474.610 304.750 30.840 –0.249 –0.081 5.144
  3 4.760 810.260 –12.580 2.600 86.540 485.200 349.200 31.540 –0.240 –0.080 0.887
  4 4.800 809.750 –13.290 2.320 83.730 498.290 304.750 30.840 –0.243 –0.081 1.269
  5 4.940 828.550 –13.240 2.600 86.540 505.960 349.200 31.540 –0.247 –0.082 1.498
  6* 4.870 828.870 –11.300 2.670 90.170 512.800 320.810 33.200 –0.236 –0.086 2.564
  7 4.730 800.840 –11.390 2.290 85.580 486.180 304.360 31.180 –0.234 –0.084 5.024
  8 4.690 822.050 –12.250 2.670 90.170 498.700 320.810 33.200 –0.235 –0.086 5.023
  9* 4.700 1054.660 –11.550 3.130 118.370 628.790 424.320 41.910 –0.223 –0.065 4.262
10 4.530 948.380 –11.540 2.480 110.970 543.200 363.410 39.200 –0.223 –0.064 4.275
11* 4.460 984.280 –10.690 2.860 115.560 550.540 379.870 41.210 –0.220 –0.063 4.963
12 4.440 997.060 –10.630 3.130 118.370 554.530 424.320 41.910 –0.220 –0.063 4.949
13 4.690 980.740 –11.450 2.860 115.560 562.490 379.870 41.210 –0.224 –0.067 4.190
14 4.570 948.380 –11.540 2.480 110.970 543.200 363.410 39.200 –0.223 –0.064 4.275
15 4.600 769.230 –13.670 2.550 79.010 475.710 270.310 28.910 –0.240 –0.081 4.278
16 4.670 789.010 –12.890 2.890 85.450 490.320 286.370 31.270 –0.233 –0.083 1.449
17 4.590 832.690 –14.620 2.600 86.540 517.210 349.200 31.540 –0.241 –0.081 4.127
18 4.480 771.740 13.640 1.340 79.260 476.680 306.290 28.730 –0.243 –0.084 4.472

* denotes the selected compounds for external validation (test set).

Fig. 9. Correlation of experimental and predicted pIC50 values as 
derived using MLR.

Ex
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3. 5. 2. Artificial Neural Networks

ANN67–70 is a popular nonlinear model, used to 
predict the biological activity (i.e. IC50) of the datasets of 
therapeutic molecules. It presents several benefits like 
better prediction, adaptation and generalization capacity 
beyond the studied sample, and better stability of the co-
efficients. It is employed in complex drug design, drug 
engineering and medicinal chemistry domains.71 In this 
work, the neural network is a system of fully intercon-
nected neurons arranged in three layers. The input layer 
is made of nine neurons, where each of them receives one 
of the nine descriptors selected from the correlation ma-
trix of the model. The intermediate (hidden) layer is com-
posed of four neurons that form the deep internal pattern 
that discovers the most significant correlations between 

predicted and experimental data. One neuron constitutes 
the output layer, which returns the value of pIC50 (Fig. 
10).72

As it can be seen in Fig. 10, a good agreement between 
experimental data and predicted pIC50 issued from the 
ANN model is observed. Indeed, the statistical parameters 
for this model, reveal a correlation coefficient close to 1 (= 
0.995), indicating that the ANN one is more reliable. Fur-
thermore, the robustness of the model was further con-
firmed by the significant value of the test data set (= 0.920).

3. 5. 3. Virtual Screening Application
The aim of this study is to identify new structures of 

pyrazines73 with improved anti-proliferative activity 
against BGC823 that has to be within the applicability do-

Fig. 10. Structure of ANN.

Table 11. Experimental and predicted pIC50 values using MLR and ANN methods.

N° Exp. pIC50(BGC823) Pred. pIC50(BGC823) Pred.pIC50(BGC823)
  MLR ANN

  1 4.740 4.757 4.736
  2 4.560 4.582 4.562
  3 4.760 4.704 4.764
  4 4.800 4.796 4.804
  5 4.940 4.956 4.931
  6* 4.870 4.806 4.869
  7 4.730 4.724 4.717
  8 4.690 4.671 4.696
  9* 4.700 4.748 4.642
10 4.530 4.537 4.550
11* 4.460 4.434 4.521
12 4.440 4.485 4.443
13 4.690 4.666 4.686
14 4.570 4.537 4.550
15 4.600 4.579 4.603
16 4.670 4.716 4.672
17 4.590 4.598 4.595
18 4.480 4.480 4.481

* denotes the compounds selected for external validation (test set).
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Fig. 11. Correlation of experimental and predicted pIC50 values obtained using ANN.

Table 12. Proposed structural compounds and predicted activities.

No. Compound structure pIC50 No. Compound structure pIC50

1  6.251   7  2.884

2  5.789   8  3.205

3  4.495   9  7.570

4  2.941 10  3.770

5  6.907 11  7.632

6  3.878 12  4.931
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main of the developed model. The structures and activities 
of these compounds are reported in table 12. 

4. Conclusion
The present work deals with the molecular proper-

ties of pyrazine. The HF, MP2 and DFT methods, the DFT 
method is more appropriate for further study on pyrazine 
rings. The geometry of the pyrazine is symmetric and pla-
nar, as all the dihedral angles are either nearly 0° or 180°, 
which makes this conformation more stable. The com-
pound B3(2,3-dibromo pyrazine) is predicted to be the 
most reactive with a smaller HOMO–LUMO energy gap 
of all pyrazine systems, C2 and C3 positions are the most 
preferential site of nucleophilic attack.

Afterward, we showed that both ANN and MLR 
methods provide similar QSAR model accuracy. As can be 
seen in Table 11, the ANN network has substantially better 
predictive capabilities compared to MLR, leading to pIC50 
values closer to the experimental determinations. Never-
theless, both models remain satisfactory and exhibit a high 
predictive power, thus validating their use to explore and 
propose new molecules as anti-proliferative activity 
against the BGC823.

Based on the obtained QSAR equation we have iden-
tified a series of potential novel compounds of pyrazine. 
This series has been used as a primary step for predicting 
the anti-proliferative activity against the BGC823. It is 
worth testing the reliability of these predictions in vitro, 
our work should help in identifying new compounds tar-
geting anti-proliferative activity against the BGC823.

5. References
  1.  V. M. Baldwin, S. D. Arikkatt, T. J. Sindhu, M. Chanran, A. R. 

Bhat, K. Krishnakumar, World J. Pharm. Sci. 2014, 3, 1124–
1132.

  2.  D. L. Trump, H. Payne, K. Miller, J. S. de Bono, J. Stephenson, 
H. Burris, F. Nathan, M. Taboada, T. Morris, A. Hubner, J. 
of Prostate, 2011, 71, 1264–1275.   DOI:10.1002/pros.21342

  3.  C. P. Meher, A. M. Rao, Md. Omar, Asian J. Pharm. Sci. & Res. 
2013, 3, 52–56.

  4.  L. E. Schechter, Q. Lin, D. L. Smith, G. Zhang, Q. Shan, B. 
Platt, M. R. Brandt, L. A. Dawson, D. Cole,R. Bernotas, A. Ro-
bichaud, S. Rosenzweig-Lipson, C.E. Beyer, Int. J. Neuropsy-
chopharmacol. 2008, 33, 1323–1335. 

 DOI:10.1038/sj.npp.1301503
  5.  S. Spaia, I. Magoula, G. Tsapas, G. Vayonas, Perit. Dial. Int. 

2002,20, 47–52.   DOI:10.1177/089686080002000109
  6.  K. Whalen, “Pharmacology ”,6th edition, University of Florida, 

College of Pharmacy Gainesville, Gainesville, Florida, USA, 
2014.

  7.  S. Rosenzweig-Lipson, J. Zhang, H. Mazandarani, L. H. Boyd,  
A. sabb,J. Sabalski,G. Stack,G. Welmaker,J. E. Barrett, J. Dun-

lop, Brain Res. 2006, 1073–1074, 240–251. 
 DOI:10.1016/j.brainres.2005.12.052
  8.  W. J. Hehre: Practical Strategies for Electronic Structure Cal-

culations, Wave functions, Irvine, California,USA, 1995.
  9.  I. H. Nazlı, D. B. Celepci, G. Yakali, D. Topkaya, M. Aygün, S. 

Alp, Acta Chim. Slov. 2018, 65, 86–96. 
 DOI:10.17344/acsi.2017.3613
10.  F. Odame, Acta Chim. Slov. 2018, 65, 328–332. 
 DOI:10.17344/acsi.2017.4001
11.  S. Belaidi, R. Mazri, H. Belaidi, T. Lanez, D. Bouzidi, Asian J. 

Chem. 2015, 25, 9241–9245. 
 DOI:10.14233/ajchem.2013.15199
12.  Z. Haddadi, H. Meghezzi, A. Amar,A. Boucekkine, J. Theor. 

Comput. Chem. 2019, 31, 595–601. 
 DOI:10.1142/S0219633619500019
13.  A. K. Sachan, S. K. Pathak, S. Chand, R. Srivastava, O. Prasad, 

S. Belaidi, L. Sinha, Spectrochim. Acta A Mol. Biomol. Spec-
trosc. 2014, 132,568–581.   DOI:10.1016/j.saa.2014.05.011

14.  S. Belaidi, Z. Almi, D. Bouzidi, J. Comput. Theor. Nanosci. 
2014,11, 2481–2488.   DOI:10.1166/jctn.2014.3665

15.  C. M. Chang, H. L. Tseng, A. F. Jalbout, A. de Leon, J. Comput. 
Theor. Nanosci.2013, 10, 527–533.   

 DOI:10.1166/jctn.2013.2730
16.  T. L. Jensen, J. Moxnes, E. Unneberg, J. Comput. Theor. Nanos-

ci. 2013, 10, 464–469.   DOI:10.1166/jctn.2013.2720
17.  M. Ibrahim, H. Elhaes, Rev. Theor.Sci. 2013, 1, 368–376. 
 DOI:10.1166/rits.2013.1012 
18.  E. C. Anota, H. H. Cocoletzi, M. Castro, J. Comput. Theor. 

Nanosci. 2013, 10,2542–2546.   DOI:10.1166/jctn.2013.3244
19.  F. Bazooyar, M. Taherzadeh, C. Niklasson, K. Bolton, J. Com-

put. Theor. Nanosci. 2013, 10, 2639–2646. 
 DOI:10.1166/jctn.2013.3263
20.  E. R. Davidson : Quantum Theory of Matter,Chem.Rev., guest 

editor, department of chemistry, Indiana university,India, 
1991,91, 649.   DOI:10.1021/cr00005a600

21.  S. Belaidi, H. Belaidi, D. Bouzidi, J. Comput. Theor. Nanosci. 
2015, 12,1737–1745.   DOI:10.1166/jctn.2015.3952

22.  B. Souyei, A. Hadj Seyd, F. Zaiz,A. Rebiai, Acta Chim. Slov. 
2019, 66, 315–325.   DOI:10.17344/acsi.2018.4793

23.  R. A. Gupta,A. K. Gupta, S. G. Kaskhedikar, Acta Chim. Slov. 
2009, 56, 977–984.

24.  E. Zerroug,S. Belaidi,I. Benbrahim,S. Leena, J. King Saud 
Univ. Sci. 2019, 31, 595–601.

 DOI:10.1016/j.jksus.2018.03.024
25.  F. Soualmia, S. Belaidi, N. Tchouar, T. Lanez, J. Fundam. Appl. 

Sci. 2020, 12, 392–415.   DOI: 10.4314/jfas.v12i1S.28.
26.  Y. C. Martin: Quantitative Drug Design, Marcel Dekker, New 

York, USA,1978. 
27.  I. Almi, S. Belaidi, E. Zerroug, M. Alloui, R. G. Ben Said, R. 

Linguerri, M. Hochlaf, J. Mol. Struct. 2020, 1211,128015.
 DOI:10.1016/j.molstruc.2020.128015
28.  C. A. Lipinski, V. Lombardo, B. W. Dominy, P. J. Feeney, Adv. 

Drug Deliv. Rev. 2001, 46, 3–26.
 DOI:10.1016/S0169-409X(00)00129-0
29.  E. L. Pankratov, E. A. Bulaeva, Rev. Theor. Sci. 2013, 1, 58–82. 
 DOI:10.1166/rits.2013.1004



894 Acta Chim. Slov. 2021, 68, 882–895

Soualmia et al.:   QSAR Studies and Structure Property/Activity   ...

30.  Q. Zhao, Rev. Theor. Sci. 2013, 1, 83–101. 
 DOI:10.1166/rits.2013.1005
31.  A. Khrennikov, Rev. Theor. Sci. 2013, 1, 34–57. 
 DOI:10.1166/rits.2013.1003
32.  V. Paitya, K. P. Ghatak, Rev. Theor. Sci. 2013, 1,165–305.
 DOI:10.1166/rits.2013.1008
33.  D. Fiscaletti, Rev. Theor. Sci. 2013,1, 103–144. 
 DOI:10.1166/rits.2013.1006
34.  D. M. Segall, J. Curr. Pharm. Des. 2012, 18,1292–1310. 
 DOI:10.2174/138161212799436430
35.  R. Darnag, B. Minaoui, M. Fakir, Arab. J. Chem. 2017, 10,600–

608.   DOI:10.1016/j.arabjc.2012.10.021
36.  P. Xuan, Y. Zhang, T. J. Tzeng, X. F. Wan, F. Luo, Glycobiology, 

2012, 22, 554–560.   DOI:10.1093/glycob/cwr163
37.  S. Kothiwale, C. Borza, A. Pozzi, J. Meiler, Molecules. 2017, 

22, 1576–1586.   DOI:10.3390/molecules22091576
38.  Z. Hajimahdi, A. Ranjbar, A. A. Suratgar, A. Zarghi, Iran. J. 

Pharm. Res. 2014, 14, 69–74.
39.   M. Ghamri, D. Harkati, S. Belaidi, S. Boudergua, R. Ben Said, 

R. Linguerri, G. Chambaud, M. Hochlaf, Spectrochim. Acta A 
Mol. Biomol. Spectrosc. 2020, 242, 118724.

 DOI:10.1016/j.saa.2020.118724
40.  S. Boudergua, M. Alloui, S. Belaidi, M. Mogren Al Mogren,U. 

A. Abd Ellatif Ibrahim, M. Hochlaf, J. Mol. Struct. 2019, 1189, 
307–314.   DOI:10.1016/j.molstruc.2019.04.004

41.  E. Pourbasheer, S. Vahdani, D. Malekzadeh, R. Aalizadeh, A. 
Ebadi, Iran. J. Pharm. Res.2017, 16, 966–980.

42.  HyperChem (Molecular Modeling System) Hypercube, Inc., 
1115 NW, 4th Street, Gainesville, FL 32601, USA (2008).

43.  Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. 
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Bar-
one, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, 
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, 
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, 
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, Y. Kitao, H. 
Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Oglia-
ro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. 
Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Ragha-
vachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. 
Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, 
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-
mann, O. Yazyev, A. J. Austin, G. A. Cammi R., Pomelli C., 
Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. 
G., Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. 
Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, 
D. J. Fox, Gaussian Inc., Wallingford, CT(2010).

44.  MarvinSketch15.8.31, Chemaxon (http://www.chemaxon.
com) (2015).

45.  Database,(http://www.molinspiration.com).
46.  JMP 8.0.2, SAS Institute Inc., (2009).
47.  M. Kanno, Y. Ito, N. Shimakura, S. Koseki, H. Kono, Y. Fuji-

mura, J. Phys. Chem.- Chem.Phys. 2015, 17, 2012–2024.
 DOI:10.1039/C4CP04807E
48.  P. Govindasamy, S. Gunasekaran, J. Mol. Struct. 2015, 1081, 

96–109.   DOI:10.1016/j.molstruc.2014.10.011
49.  J. S. Murray, K. Sen, Molecular Electrostatic Potentials, 1st 

Edition, Concepts and Applications, Elsevier, Amsterdam, 
Holland, 1996.

50.  I. Alkorta, J. J. Perez, Int. J. Quantum Chem. 1996, 57, 123–135.
  DOI:10.1002/(SICI)1097-461X(1996)57:1<123::AID-QUA 

14>3.0.CO;2-9
51.  E. Scrocco, J. Tomasi, Adv. Quantum Chem. 1978, 11, 115–

193.  DOI:10.1016/S0065-3276(08)60236-1
52.  F. J. Luque, M. Orozco, P. K. Bhadane, S. R. J. Gadre, J. Phys. 

Chem. 1993, 97, 9380–9384.   DOI:10.1021/j100139a021
53.  J. Sponer, P. Hobza, J. Quantum Chem.1996, 57, 959–970.
  DOI:10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA 

16>3.0.CO;2-S
54.  J. M. Seminario, Recent Developments and Applications of 

Modern Density Functional Theory, Elsevier, Amsterdam, 
Holland, 1996.   DOI:10.1016/S1380-7323(96)80082-3

55.  I. Fleming: Frontier orbitals and organic chemical reactions, 
Wiley, New York, USA,1976.

56.  G. L. Miessler, D. A. Tarr: Inorganic Chemistry, 2nd edition, 
Prentice-Hall Upper Saddle River, New Jersey, USA, 1999.

57.  Y. B. Zhang, X. L. Wang, W. Liu, Y. S. Yang, J. F. Tang, H. L. 
Zhu, Bioorg. Med. Chem. 2012, 20, 6356–6365. DOI:10.1016/j.
bmc.2012.08.059 

58.  C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, J. Adv. 
Drug Deliv. Rev. 2 012, 64, 4–17. 

 DOI:10.1016/j.addr.2012.09.019
59.  D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. 

Ward, K. D. Kopple, J. Med. Chem.2002, 45, 2615–2623.
 DOI:10.1021/jm020017n
60.  M. Aurélien, Ph.D. Dissertation, Orleans University, France, 

2006.
61.  F. Soualmia, S. Belaidi, H. Belaidi, N. Tchouar, Z. Almi, J. Bi-

onanosci. 2017, 11, 584–591. 
 DOI:10.1166/jbns.2017.1476
62.  B. Jhanwarb, V. Sharmaa, R. K. Singla, B. Shrivastava, Phar-

macologyonline. 2011, 1, 306–344.
63.  R. Darnag, B. Minaoui, M. Fakir, Arab. J. Chem. 2017, 10,600–

608.   DOI:10.1016/j.arabjc.2012.10.021
64.  I. Hammoudan, S. Matchi, M. Bakhouch, S. Belaidi,Chem-

istry, 2021, 3(1):391–401.   DOI:10.3390/chemistry3010029
65.  R. Dahmani, M. Manachou, S. Belaidi, S. Chtita, S. Boughdiri, 

New J. Chem. 2021, 45(3), 1253–1262.
 DOI:10.1039/D0NJ05298A
66.  K. Roy, S. Kar, R. N. Das, A Primer on QSAR/QSPR Mode-

ling: Fundamental Concepts, Springer, New York, USA, 2015.
 67. S . Erić, M. Kalinić, A. Popović, M. Zloh, I. Kuzmanovski, Int. 

J. Pharm. 2012, 437, 232–241. 
 DOI:10.1016/j.ijpharm.2012.08.022
68.  R. Lowe, H. Y. Mussa, J. B. Mitchell, R. C. Glen, J. Chem. Inf. 

Model. 2011, 51,1539–1544.   DOI:10.1021/ci200128w
69.  E. Zerroug,S. Belaidi, S. Chtita, J. Chin. Chem. Soc. 2021, 

68(2), 197–384.   DOI:10.1002/jccs.202000457
70.  F. Z. Fadel, N. Tchouar, S. Belaidi, F. Soualmia, O. Oukil, and 

K. Ouadah, J. Fundam. Appl. Sci., 2021, 13(2), 942–964.
 DOI:10.43 14/jfas.v13i2.17. 
71.  C. Feng, S. Vijaykumar, Clin. Exp. Pharmacol. 2012, 2, 2–3.
 DOI:10.4172/2161-1459.1000e113



895Acta Chim. Slov. 2021, 68, 882–895

Soualmia et al.:   QSAR Studies and Structure Property/Activity   ...

72.  B. D. Ripley, Pattern Recognition and Neural Networks, Cam-
bridge University Press, NY United States, USA, 1996.

73.  P. Ghosh, A. Mandal, Green Chem. Lett. Rev., 2012, 5(2), 
127–134.   DOI:10.1080/17518253.2011.585182

Povzetek
Preučevali smo elektronske strukture, vpliv substitucije, povezavo med strukturno fizikalno-kemijskimi lastnostmi ter 
aktivnostjo in učinkovinske podobnosti (ang. drug-likeness) pirazinskih derivatov s pomočjo ab initio (HF, MP2) in 
B3LYP/DFT (teorijo gostotnega fukcionala). V članku smo izračunali vrednosti naboja NBO (naravnih veznih orbital), 
dolžino vezi, dipolne momente, elektronsko afiniteto, tvorbeno entalpijo in QSAR lastnosti. Študij QSAR smo izvedli 
s pomočjo statističnih modelov multiple linearne regresije in nevronskih mrež (ANN). Rezultati so pokazali visoko 
korelacijo med eksperimentalnimi in napovedanimi vrednostmi, s čimer smo preverili in pokazali ustreznost QSAR 
modelov. Statistična analiza je pokazala, da je ANN z arhitekturo 9-4-1 bolj ustrezna kot MLR. Pregled različnih molekul 
na osnovi molekularne podobnosti in uporabe QSAR domen je pokazal več kandidatov z izboljšanim antiproliferativnim 
delovanjem. 
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