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Abstract: Digital technologies have recently become more advanced, allowing for the development
of social networking sites and applications. Despite these advancements, phone calls and text
messages still make up the largest proportion of mobile data usage. It is possible to study human
communication behaviors and mobility patterns using the useful information that mobile phone data
provide. Specifically, the digital traces left by the large number of mobile devices provide important
information that facilitates a deeper understanding of human behavior and mobility configurations
for researchers in various fields, such as criminology, urban sensing, transportation planning, and
healthcare. Mobile phone data record significant spatiotemporal (i.e., geospatial and time-related data)
and communication (i.e., call) information. These can be used to achieve different research objectives
and form the basis of various practical applications, including human mobility models based on
spatiotemporal interactions, real-time identification of criminal activities, inference of friendship
interactions, and density distribution estimation. The present research primarily reviews studies
that have employed mobile phone data to investigate, assess, and predict human communication
and mobility patterns in the context of crime prevention. These investigations have sought, for
example, to detect suspicious activities, identify criminal networks, and predict crime, as well as
understand human communication and mobility patterns in urban sensing applications. To achieve
this, a systematic literature review was conducted on crime research studies that were published
between 2014 and 2022 and listed in eight electronic databases. In this review, we evaluated the most
advanced methods and techniques used in recent criminology applications based on mobile phone
data and the benefits of using this information to predict crime and detect suspected criminals. The
results of this literature review contribute to improving the existing understanding of where and
how populations live and socialize and how to classify individuals based on their mobility patterns.
The results show extraordinary growth in studies that utilized mobile phone data to study human
mobility and movement patterns compared to studies that used the data to infer communication
behaviors. This observation can be attributed to privacy concerns related to acquiring call detail
records (CDRs). Additionally, most of the studies used census and survey data for data validation.
The results show that social network analysis tools and techniques have been widely employed to
detect criminal networks and urban communities. In addition, correlation analysis has been used to
investigate spatial–temporal patterns of crime, and ambient population measures have a significant
impact on crime rates.

Keywords: mobile phone data; call detail records (CDRs); urban human mobility patterns;
human communication behavior; urban dynamics; criminal networks; social networks; urban crime
prediction; urban sensing; systematic literature review
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1. Introduction

Even though digital technologies have become more advanced in recent times and
allowed for the development of social networking sites, computer software applications,
and emails, research findings have shown that phone calls and text messages still represent
the greatest proportions of mobile data usage. Statista, a German company specializing in
market and consumer data, estimated that the global number of mobile subscriptions would
exceed 8 billion as of 2020. Whenever mobile phone users initiate an activity (e.g., calling,
texting, and connecting to the Internet), this action is recorded by the mobile network
operator. The information saved includes such details as each call’s duration, timestamp,
and location at which the interaction started. When considering the aforementioned
points along with the mobile subscription figure, it could be concluded that tremendous
amounts of mobile phone data are generated every day. Maintaining such rich data,
which comprise the details of individuals’ behaviors and activities, is advantageous in the
sense that human communication behavior and mobility patterns can be studied at a low
cost. The accessibility of this data has been reflected in various studies and disciplines
over the years in terms of the ubiquitous use of mobile phone data [1]. For instance,
publications have focused on urban sensing, safety, health, emergencies, transportation
planning, and criminology.

Mobile phone data are log files collected from the users by mobile network operators
during the service provision process. They contain all of the interactions that the user has
initiated with the network, whether actively (e.g., when making a phone call, sending a
text message, or accessing the internet) or passively (e.g., when switching the phone on
or off, receiving a signal from the mobile network, or changing the type of connection).
They also contain the details of each of these interactions, such as the phone numbers of the
caller and receiver, the timestamp, and the duration and location of the interaction (i.e., the
cell tower ID). Every telecommunications service provider (TSP) records users’ interactions
with the cellular network whenever they engage in an activity on their mobile devices; here,
the data are recorded in the service provider’s database.

Mobile phone data have proven to be the most prominent form of data, helping us
understand the microscopic details of social networks, human mobility, and human be-
havioral patterns [1]. For instance, they have enabled us to understand how members of
a target population (i.e., users) change their communication (e.g., calling) behavior and
mobility patterns following an emergency event, such as a terrorist attack [2]. Unsurpris-
ingly, mobile phone data have become a topic of discussion in various studies and the
centerpiece of many real-world applications [3,4]. In such contexts, they are used to infer
social ties and interactions among individuals [5], estimate daily population dynamics [6],
map tourist travel behaviors [7,8], identify suspects [9], detect criminal networks based on
communication behaviors [10,11], detect criminals based on mobility patterns [12], predict
crimes and criminal behaviors [13,14], understand human mobility patterns in urban envi-
ronments [15], and estimate human mobility and behavior under emergency events, such
as natural disasters [16], migration streams [17], reprisals of organized criminals or militia,
and the spread of infectious diseases.

When considering the applications described above, it becomes apparent that mobile
phone data are among the most reliable sources of information that could help sense and
record human activities. Moreover, they have a great potential for being used to reveal
many aspects of human mobility patterns and communication behaviors. Therefore, using
these data can help us to accurately and effectively predict and understand individual
friendship relationships, criminal relationships, social ties, and interactions based on calling
behaviors, as well as humans’ way of living, which has always been inextricably linked [18]
with movement patterns.

In the last decade, mobile phone data have been used as sensors for detecting human
mobility and communication behaviors. Due to the wide use of smartphones and the fast
growth of telecommunication networks, a large quantity of data on how people move and
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behave across space and time has been recorded. The digital traces left by smartphones
provide valuable, real-time information about various human activities.

For example, mobile phone data have been used to indicate the presence or absence of
humans during certain times and at specific locations [19]. Thus, in criminal investigations,
location-based mobile phone data could be used to indicate the presence of suspects in an
area at a certain time where a crime has taken place, to monitor the spatial and temporal
fluctuations of a population’s activities in a given area, to estimate the mobility flow of
visitors, and to infer land use (i.e., commercial, industrial, residential, and educational)
based on the total call volume or number of calls managed by a given cell tower over a
given period of time [4,20]. Because these measures and assessments are extracted from
mobile data, the data have become a topic of academic discussion and the centerpiece of
many real-world applications.

For example, Refs. [21–23] depicted human mobility patterns from mobile phone
data by extracting spatiotemporal features in the form of timestamps and cell tower IDs.
These features were used to estimate or count the number of times a mobile phone device
communicated with a given cell tower. These parameters and measurements aided in the
investigation of the relationship between human mobility patterns and crime patterns.

Similarly, spatiotemporal features, such as cell tower IDs, timestamps, and call logs,
have been extracted to depict other aspects of human activities, such as identifying resi-
dential and working activity to evaluate adherence to NPI policies, such as stay-at-home
regulations or recommendations [24–26]; to estimate migration flow [18]; and to calculate
the number of trips made between an origin (e.g., home) and destination (workplace) [27].
These measurements were calculated based on the definition of home and work locations,
where home is indicated as the most frequently used or contacted cell tower during night-
time hours (7 p.m. to 7 a.m.) and work is indicated by the most frequently used cell tower
during the day.

Another example of a practical application of human activity characteristics that can
be extracted from mobile phone data is the detection of criminal social interactions. For
example, social networks can be created among individuals making or receiving calls or
messages who are classified as actors (nodes) within the network; each link between actors
is represented by the type of communication (call or message). Some studies [28,29] have
diagrammed criminal networks by analyzing criminal communication (calling) behaviors,
such as call frequency, maximum and minimum numbers of incoming or outgoing calls
and messages, and temporal changes in mobile phone call patterns. This process, wherein
specific social groups are identified along with their internal structures and communities,
is referred to as social network analysis (SNA). SNA can be harnessed to determine the
relationships and interactions between criminals by reconstructing the communication rela-
tionships that are obtained from mobile phone data as a network, where a node represents
a criminal and an edge represents a communication (i.e., a phone call or a message). This
method of analysis has been widely adopted in mobile phone data studies since it can help
criminal investigators determine who belongs to a criminal organization, who heads it, and
the relationships that exist within it. Using this approach in the study of criminal networks
allows criminal investigators and experts to understand a network’s hierarchy, its key
leader, and subordinate leaders, and label the various levels of the criminal organization.

Here, we review existing studies that utilize mobile phone data with a particular focus
on detecting and predicting criminal behaviors from people- and place-centric perspec-
tives [13]. This includes studies that employ data on the prediction of crimes and criminal
activities, the identification and detection of suspects and criminals, and other studies
related to criminological research, such as exploring the relationship between human mo-
bility patterns and crime patterns. We also shed light on the methods that employ mobile
phone data to understand the dynamics of human behavior and mobility in urban sensing.

Although studies [1,3] made impressive contributions by exploring the applications
of mobile phone data in social networking and urban sensing, knowledge about the
use of mobile phone data in criminology research is lacking. Thus, a systematic review
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is needed to fill this gap by investigating the current state of mobile phone data use
and applications in criminology research. Such an investigation would help to offer an
overview of current approaches used to fight crime, prevent criminal activities, and detect
criminal organizations. In addition, investigating these approaches can generate significant
information about the tools and methods previously used to analyze mobile phone data, as
well as provide a broader understanding of people’s actions and activities in the areas in
which they live and socialize and categorize individuals according to their mobility patterns
so that the authorities can determine population flows in these zones before and during
crimes. Thus, this study was motivated by a desire to enable researchers to create effective
methods for extracting useful information from mobile phone data. These well-designed
methodologies will enhance the process of identifying suspects and predicting crimes and
provide a more complete picture of the dynamics of criminal behaviors from a people- and
place-centric perspective.

Thus, this review aims to examine and explore the applications derived from human
behavioral patterns extracted from mobile phone data in criminology research and evaluate
the characteristics of multiple analysis perspectives (mobility patterns, communication
behaviors, and social interactions) that have been derived from mobile phone data to
depict aspects of human behavior and activity. The review also focuses on analyzing and
explaining the choice of human features and characteristics, such as spatiotemporal and call
features, that have been extracted to model human mobility and communication patterns
in the context of criminology.

1.1. Survey Analysis

Limited types of reviews and survey articles related to mobile phone data have sum-
marized applications in the mobile phone data domain. Notably, Refs. [1,3,4] presented
comprehensive surveys about different applications of mobile phone data. Blondel et al. [1]
reviewed social network applications that can be derived from mobile phone data in
various disciplines and domains, such as social relationships, urban sensing, epidemics,
public transportation, data protection, and criminology, with a major focus on studies that
construct social networks according to communications behavior (calling information).
Calabrese et al. [3] presented a comprehensive review of mobile phone data applications
in the urban sensing domain by discussing the different types of mobile phone datasets
and processing techniques that have been created in this domain. Okmi et al. [4] pre-
sented surveys about different methods, characteristics, and features used for assessing
and predicting human behaviors in various domains such as urban sensing, criminology,
transportation, and health. Bhattacharya and Kaski [30] reviewed the human social net-
work application, one of the social network applications in the mobile phone data domain.
Ghahramani et al. [31] reviewed another survey paper about mobile phone data in the
urban sensing domain. The authors presented a survey of the techniques and methods
that have been used with mobile phone data in urban sensing applications, such as urban
planning and public safety, by discussing the strengths and weaknesses of various ap-
proaches and comparing their advantages and disadvantages with those of other mobility
datasets that capture people’s mobility patterns, including GPS, handover records, and
location data.

Nevertheless, multiple analytical perspectives on mobile phone data that consider
human communication behavior, social networks, and mobility patterns at various levels of
mobile phone data (i.e., individual, aggregated, and cell tower data) have yet to be fully in-
vestigated. Studies of urban sensing domains are typically based on the use of mobile phone
data that have been aggregated at the cell tower level, which provides only spatiotemporal
information. Therefore, studies focusing on urban sensing domains have mostly discussed
the analytical perspective of human mobility analysis patterns. Although [1] sheds light on
various mobile phone data applications derived from different types of mobile phone data
(i.e., individual, aggregated, and cell tower data), crime applications in mobile phone data
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have not been fully reviewed or discussed. Furthermore, new crime applications in mobile
phone data have not been explored or investigated since that review.

This study differs from the previous survey framework in the sense that it examines
and investigates various processing techniques and analytical perspectives that have been
built based on mobile phone data at various levels to capture many aspects of human
behaviors. These analytical perspectives, such as human mobility patterns, communication
behaviors, social interactions, and mobile phone usage activities, have been built on multi-
ple spatiotemporal and call characteristics extracted from mobile phone data. Even though
Blondel et al. [1] aimed to review social network applications built on analyzing human
social interactions that can be derived from mobile phone data and Calabrese et al. [3]
presented a survey of urban sensing applications that are built on analyzing mobility pat-
terns, knowledge about the use of mobile phone data in crime applications is still lacking.
Thus, this study is the first to review the research focused on human mobility patterns,
social interactions, and communication behaviors in crime applications and urban sensing
applications. Figure 1 illustrates the multiple analytical perspectives and applications that
this study has investigated and evaluated.
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The primary contribution of this systematic literature review (SLR) is to provide a
comprehensive overview of the applications of mobile phone data in crime-control research.
As a comprehensive SLR on this topic is lacking, the present study represents the first
attempt to carry out a critical analysis of this topic. To achieve this goal, a thorough search
of eight top scientific databases (i.e., the Association for Computing Machinery Digital
Library, Institute of Electrical and Electronics Engineers Xplore, Multidisciplinary Digital
Publishing Institute, Sage, Science Direct, Scopus, SpringerLink, and Web of Science) was
performed, and 107 primary studies that met the study’s scope and criteria were retrieved.
This study involved four steps. The first was to extensively and systematically review the
current state of mobile phone data use in crime applications, especially in those involving
the identification and detection of criminals and the prediction of crimes. The second step
was to investigate empirical research using mobile phone data to predict human behavior
and mobility patterns in urban sensing applications. The third step involved providing
a taxonomy for the final dataset of articles based on the scientific approach used and the
research questions answered. The last step was to point out the potential challenges faced
by this body of literature’s state-of-the-art techniques and to provide potential directions
for future research.
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1.2. Mobile Phone Data Types (Levels)

Generally, the mobile phone data record the users’ interactions on a mobile network
and include details such as the IDs of the caller and the callee, the duration and timestamp
of the interaction, and the location of the parties involved in the interaction (as determined
by the cell tower ID). However, the data can be further divided into two types: a type
that records the details of an interaction between a mobile device and the network, known
as event-driven mobile phone data, and another type based on the cell tower location
updates of mobile phones, known as network-driven mobile phone data (see Okmi et al. [4],
Section 3, for more details about mobile phone data types).

The structure of the paper is organized as follows: In Section 2, we present the research
methodology. In Section 3, we present the results of the SLR. In Section 4, the study
taxonomy is presented. Section 5 addresses the research questions and discusses recent
advances in detection methods. Section 6 discusses privacy concerns, investment behavior,
and challenges. Section 7 defines the current problem and proposes a system model.
Section 8 offers recommendations for future research and concludes the review.

2. Methodology

This section outlines the research methodology used for the study. A systematic
literature review was conducted by adopting Kitchenham’s guidelines [32] for search
processes, inclusion and exclusion criteria, and data extraction. This study follows the
reporting guidelines of “PRISMA” (“Preferred Reporting Items for Systematic Reviews”), which
consist of a 27-item checklist and a 4-phase flow diagram for the selection of papers. The
PRISMA statement by Liberati et al. [33] was used for the study selection process. This
study also performed a bibliometric analysis along with the SLR to provide more thorough
insights into the topic. Figure 2 shows the roadmap of the SLR, which clarified the planning
of the review regarding the following points: the formulation of research questions, the
study selection process, eligibility criteria (inclusion and exclusion criteria), bibliometrics
and data extraction and synthesis strategies, study taxonomies, research questions, and
future work. The systematic literature review road map begins with defining the main
contributions and objectives of the review to allow the formulation of the research questions
needed to achieve the study objectives. To answer these questions, a systematic review and
bibliometric analysis were conducted to provide a thorough analysis of the topic. In the
next stage, the studies were summarized, and a taxonomy based on the scientific approach
was produced. This taxonomy helped to answer the research questions while establishing
the current state of the research trends and applications of mobile phone data. In the final
step of the road map, study limitations and future work were discussed.

2.1. Research Questions, Explanations, and Motivations

The comprehensive, systematic literature review presented in this research will focus
on studies that have explored the use of mobile phone data to detect suspicious movements,
crimes, and suspects; to predict human behaviors; and to understand human communica-
tion behavior. Two primary research questions have been developed for the present work,
which are designed to determine the current status of mobile phone data and to investigate
the different characteristics of studies that have employed mobile phone data in a variety of
fields. As far as we are aware, there are no previous studies that have reviewed advancements
in the field of mobile phone data using the specific inclusion criteria of the present research.
This is a significant reason for which we wish to carry out this review. Below, we formulate
two research questions with their explanations, as presented in Table 1 of this study.

1. RQ1: What are the current state-of-the-art methods and techniques regarding the use
of mobile phone data in crime applications, especially in identifying suspects and
predicting crimes?

2. RQ2: How can identifying empirical mobile phone data studies to predict human
behavior and mobility patterns contribute to a clearer understanding of the dynamics
of criminal behavior contexts from a people- and place-centric perspective?
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Table 1. Research questions, explanations, and motivations.

Research Questions Explanation

RQ1

Several studies have employed mobile phone data to predict crimes and criminal behaviors
and to identify criminals and suspects. The present review offers a new and deeper insight
into the advanced methods used nowadays in crime applications based on mobile phone

data and the benefits of using such data to predict crimes and identify suspects.

RQ2

Mobile phone data have been used in a variety of studies to understand human behaviors
and mobility patterns. More precisely, the spatiotemporal information provided by mobile
phone data can provide clearer insights into human movements in various applications and
academic fields. For instance, mobile phone data has been used to explore human mobility

patterns and detect certain types of behaviors in cities and urban zones where criminal
activities are much more likely to occur. Mobile phone data have thus been used in different

crime and urban sensing applications to serve different purposes, such as defining the
actual populations at risk, investigating the relationship between human dynamics and

crimes, and inferring land use types based on human dynamics and interactions. For all the
above reasons, the defined research question stimulated this investigation of mobile phone

data usage in urban sensing, and the results should enable researchers to create more
effective methods for extracting useful information from mobile phone data.
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2.2. Study Selection

The flow diagram for selecting candidate articles consists of the following phases:
identification, screening, eligibility, and inclusion. Figure 3 shows the PRISMA flow
diagram for the study selection processes.

Figure 3. The four-phase flow diagram for the selection of papers.

The first phase comprised the process of identifying the most relevant research articles
from reliable database sources by running the following search query (“call detailed records”
OR “call detail records” OR “call data records” OR “mobile phone datasets” OR “mobile
phone data” OR “mobile phone networks” OR “mobile phone network data” OR “mobile
network data” OR “mobile network activity” OR “mobile communication data” OR “mobile
phone call detail records”) under the “Search Within Title”, “Abstract”, and/or “Keywords”
filters. The search query parameters were adjusted appropriately to account for the default
configurations of the databases. A notable case is the AND operator, which is implemented
by default between the Search Within terms. This makes it difficult to combine two
search terms by using the OR operator against the Title, Abstract, and Keywords filters.
For instance, the searches within the SAGE and MDPI databases were run against the
Abstract filter because this yielded more results (i.e., publications) as compared to the
Title and Keywords filters. Accordingly, the results obtained from the Abstract filter were
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ensured to be inclusive of the results produced by both the Title and Keywords filters. To
ensure a comprehensive search of articles, the search query was run on the following eight
database sources: ACM Digital Library, IEEE Xplore, MDPI, SAGE, Science Direct, Scopus,
SpringerLink, and Web of Science. These databases offer highly advanced search options
that allow the researchers to fine-tune their queries, in addition to their ability to produce
accurate citation data, remove duplicated results, and exclude certain materials such as
patents and gray literature. In contrast to the aforementioned databases, Google Scholar
(GS) was excluded from the present study due to its limited search functionality, inaccurate
reporting of metadata, and inability to remove duplicated results.

The performed search yielded a total of 3796 publications based on the given criteria.
The obtained data were imported into a Microsoft Excel spreadsheet and EndNote and
later ordered by relevance in preparation for the subsequent phases. Figure 4 illustrates a
flow chart for retrieving relevant studies through the search of databases.
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The parameters that were used to search the database sources in the identification
phase are presented in Table 2. These parameters facilitated the subsequent phases by
setting the content language to English and the publication time to the period from 2014
through 2022. This ensured that articles written in languages other than English or before
2014 were omitted from the search results. It is noteworthy that, for the ScienceDirect
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database, the search query was iterated twice since the database only allows up to 8
OR operators to be included at once. Accordingly, the search was first performed with
8 keywords, then again with the remaining keywords. Subsequently, the results from each
search iteration were merged together into one list.

Table 2. Set of parameters that were applied at the identification phase to filter each database.

Phases in the
Selection of

Papers
Database Number of

Returned Articles Timespan Content Type Search Within

Identification
Phase

Scopus (SCP) n = 753 2014–2022 Article, Review
Article

Title, Abstract, and
Keywords

Elsevier
ScienceDirect (SD) n = 183 2014–2022 Article, Review

Article
Title, Abstract, and

Keywords

Web of Science
(WoS) n = 588 2014–2022 Article, Review

article

Topic (Title,
Abstract, and

Keywords)

IEEE Xplore (IEEE) n = 731 2014–2022 Article, Conference
paper

Metadata (Title,
Abstract, and

keywords)

SpringerLink (SL) n = 1371 2014–2022 Article,
Conference paper Abstract

Multidisciplinary
Digital Publishing
Institute (MDPI)

n = 62 2014–2022 Article, Review
Article Abstract

ACM Digital
Library (ACM) n = 83 2014–2022 Article Title, Abstract

Science And
Geography

Education (SAGE)
n = 25 2014–2022 Article Abstract

Total Papers identified in the identification phase (n = 3796)

The second phase was the screening phase, which incorporated the process of re-
moving duplicates from the obtained list of publications across all databases, followed
by a manual screening to exclude irrelevant articles based on their titles, abstracts, and
keywords. This step is crucial because many articles may fall under the given search query
but are published in irrelevant fields. This phase yielded a total of 2687 publications after
removing duplication and irrelevant articles.

The third phase was the eligibility phase, which involved reading the full text of
the articles selected from the previous phase. This phase assessed the articles against the
inclusion criteria to determine their eligibility (refer to Table 3). Therefore, the total number
of articles remaining after reading the full text is N = 107.

Finally, in the last phase, the articles chosen from the third phase were used to answer
the research questions of the present study. To avoid bias, all of the phases were reviewed
and performed by one author, and then a test–retest analysis was conducted by the second
author to assess reliability.
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Table 3. Eligibility criteria.

Inclusion Criteria (IC) Exclusion Criteria (EC)

Studies that present novel scientific contributions regarding the
use of mobile phone data in detecting and identifying suspects

and criminals.

Articles using mobile phone data in the context of smart
marketing; the transportation sector (such as transportation
planning, transport mode detection, and traffic prediction);

economic forecasting; and health sciences research.

Studies that incorporate mobile phone data to predict crimes,
perform spatial–temporal crime analysis, or have any other

bearing on criminological research.

Studies using mobile phone data to measure human mobility in
relation to the epidemiology of infectious diseases.

Studies that investigate the use of mobile phone data in home
and work location detection; mapping human population

density; classifying land use types; detecting social interaction
networks; and others.

Publications that are not written in the English language.

2.3. Data Extraction and Synthesis Strategy

This section is essential for any SLR to aid in designing the data extraction form
for the study results, and it is needed to help answer the research question. For this
purpose, an Excel spreadsheet was created to store essential data from the selected arti-
cles. The data extraction form includes four parameters. The following data points were
manually extracted:
DE1) The title of the article, the authors, the publishing journal, and other publication details.
DE2) Information related to mobile phone data types and their characteristics.
DE3) Information related to the mobile phone data domain and its applications; study area.
DE4) Information related to methods and techniques used in the mobile phone data domain.

The data synthesis was performed to accumulate and summarize the results of the
included primary studies as well as to extract quantitative and qualitative data from the
latter in forms that can be represented by tables, pie charts, bar and clustered bar charts, and
scatter charts. VOSviewer software was used to obtain a visual representation of the data.

3. Results

This section presents a summary of the results obtained from the study selection
process and includes details about the search results, the distribution of mobile phone data
types, and a visualization of the co-occurrence of keywords. The distribution of publication
type, publisher’s locations, most cited publications, distribution of analysis perspectives,
and publication years are also provided.

3.1. Search Results

A total of 3796 studies were initially identified from the eight databases in the identifi-
cation phase. In total, 2687 studies were subsequently excluded through the screening phase
based on the filtering of the titles, abstracts, and keywords, which resulted in greatly de-
creasing the number of papers and removing duplicate papers obtained across all databases.
Then, the results were further refined according to the eligibility criteria, and 2584 were
removed based on the exclusion criteria. Eventually, 107 studies were included as the final
set of selected articles in this review. Figure 3 depicts the four-phase flow diagram for the
selection of papers.

3.2. Publications Years

Figure 5 shows the publication years of selected studies as being between 2014 and
2022. It can be seen clearly that the research on mobile phone data has a steady indication
of publications.
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3.3. Publication Type

Figure 6 illustrates the distribution of publication types in mobile phone data. Out
of the 107 primary studies selected, we observed that 86 (80%) appeared in articles and 21
(20%) were published in conferences. These statistics demonstrate that articles are the most
active publication in the mobile phone data domain.
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3.4. Mobile Phone Data Levels

Figure 7 illustrates the distribution of all mobile phone data types: mobile phone data
aggregated at the cell tower level; mobile phone data at the individual level, known as
call detailed records (CDRs) data; and mobile phone data at the aggregate level, known as
aggregated CDRs data.
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The charts illustrate that mobile phone data aggregated at the cell tower level exceed
mobile phone data at the individual and aggregated levels. A total of 58 studies (53% of
the 107 primary studies) investigated mobile phone data aggregated at the cell tower level,
while 35 studies (32% of the primary studies) examined mobile phone data at the individual
and aggregated levels, usually called CDRs and aggregated CDRs, respectively. Almost 15%
of the studies combined multiple data types; 7 (6% of the 107 primary studies) were survey
papers in which the authors studied and reviewed all mobile phone data levels, while 10
(9% of the primary studies) utilized mobile phone data at the individual and cell tower
levels. These studies used mobile phone data at these levels to investigate individuals’
social networks based on the calling information and to examine human mobility patterns
based on the spatial and temporal characteristics. For the sake of simplicity and clarity,
during the process of collecting information about the specific types of mobile phone data
explored in the literature, we found that there was misunderstanding, confusion, and
misuse of the correct terms for each mobile phone data type. For example, most studies
refer to mobile phone data that are aggregated at the cell tower level as CDRs data, while
CDRs data actually refer to mobile phone data at the individual level. For that reason,
we devoted time to clarifying which terms were used for what types of data, finding that
researchers and academics have referred to the vast majority of mobile phone data types
as CDRs data. To solve this issue, we relied on three things. The first was the attributes
that were utilized or investigated by a given study, where each mobile phone data type has
different attributes. For example, mobile phone data aggregated at cell tower level have
the following attributes: timestamp, user ID, and cell tower ID with the corresponding
latitude and longitude coordinates. On the other hand, mobile phone data at the individual
level (CDRs data) have the following attributes: caller and callee IDs; caller’s connected cell
tower ID; callee’s connected cell tower ID; duration; and timestamp. Second, they showed
whether the authors illustrated how the data were collected and generated, and third, what
application was investigated by a given study; for example, mobile phone data aggregated
at the cell tower level can capture users’ spatiotemporal change patterns based on the
spatiotemporal information provided by this data type, which is thus mostly related to
mobile phone data applications concerning mobility patterns. This procedure was tedious
and time-consuming, but our efforts should help future researchers differentiate different
types of mobile phone data and consider these points in the future.
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3.5. Citation Count

Table 4 shows the top 13 most cited articles from the primary studies. However, the
citation count is a time-variant variable, meaning that it will likely change over time. For
the data collection process, the Science Citation Index, Social Science Citation Index, Web of
Science, and Scopus are well-known tools for performing bibliometric analyses. However,
the data used in this study were collected from Google Scholar, which provided higher
citation counts than the aforementioned tools due to its ranking algorithm being more
inclusive by including non-peer reviewed papers, working papers, and preprint papers.
The total citation count of the 10 most cited papers in this domain is 3588.

Table 4. Top 10 most cited articles and reviews.

Reference Domain/application Citation
Count Year

[6] Mapping human population density 786 2014

[1] Constructing social networks from mobile
phone data 574 2015

[34] Detecting cities’ hotspots 397 2014

[20] Classifying urban land uses 347 2014

[13] Predicting crime 325 2014

[3] Developing urban sensing applications
based on mobile phone data 306 2014

[35] Inferring home and work locations 292 2014

[36] Mapping society-wide interaction
networks of two European countries 268 2014

[10] Detecting criminal networks 181 2014

[21]
Investigating correlations between human

mobility patterns and crime rates (i.e.,
crime statistics)

112 2016

Studies such as [1,3,6,20] have been the most influential due to, for example,
Deville et al. [6] and Pei et al. [20] being the first to present the ideas described in their re-
search. Pei et al. [20] solved the problem of inferring urban land use from mobile phone data
by improving the existing classification of different urban land uses, while Deville et al. [6]
was one of the first to use mobile phone data to map human population distributions
instead of employing traditional datasets, such as censuses and surveys. A criminology
study by [13] additionally employed mobile phone data to predict crime hotspots. Notably,
Refs. [1,3] provided thorough overviews (research surveys) of how mobile phone data are
used in different applications and domains. This table can be helpful for researchers and
scholars as an index or reference for not only the most highly cited papers, but also for
pinpointing papers on mobile phone data that they can use as starting points for further
research in this domain.

3.6. Place of Publication

Figure 8 shows the number of selected studies grouped by place of publisher (journal
publishing companies). It can be seen that the selected primary studies are chosen from a
variety of different academic publishers. However, as the bar graph demonstrates, Elsevier,
Springer, and IEEE have the highest share among 19 academic publishers with 56% (60
out of 107), which is not surprising. As a matter of fact, Scopus, which belongs to the
same publisher as Elsevier, IEEE, and Springer, returned the highest share during the
identification phase (the initial search result) with 75.2% (2855 papers out of 3796). We also
observed that famous world-class publishers such as PNAS and the Royal Society, which
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are among the most prestigious and highly cited multidisciplinary research journals, are
among the publishers in the mobile phone data domain.
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3.7. Mobile Phone Data Methods and Problems

Here, we detail mobile phone data problems and provide a comparison of different
methods used to solve these problems (see Figure 9). Generally, mobile phone data prob-
lems can be divided into five main groups: classification, clustering, detection, estimation,
and privacy problems. The relevant studies have mostly been related to clustering prob-
lems. Thus, many mobile phone data studies have been conducted to solve problems with
clustering approaches in numerous applications. For example, in these references [20,37,38],
inferring land use types was identified as a clustering problem. In References [39–42], the
authors sought to identify users’ habits. In Reference [19], the authors clustered users based
on their weekly patterns.

Social network analysis techniques and metrics have been widely used to solve prob-
lems related to the community detection problem (CDP), community structure, and so-
cial network visualization. For example, detecting criminal networks has been seen as
a CDP. In References [28,29,43,44], the authors applied different community detection
algorithms to detect criminal networks. Novovic et al. [45] applied community detec-
tion techniques to infer a correlation between human dynamics and land use. Moreover,
Shi et al. [46] applied a community detection algorithm to detect the spatial interactions of
urban social communities.

Classification problems have been examined in studies aiming to identify suspects.
In References [9,47], classification algorithms were used to differentiate suspects from
non-suspects. Another example of a classification problem is predicting crime hotspots.
Bogomolov et al. [13] applied classification algorithms to classify crime hotspots into two
classes, high or low crime levels. Moreover, Ref. [48] used algorithms to classify land uses.
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Furthermore, k-anonymity techniques and approaches have been suggested as solu-
tions to solve problems related to privacy risks and data protection, such as in [49,50]. For
estimation problems and correlation analysis problems, statistical measurements, such as
correlation coefficients and regression models, have been used; for example, Pearson’s cor-
relation coefficients were used in [6,51], whereas Spearman’s correlation was used in [21,52].
Finally, areal weighting, dasymetric mapping, and Voronoi tessellation techniques have
been used to solve problems related to spatial mapping and population mapping, such as
in [53–55].

3.8. Analysis and Perspectives

The percentage of the selected articles studying human mobility patterns is higher than
that of studies looking at communication behaviors. Figure 10 highlights this extraordinary
growth in the number of studies that utilize mobile phone data to investigate human
mobility and movement patterns, with these representing 66.4% (71 out of 107) of all studies,
as compared to the mere 18.6% (20 out of 107) that used such data to study communication
behaviors, and studies that investigate both human behaviors represented a further 15%
(16 out of 107). This observation may be attributable to the fact that mobile phone data
aggregated at the cell tower level were the most commonly investigated, as shown in
Figure 6, which shows the distribution of mobile phone data types under investigation,
and this type of data (mobile phone data at the cell tower level) reveals only information
about human spatiotemporal patterns. As a result, several applications related to human
mobility patterns can be derived from this data type, i.e., mobile phone data aggregated at
cell tower level. This finding may also be explained by privacy concerns that restrict and
increase the difficulty of accessing or acquiring mobile phone data at the individual level
(CDRs data), which might contain sensitive details such as spatiotemporal trajectories and
communication information about the receiving side of the communication, as opposed to
mobile phone data at the cell tower level, which does not reveal communication details.
Furthermore, due to difficulties seen in managing and processing CDRs data based on
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the nature of raw data, data cleansing and preprocessing, such as noise reduction and
managing sparsity constraints, is required.
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3.9. Network Visualization of the Co-Authorship Analysis by Country in Mobile Phone Data

This network in Figure 11 visualizes the worldwide co-authorship of the countries
that have published articles on mobile phone data by evaluating the performance of the
participating countries and the degree of cooperation between countries to produce papers
on mobile phone data. Each node inside the cluster represents a country, and the node
size refers to the publication weight, while the total link strength reflects the degree of
co-authorship links to other countries. For example, the United States, China, and the
United Kingdom have the largest proportion of publications in mobile phone data with
203, 181, and 131 publications, respectively, and the total number of co-authorship ties to
other countries is 229, 136, and 187.
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3.10. Co-Occurrence Network Visualization of Keywords in Mobile Phone Data Studies

This section describes the construction of the keyword co-occurrence map, which is
based on the co-occurrence data. The map in Figure 12 visualizes the co-occurrence network
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of the most frequently used keywords or search terms in mobile phone data studies. To
further understand the relationships between different clusters within the network, each
node has been made to represent its value or importance based on the occurrence weight of
the node itself and the strength of its link with other nodes (each node represents a search
term, links represent the occurrence of a pair of search terms, and the weight of the link
is represented by the co-occurrence frequency of each pair of search terms). Node size
refers to the frequency of the occurrence of a keyword (e.g., mobile phone data, detailed
call records, etc.) in the selected publications, and it is measured by the number of articles
that have used that keyword (or a corresponding term) in their list of keywords. The first
cluster contains blue nodes and is the largest of all seven clusters. It depicts mobile phone
data with a weight (occurrence) of 170 and 492 links, followed by human mobility with a
weight (occurrence) of 84 and 219 links. The blue cluster includes the following human
mobility pattern search terms: mobile phone data, human mobility, mobility patterns,
mobile communication, urban area, and others. The second cluster contains red nodes
representing terms related to mobile phone data types, such as CDRs data, and human
communication behavior, such as social networking, social network analysis, criminal
networks, big data, and economic and social effects. The third cluster contains green
nodes that represent terms related to human mobility patterns and their applications, such
as spatial–temporal analysis, population distribution and density, human activities, and
geographic mapping.
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4. Study Taxonomy

This section describes the process by which the selected studies were organized and
categorized into structured taxonomies in a way that helps address the research questions
and sheds light on the current state of mobile phone data applications. A taxonomy is
presented in Figure 13 that contains categories and subcategories of mobile phone data
according to specific factors, including the analysis and processing techniques (analysis
perspectives), the dataset level (i.e., individual, aggregated, cell tower), and types of appli-
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cations. Generally, mobile phone data are utilized in the analysis of human communication
behaviors and mobility patterns; thus, the taxonomy is categorized according to aspects
related to the analysis perspectives of mobile phone data. Since the analysis of mobile
phone data occurs at three different levels, which are the individual, aggregated, and
cell tower levels, a new classification is made according to these levels. Similarly, the
processing techniques used to analyze mobile phone data on each level embrace numerous
applications that also require subcategorization as a new classification.
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4.1. Mobility Patterns (Main Category): The First Leg

The first leg of the study comprises mobility patterns, which are further classified into
one of the mobile phone data types (levels), in this case, mobile phone data aggregated at
the cell tower level. This leg discusses the studies that use mobile phone data aggregated
at the cell tower level. Such data store records that detail the user ID (caller ID), the
timestamp (e.g., call date, call time), and the location data (cell tower ID), where each
record is geolocated based on the nearest BTS. These details allow us to capture users’
spatiotemporal change patterns extracted from spatiotemporal information collected from
this type of data. Thus, mobile phone data aggregated at the cell tower level have been used
for several applications related to human mobility patterns, such as estimating populations,
identifying home and work locations, and identifying land use types.

Mobile phone data at this level are usually used to capture human mobility patterns
since only spatiotemporal information is recorded. Thus, the details at this level allow
for the estimation of a population in a certain block or area based on the phones that are
connected to the cell tower. Identification of visitors to and residents of an area is carried
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out by identifying nearby cell towers that the mobile devices are connected to most of
the time. Furthermore, the activities of mobile phone users within a given geographical
location can be captured by the cell towers connected to them, and changes in the location
of mobile phone users from one place to another can allow them to be identified as residents
or visitors based on human activity, represented by spatiotemporal characteristics obtained
from mobile phone data. These spatiotemporal characteristics that explain human activities
provide a wide array of applications, which will be discussed here.

Mobile phone data at the cell tower level cannot be used to investigate and study
human communication behavior and social communication patterns because they do not
contain information regarding calling patterns that illustrate details of the other side of
the communication. A full description is added later for the second leg when discussing
applications used for mobile phone data at the individual and aggregated levels, usually
called CDRs and aggregated CDRs, respectively. Thus, this leg mostly discusses human
mobility patterns based on mobile phone data aggregated at the cell tower level.

4.1.1. First Application: Estimating and Mapping Population Distributions

Many aspects of human activities are related to human mobility patterns, and inves-
tigating these patterns has become a common use of mobile phone data; this can be seen
clearly in the number of applications derived from this analysis perspective based on the
spatiotemporal characteristics that can be extracted from mobile phone data that cover
multiple aspects of human life activities. Importantly, this includes estimating and mapping
population distributions. Mobile phone data have been used to estimate population densi-
ties by mapping the hourly dynamics of population based on spatial-temporal trajectories
extracted from mobile phone data. To map the population’s presence at a cell tower, Deville
et al. [6] applied an interpolation method of spatial mapping known as areal weighted
interpolation (AWI), which allows the interpolation of coverage areas’ spatial division and
its attributes through areal intersection with spatial units, such as blocks or administrative
areas. In this manner, the areal weight of a census block can be intersected with the cell
tower coverage of a mobile network. This study led to further discoveries based on such ap-
plications. Sakarovitch et al. [56] aimed to estimate resident populations by using Voronoï
tessellation, which partitions the geographical space of cell tower coverage into Voronoï
polygons. By applying dasymetric mapping methods to enhance population mapping on a
more fine-grained spatial scale, Ref. [53] applied a two-step floating catchment area method
(2SFCAe) and land use regression (LUR).

However, as these methods only consider mapping populations based on spatial
distribution, to improve the mapping of the spatial distribution of cell towers with respect
to population and thus to map population dynamics, a more fine-grained spatial and
temporal scale is required; various researchers [55,57,58] have thus applied dasymetric
interpolation methods to map population distribution by integrating this with a temporal
perspective. The aim of such work is to use multi-temporal function-based dasymetric
(MFD) interpolation to enhance the accuracy of the spatiotemporal resolution of population
dynamic distributions by capturing temporal patterns. However, Liu et al. [59] criticize
previous work in mapping dynamic populations due to their failure to estimate a popu-
lation distribution at a fine temporal scale due to capturing the temporal patterns of the
population only over a given time period. Thus, they aimed to map population dynamics at
hourly intervals by reconstructing time series trajectories of hourly population density. In
their quest to enhance the accuracy of mapping population density distribution effectively,
Ref. [60] determined that a lack of ground truth data for the dynamic population density
distribution over various time scales might affect the estimation of a population at a finely
grained temporal resolution; they thus used the Tencent positioning dataset with fine-grain
temporal resolution as ground truth data for training in a deep learning model using a
deep convolutional generative adversarial network (DCGAN).

However, Salat et al. [54] criticized previous methods because they required a large
number of finely grained data sets in order to train a given model, such as census and
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satellite data. This is especially the case in some developing countries where census data
are not always available to validate the models; thus, the authors sought to provide a
model without requiring training datasets by applying a hierarchical clustering method
(hierarchical cluster analysis). References [61,62] sought to solve these problems related
to estimating the population density, such as data heterogeneity and multiple sources
of mobile network operator (MNO) data. They performed this by proposing two novel
methodological frameworks which they designed to correlate multiple mobile phone data
sources (location area-level data, CDRs, aggregated CDRs, and mobile phone data) from
multiple MNOs based on data fusion models and joint analysis techniques.

Taking this idea further, based on a similar aim to map and estimate population
distribution, Shi et al. [63] not only attempted to estimate population density distribution
but also strove to investigate the correlations between population density distribution and
public service facilities such as retail stores, businesses, hotels, culture and art facilities, and
parks. The findings of their study showed that the distribution of public service facilities is
strongly linked to population density during the day (daytime population).

4.1.2. Second Application: Investigating the Relationship between Human Mobility
Patterns and Criminal Activity Patterns

This application covers studies examining human behavioral activities as reflected in
spatiotemporal mobility patterns extracted from mobile phone data and their associations
with crime patterns. Empirically speaking, estimating how people move, measuring their
presence at a given place, measuring population risks, and estimating the flow of the general
population to provide information about criminals’ movements—all these measures have
been reconstructed or derived from spatial-temporal characteristics in mobile phone data
as part of investigations into their relationship with crime patterns, as well as to develop
a better understanding of spatiotemporal patterns of crime. References [13,14,64] were
some of the first studies that investigated the correlation between human mobility patterns
and criminal activity patterns in the mobile phone data domain. Traunmueller et al. [64]
aimed to observe such a correlation based on testing Jacob’s hypothesis, which suggests
that high population density and population diversity (age diversity, ratio of visitors, and
ratio of residents) reduce violent crime rates, and the results show that the relationship
between crime activities and the diversity of age and ratio of visitors was negatively corre-
lated. Bogomolov et al. [13,14] performed one of the first studies to investigate correlations
between human behavioral activities as depicted in spatiotemporal patterns from mobile
phone data and criminal activities. The authors used this data as a proxy to measure
people’s presence at a given place to predict the relevant crime levels (classifying crime
levels) in terms of “low crime levels” or “high crime levels”. These studies opened up the
type of data used in such applications, and [21,51,65] then went a step further by using
mobile phone data as a measure to estimate the ambient population (population at-risk). In
the [21] study, the authors measured the ambient population to investigate its relationship
with crime rates, with results that showed a strong correlation between the ambient popu-
lation and theft crimes, based on identifying “people who might commit theft”. Similarly,
Ref. [51] estimated the ambient population as an alternative measurement of the population
at risk to investigate the effects of the ambient population on the spatiotemporal patterns
for migrants and natives in terms of violence committed by migrants and natives, and
the results show that the ambient population has a positive relationship with migrant
violent crimes. Finally, Ref. [65] aimed to examine the relationship between the ambient
population and the spatial crime pattern of larceny-theft, with results showing that the
ambient population has a positive link with larceny-theft crimes.

Instead of estimating the ambient population as in previous studies, References [52,66]
investigated the correlations between exposed population-at-risk (population at risk of
exposure to violence), which may be a mix of criminals and victims, and temporal–spatial
patterns of violent crime in public to determine their impact on violent crime in pub-
lic spaces. Haleem et al. [52] aimed to evaluate the influence of exposed and ambi-
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ent populations-at-risk on violent crimes associated with the nighttime economy (NTE).
Lee et al. [66] built on the same notion of “exposed population-at-risk”, with the addi-
tion of the spatial and temporal characteristics of violent crime in public spaces. Finally,
Song et al. [67] attempted to determine whether the daily mobility flows of the general
population could provide a template for the daily mobility of criminals.

4.1.3. Third Application: The Detection of Homes and Other Meaningful Locations

Many studies have focused on identifying home and work locations, which can be
part of the analysis of mobile phone data. Not all studies were primarily focused on the
detection of home and work locations, but during the analysis phase, the detection of home
and work locations may have been required for preprocessing prior to further analysis.
This process has been widely followed with mobile phone data in many studies [5,12,13,18],
while other studies have mainly focused on detecting home or work locations [35,68,69].

Human mobility patterns extracted from mobile phone data have been used to model
daily human activities (for example, home, work, shopping, etc.) by parsing trajectory
features from spatiotemporal information into fixed locations. This indicates where people
conduct their activities or the locations where the most activity takes place. Therefore, daily
activity patterns based on mobile phone data can identify and estimate home and work
locations or other meaningful locations. Kung et al. [35] aimed to detect home and work
locations based on human mobility patterns. Two criteria were chosen to define home and
work locations, namely, the home location was identified as the most frequently visited
location during nighttime, and the work location was the most frequently visited location
during daytime hours. Empirically, identifying a person’s home means that a single cell
tower is allocated as their home location, so the most frequently used cell tower location
during the night hours, for example, 7 p.m.–7 a.m., is the approximate location of residence.
Tongsinoot and Muangsin [68] identified the home detection by correlating mobile phone
data with Internet data usage containing attributes such as mobile numbers, timestamps,
upload volume, download volume, cell tower ID, and network ID. This was conducted to
improve the detection of home and work locations, claiming that previous identification
methods are based on the time or duration criteria, where the proportion of staying time is
calculated to estimate the location. Vanhoof et al. [69] aimed to improve home detection by
defining five home criteria based on calling activities and mobility patterns.

4.1.4. Fourth Application: Urban Hotspot Detection

This part highlights scholarship that uses mobile phone data to detect urban hotspots
(hotspots refer to regions with higher concentrations of people, the most congested places,
or high-intensity crime areas) based on human mobility patterns. Louail et al. [34] sought
to detect urban crowd hotspot areas (areas considered to be dense) in 31 Spanish cities.
They performed this by extracting spatial–temporal characteristics, such as aggregating
every hour (because hotspots fluctuate over time as a result of human mobility patterns) the
total number of mobile users in each cell tower, which helps in turn to estimate population
density. After depicting user density based on human mobility, the authors then established
a threshold to identify hotspots by using a non-parametric method based on the logarithmic
derivative of the Lorenz curve. The threshold density population describes each cell i (cell
size is between 500 m and 2 km) with a density of users larger than the threshold δ for
the density ρ(i, t) > δ as a hotspot cell at time t, while Yang et al. [70] set out to detect two
types of urban human dynamics hotspots—convergent and dispersive hotspots—in the
city of Shenzhen, China. In order to identify human mobility hotspots, they applied an
unsupervised clustering algorithm, the X-means algorithm, statistical analysis, and kernel
density estimation (KDE). Similarly, the KDE method was used by Ghahramani et al. [71],
who aimed to detect hotspots in Macau, China. However, the authors extracted charac-
teristics of calling behaviors to illustrate urban population density, such as the frequency
of calls at different timestamps and the duration of calls, along with spatial and temporal
characteristics such as spatial objects referring to cell towers.



Sensors 2023, 23, 4350 23 of 49

4.2. Communication Behaviors and Mobility Patterns (Main Category): The Second Leg

The second leg comprises communication behaviors and mobility patterns at the
individual and aggregate levels. This section thus discusses what applications remain to be
derived from mobile phone data at the individual and aggregate levels, and what human
behavioral patterns may be captured by these data types.

Mobile phone data at both the individual level and aggregate level can be used to in-
vestigate and study human communication behavior and social communication alongside
mobility patterns due to the fact that mobile phone data at both the individual level and ag-
gregate level contains both communication information and spatial–temporal information.
Individual data do contain details that reflect attributes such as caller ID, callee ID, caller’s
connected cell tower ID, callee’s connected cell tower ID, duration of call, and timestamp,
which allows the development of applications related to communication behaviors such
as the mobile social networks (detecting social networking), the detection of criminal re-
lationships, inference of social ties, and various applications related to human mobility
patterns, such as the identification of suspects based on spatiotemporal characteristics, and
the detection of criminals based on their calling patterns and mobility behaviors, which all
will be discussed in this section. A full description of the applications derived from mobile
phone data at individual and aggregated levels is thus offered in the next section.

4.2.1. Social Network Applications

Mobile phone data’s application to the investigation of mobile social networks is a
solid and self-sufficient topic. The study of human sociality using mobile phone data
has evolved into a distinct field of study that gives insight into the dynamics of human
social networks [30], which explains the rapid expansion in the volume of such studies.
Mobile phone data have thus been used to study a huge range of human sociality-related
topics across various applications, including the investigation of social ties, the inference
of relationships, the detection of social networking communities, and the detection of
temporal or spatial social networks based on spatiotemporal characteristics.

4.2.2. First Application: Detecting Human Social Interaction Networks Based on
Spatiotemporal Mobility Patterns

This application focuses on studies that use CDRs to identify social communities based
on spatiotemporal mobility patterns, or, in other words, using mobility patterns as a means
to detect communities. Shi et al. [46] constructed human social network interactions in a
manner that aimed to discover spatiotemporal interaction communities arising from spatial
human mobility patterns extracted from spatiotemporal information in CDRs data, such as
the identification of the most frequented locations of users, identified as homes and work-
places, based on each user’s most active cell tower. To achieve this aim, the authors applied
two methods: the Newman method and the Moore community detection algorithm, which
detects social communities and uses the kernel density estimation method to visualize the
spatial distributions of different communities. Truică et al. [72] aimed to detect or cluster
groups of nodes that reflected social interactions based on spatiotemporal information
(mobility patterns) by applying the Louvain algorithm, a well-known community detection
algorithm, while Xu et al. [73] aimed to detect communities across faculty members and
students in a virtual campus mobile network based on spatiotemporal patterns of users’
trajectories. Lind et al. [74] built social networks that aimed to detect spatial–temporal
interaction communities based on human mobility patterns extracted from CDRs data;
however, the authors also extracted one additional attribute from CDRs data, Internet usage,
based on the fact that detecting communities based on just SMSs and phone calls limits the
registration of spatiotemporal information to cell tower contacts; adding internet usage to
represent interactions thus increases observed user events by allowing the visualization
of additional areas (spatial information) based on user-triggered events, such as browsing
or accessing the Internet. Sumathi et al. [75] aimed to build a social events network to
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detect and estimate the number of participants attending the Indian Institute of Science in
Bengaluru based on their mobility patterns.

4.2.3. Second Application: Detecting Human Social Interaction Networks based on Human
Communication Behaviors

This section discusses studies where human communication behavior is used as a
means to construct social networks. Schläpfer et al. [36] constructed social networks of
human interactions based on communication behavior extracted from CDRs data, such as
the total number of contacts, call volume, and number of calls, where subscribers (contacts)
are the nodes and the call volume and number of calls are measures of reciprocity to
quantify social ties between nodes. Their aim was to investigate the relationship between
the size of the city and human social interactions, which in turn scale superlinearly with
the city population size. Filipowska et al. [76] aimed to build user social profiles based
on call information, including the number and duration of phone calls, to visualize social
network activities among groups of users to help differentiate or classify relationship levels
based on defining weak or strong ties between individuals. Reference [77] constructed
students’ social networks based on communication behaviors represented by their calling
characteristics, such as the total number of calls and SMSs as well as call duration. Their aim
was to construct students’ social networks based on identifying chronotypes, such as owls
(evening-active) and larks (early risers and early sleepers). In this process, degrees were
assigned to each node and weights were assigned to each link in order to assess network
structures. Yu et al. [78] also constructed social networks of friend relationships based
on communication behaviors extracted from calling information that included the total
number of calls and SMSs, along with call duration, timestamps, and other measures, by
applying a semi-supervised algorithm. Their aim was to classify user relationships based
on the strength of social ties between two classes, “friends” and “non-friend”. Similarly,
Gaito et al. [79] built social networks to visualize human social interactions based on
communication information that included the number of calls and SMSs, call durations,
and call frequency. Their aim included investigating which communication channels, as
represented by phone calls and text messages, users preferred for their interactions.

4.2.4. Third Application: Inferring Social Network Based on Mobility Patterns and
Social Interactions

Other studies combined both types of human behaviors, such as [5,80], both of which
sought to capture macroscale patterns of mobility and social interactions. They studied the
interplay between human mobility patterns and human social interactions to investigate
how human mobility patterns influence social interactions.

Deville et al. [80] aimed to capture any relationships between human mobility and
social networks, based on combining three different mobile phone datasets simultaneously
to capture two perspectives on human behavior, defined by human mobility and social
networks. The results revealed that these two behaviors are not independent, as there
is a strong relationship between human mobility and communication patterns within
social networks: as distance increases, the average number of fluxes in social interactions
increases (number of calls) given the same volume of mobility fluxes (number of jumps
between two locations). Phithakkitnukoon and Smoreda [5] investigated the interplay
between human mobility and sociality (in terms of social tie strength) by extracting human
social behaviors from calling information such as the daily number of calls made and
received, call duration, and human mobility patterns as extracted from spatiotemporal
information such as the number of locations a person visited in a time period, the travel
distance range, and the degree of variation. Finally, Morales et al. [81] constructed an
ethnic interactions network based on mobility and communication patterns by correlating
two datasets, in which the first contains calling information and the latter contains spatial–
temporal information. The network aims to detect different ethnic and religious groups
in Ivory Coast by mapping each community to its geographically closest ethnic group. To



Sensors 2023, 23, 4350 25 of 49

achieve this goal, the authors applied community detection techniques such as the Louvain
community detection algorithm and a K-means clustering algorithm.

4.2.5. Fourth Application: Suspect Identification

This application arises from studies related to identifying suspects (people who are
thought to be involved in certain criminal activities), based on detecting suspicious activities
and movement patterns of all parties involved by examining the digital traces left by
mobile phone devices that depict communication behaviors and mobility patterns. Digital
traces left by people at locations where a crime has taken place, for example, can reveal a
representative sample of the population present at a crime scene at a given time. Table 5
shows different features and analytical perspectives used to identify suspects.

Table 5. Prior research on suspect identification.

Reference Features Description

[82] Spatiotemporal features

This study aimed to identify the most probable suspects in a given
case by correlating CDRs with other data sources, such as digital

video recorders (DVRs) and base transceiver station (BTS) log files to
help investigators with otherwise insufficient evidence pinpoint

hidden details about their suspects and gather further digital
evidence to show how a crime is committed. The author extracted

spatiotemporal information, such as the suspects’ various trajectories,
from CDR data and cell tower IDs that showed each suspect’s home
cell tower location along with other visited cell tower locations, to

prove involvement in the crime.

[83] Call features

This study aimed to identify suspects based on their calling
characteristics, including any phone calls made or received by the

suspects at the crime scene, in conjunction with archived CDRs data
drawn from a central database that contained details on previously
convicted criminals whose names had been recorded in older cases.

[84,85] Call and spatiotemporal features

These studies aimed to improve the identification performance of
suspects in terms of efficiency, effort, and scalability. To achieve this,

they proposed a system-based big data analytic process to extract
communication and mobility information from CDRs data, including

aspects such as the most frequent caller, the number of times the
suspect called other suspects, call frequency, suspect trajectories, and

the most visited location based on the most frequently used
cell tower.

[86] Spatiotemporal features This study proposed a terrorist detection system that aims to detect
suspicious activities based on user trajectories.

[87] Call and spatiotemporal features

This study aimed to investigate additional details by identifying
suspects and their accomplices. To achieve this, the authors extracted
calling and spatiotemporal information from the CDRs, such as calls
made and received by suspects and suspects’ trajectories near crime
locations, then applied MariaDB, an open-source relational database

management system (RDBMS), to analyze the CDRs data.

[9,47] Call features

Rather than applying traditional methods, these studies proposed
machine learning methods to tackle the identification process. They
applied classification algorithms that aimed to separate suspects from

non-suspects based on communication behaviors.

[88] Call features

Going one step further, some studies discussed the challenges
associated with analyzing CDRs to identify suspects. Marshall and

Miller [88] aimed to present different techniques and scenarios
suspects might use to avoid recording of their communication and

mobility activities, such as stealth SIM, voice changing, roaming
callback, and call obfuscation.
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4.2.6. Fifth Application: Detecting Criminal Networks

This application is drawn from studies that utilize CDR data to detect criminal net-
works based on communication behaviors and mobility patterns.

With regard to the detection of criminal networks based on communication behaviors,
Ferrara et al. [10] proposed a forensic analysis system named LogAnalysis, whose concep-
tual framework aimed to detect the most influential criminals in a criminal organization
by applying social network analysis (SNA) tools and metrics such as degree centrality,
closeness centrality, and “betweenness” centrality to identify both influential members and
less-involved members of criminal networks and to quantify the degree of the relationships
between vertices. Similarly, Refs. [11,28,29,43,44] proposed multiple forensic systems to
detect criminal networks based on the calling characteristics of criminal communication be-
haviors, including outgoing and incoming calls between two identified vertices (criminals)
and the maximum and minimum numbers of incoming or outgoing calls and messages.
The SIIMCO system created by [11] aimed to detect lower-level criminals and their imme-
diate leaders in a criminal network, as these are the most likely to be arrested, while the
IICCC by [43] and CLDRI by [44] systems aimed to detect high-level criminals, identified
as the most influential members in a criminal organization. ECLfinder [28] similarly aimed
to detect and classify both high-level and lower-level criminals in a criminal network.
Agreste et al. [29] aimed to uncover the underlying structure of Italian Mafia gangs and
detect their key leaders.

Other work focused on the detection of criminals based on mobility patterns:
Griffiths et al. [12] aimed to detect mobility patterns within specific terror networks (UK-
based Islamist terrorists) by extracting various spatial and temporal features such as the
locations most frequently visited by each criminal as reflected in their phones’ connections
with each cell tower, which would also allow the measurement of the relevant distances
between criminals’ home locations, crime locations, and other time-stamped locations.

5. Research Questions

The review introduces two research questions to cover the absence of data in the
literature and what existing literature lacks in the fields of criminology and urban sensing.

5.1. RQ1: What Are the Current State-of-the-Art Methods and Techniques Regarding the Use of
Mobile Phone Data to Identify Suspects and Predict Crimes?

Before reviewing the state-of-the-art methods and techniques that employ mobile
phone data for the identification of suspects and prediction of crimes, we first give a brief
discussion on why such data can be seen as a sensor for human activities and mobility in
the context of criminology.

Mobile phone data contain different kinds of digital traces, such as mobility traces
and communication traces, which can be used as evidence in criminal investigations [89].
Therefore, the digital traces left by a large number of mobile devices provide valuable
information that facilitates the understanding of human behavior and mobility in the
context of criminology, such as the prediction and identification of crimes and suspects.
For example, Griffiths et al. [12] analyzed the mobility behaviors of criminals based on
the digital traces they left at home and other meaningful locations, such as the crime
scene. The mobility traces of criminals were identified by cell tower locations where they
previously received a call. The traces were then analyzed to determine the regularities in
the criminals’ movements and to investigate whether the movements were not random.
The authors subsequently concluded that there is a high degree of spatial regularity in the
criminals’ movements.

We report the state-of-the-art methods and techniques concerning the use of mobile
phone data in identifying suspects and detecting criminals. A particular focus is given to
existing scientific literature that has explored the use of mobile phone data in the context
of criminal behavior from people- and place-centric perspectives. Our taxonomy of crime
study concerning mobile phone data identified three applications: suspect identification,
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criminal network detection, and investigating the correlation between human mobility
patterns and spatiotemporal crime patterns.

5.1.1. The First Group of Applications Deals with Using Mobile Phone Data to
Identify Suspects

A suspect is defined as an individual who is suspected to be involved in a crime [47]
based on the digital traces left at the crime scene. In criminal investigations, location-based
mobile phone data can be used to indicate the presence of suspects in an area at a certain
time when a crime has taken place, whereas communication traces can be used to identify
accomplices in a criminal activity. As examples, References [82,84] collected mobility traces
left at crime scenes to determine suspects’ positions and presence at the crime scenes.

At the identification phase, the literature has shown that researchers used several
parameters and attributes to determine suspects (e.g., outgoing calls, incoming calls, the
start time of the call, location, duration, the number of calls made, and messages received).
For example, in [9,83] methods, the researchers extracted communication information
such as “outgoing calls”, “incoming calls”, frequent callers”, and “maximum duration” to
identify suspects. However, Reference [87] extracted spatiotemporal information along
with communication details to identify suspects.

5.1.2. Suspect Identification Models Can Be Divided into Unsupervised and
Supervised Models

Unsupervised models use unlabeled data and subjective definitions for the identifica-
tion of suspects (e.g., “suspects are those who contacted previously contacted criminals
and also made calls nearby the crime scene”).

Supervised models use historical data where each user is labeled as suspect or non-
suspect and try to find patterns in phone call data records that distinguish between those
who were historically selected as suspects and non-suspects.

Khan et al. [85] used CDR data of various suspects and victims in order to extract
associations between pairs of telephone numbers that can point out a few correct directions
for identifying the most likely correspondence between suspects and victims. The method-
ology was based on the idea that frequent calls and the duration of calls may be indicative
of a criminal–victim relationship.

The technical implementation was conducted using a combination of Hadoop (a
framework for distributed processing of large data sets across clusters of computers) and
Hive (a data warehouse architecture for querying data stored using Hadoop). The choice of
tools was justified by the widely known efficiency of these tools for mining big data and by
the security of Hadoop, which is important due to the use of highly confidential data. Even
though it is a “simple implementation”, some important weaknesses are worth mentioning.
There is no evidence that frequency of calling or maximum call duration are helpful in
identifying actual criminals, as authors do not validate their model against ground truth
data. They used only a very limited set of call features, not including spatiotemporal
characteristics, to identify suspects. The use of location data would have been useful in
placing the suspects and their accomplices at the crime scene.

In Reference [83], the authors used CDRs data to identify links that exist among
criminals and anti-social elements. Their analytic approach was based on the idea that
anti-social elements have their own network of contacts, and the identification of those
closely linked to previously convicted people is helpful in shortlisting suspects. That is why
their network analysis methodology was based on graph theory as a tool for identifying
otherwise hidden relationships.

While the authors demonstrated an actionable graph-based decision support tool for
streamlining inference that would otherwise be difficult to achieve using slicing and dicing
data in spreadsheets, the study has some weaknesses. The approach relies on looking for
exact matches in long-term historical data and thus makes the unrealistic assumption that
suspects do not change their mobile devices after communicating with convicted criminals,
which looks like very incautious behavior for experienced criminals.
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Authors in Reference [9] proposed a supervised machine learning method to identify
suspects. The task was to classify users into suspects and non-suspects. The researchers
turned the CDR-level dataset (13 million rows) into a user-level dataset (10,000 rows)
through data aggregation and feature generation. As a result, each user was characterized
by 30 discrete features derived by discretizing such features as the number of calls made, the
average duration of calls, the proportion of calls and text messages, etc. A targeted Bayesian
network learning (TBNL) model was applied that resulted in a descriptive network in which
the selected features and their interactions were used to discriminate between positive (e.g.,
“suspects”) and negative (e.g., “non-suspects”).

The model was validated using 10-fold cross-validation, where the sample of 10,000 users
was split into 10 random folds of 1000 users each, and every time, 9 folds were used for
training and 1 fold was used as a holdout sample for testing purposes.

The main strengths of the study are the demonstration of the proposed model’s
strength relative to several competing algorithms and the fact that the model results in
actionable empirical facts about factors that increase the probability of being a suspect. The
main weaknesses of the study are as follows: The authors demonstrated that the text-to-call
ratio is substantially lower for suspects than for non-suspects in the late morning hours
but did not provide the same type of interpretation regarding other predictors. The cross-
validation procedure was used for optimizing model parameters, feature selection, and
measuring its performance, which could inflate performance metrics. This could have been
avoided by keeping around 10% of the dataset for final model testing.

Hassan et al. [47] applied a Graph Convolutional Network model (GCN) in order
to identify suspects from non-suspects. The authors built a straightforward undirected
graph (G), represented by the input matrix A, which was to be applied to two-dimensional
convolutional layers. Graph G contains six nodes, with the features of each node used to
classify criminals from non-criminals. Hence, the authors performed a semi-supervised
classification method on a small number of labeled data to train the classifier (seed nodes
belong to convicted criminals to help train the classifier). The output then is a single binary
for each node, indicating whether the corresponding node is predicted to be a suspect or not.
Although the proposed method has yielded promising results, it is not without limitations.
To begin with, CDRs were fully employed; therefore, the communication information only
featured the node. Second, because the resulting network of CDRs data is rather sparse,
modeling the network in the context of seed nodes may require domain-expert knowledge.
Methods in deep learning are usually effective as long as they require large numbers of
data. Thus, Hassan’s model produced a sparse network due to the limited training sample.

5.1.3. The Second Application Deals with the Detection of Criminal Relationships Based on
Communication Behaviors and Mobility Patterns

Once the suspects in a crime have been identified, it is important to investigate the
roles that each criminal plays within a specific network. Connecting a suspect to other
perpetrators and understanding their relationships with criminal networks is difficult, and
thus the use of CDRs data has been increasingly exploited by social network analysis (SNA)
tools and metrics, including degree centrality and betweenness centrality, all of which can
be used to identify influential members and low-level members of criminal networks.

5.1.4. The Construction of a Social Network from Mobile Phone Data

A graph (or network) can be used to model mobile phone data (Graph G = (V, E). A
graph contains various nodes (or vertices) that represent different mobile phone users, and
the edges E represent text messages and calls between two individual users.

Studies on social networking cover many topics, including community detection, social
network structure, and measuring network modularity. Partitions or clusters of nodes
in a graph are typically known as communities in network investigations. Communities
can be structured in two ways: non-overlapping structuring, in which nodes belong to
only one community, and overlapping structuring, in which nodes can be part of multiple
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communities. Several researchers have used social network analysis tools to solve the
community detection problem [45,46,90]. SNA tools can also help investigators understand
the hierarchical structure of criminal networks since it is difficult for forensic analysts to
determine who belongs to a criminal organization and the relationships that exist within
it. Thus, SNA can be harnessed to determine the relations and interactions between
criminals by reconstructing the communication relationships that are obtained from mobile
phone data as a network, where a node represents a criminal and an edge represents a
communication (i.e., a phone call or a message). Using this approach in the analysis of
criminal networks allows the investigators to understand the hierarchy and structural
properties of the network.

5.1.5. Detecting Criminal Networks Based on Communication Information

In this section, research that has used social network analysis tools and measures to
detect criminal networks based on mobile phone data will be presented.

In the relevant works of the literature, a collection of SNA techniques and algorithms
have been used to detect and probe criminal networks. These approaches and algorithms
have primarily been used to solve problems relating to community detection, while statisti-
cal metrics have been used to analyze relationships between vertices and assess structural
centrality in networks. Several researchers [10,28,43] have developed many detection
methods based on communication information extracted from mobile phone data to detect
communities in criminal networks. Moreover, these researchers have employed the same
analytical method used to investigate criminal networks (namely, social network analysis)
but with different detection algorithms.

For instance, Ferrara et al. [10] proposed LogAnalysis, a criminal investigation expert
system, to detect criminal networks. This system incorporates a well-known detection
algorithm called the Girvan and Newman (GN) algorithm. They opted to use the GN
algorithm due to its capacity to identify edges in networks lying between communities
(when edges are less central, they are most likely to fall “between” communities). Subse-
quently, the system removes these edges, leaving the communities behind. The researchers
have used this system to identify interconnected nodes that belong to different clusters
and gradually remove them, which disconnects the clusters and ultimately reveals the
community structure. Then, edge-betweenness and centrality metrics were calculated.
The measurements focus on the less central edges, where the edges are most “between”
communities. This is more effective than using a measure that focuses on the central edges.
In the experimental setup, 381 nodes and 428 edges were identified. After the mobile phone
network was configured and the detection algorithm was applied, a total of 16 communi-
ties were identified. The key objective was to identify edges from interconnected nodes
that belong to different clusters (different communities) and progressively remove them.
Therefore, the edge-betweenness centrality measure was incorporated in the algorithm,
which facilitated the removal of 28 edges and the development of a community consisting
of multiple groups (after each node is assigned to one cluster). The findings also reveal that
all vertices are linked to a central vertex, which serves as a hub and generates a centralized
network. This happens because GN is greedy in its approach to clustering and focuses on
collecting vertices in the network [11]. To perform this, a number of rules are followed,
after which vertices are merged to create a coherent division of the criminal community
structure. Therefore, if the central vertex is removed, a hierarchical network can be created,
which, in turn, enables subgroups to be identified through their interactions with other
group members.

After the researchers had identified the social criminal network, they plotted it on a
graph using a visualization tool. Visualization plays a major role in increasing investigators’
comprehension of the complexity of the network; thus, it is a useful tool for visualizing
and presenting complicated networks. They tried three different visual layouts, namely,
the node–link diagram, the convex hull, and the force-directed layout.
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Following that, Agreste et al. [29] worked with Italian law enforcement to collect
mobile phone data that revealed the communication details of the Sicilian Mafia group.
This work was similar to that of [5] in terms of detecting and structuring criminal networks
but different when it came to describing how the criminal network functioned. The
researchers created two networks, one of which was based on the mobile phone data and
thus contained the identities of 1716 suspects (vertices) and 8481 contact logs in the form
of phone calls, SMS, MMS, etc. (edges). On the other hand, the second network was
based on the relationships between various individuals involved in criminal acts. The two
networks were merged through an aggregated network that enabled all pairs of nodes to
be connected by an edge in at least one network. Meanwhile, the results show that there are
several criminals who can be identified by correlating mobile phone data with crime data.

Other criminal detection systems based on social network analysis are carried out
by adopting Prim’s Minimum Spanning Tree (MST) algorithm in [28], the Concept Space
Approach (space algorithm) in [11], and Blondel’s algorithm in [47]. The most significant
variation between these systems are the metrics and measures used to identify key members
of criminal networks (see Table 6 for more details).

Table 6. List of methods, analysis approaches, and metrics in crime applications.

Reference Analysis
Perspective

Analysis
Approach Algorithm/Measure Network Metrics/

Parameter Limitation

[28] Communication
behaviors SNA

Detection algorithm
(Prim’s Minimum

Spanning Tree
Algorithm)

Edge-centric
Missing location

data, greedy
algorithm

[10] Communication
behaviors SNA

Detection algorithm
(Girvan–Newman and

Fruchterman–Reingold)

Edge-betweenness
centrality

Complex network,
detection only

based on
communication

information,
greedy algorithm

[11] Communication
behaviors SNA

The concept space
approach (space

algorithm)
Vertex-centric

Suitable for small
networks,

detection only
based on

communication
information

[51] Mobility patterns
Regression and

Correlation
Analysis

Akaike information
criterion (AIC), spatial

autocorrelation (SA)
using Pearson’s
Correlation, and

negative binomial
regression model (NBM)

Offender anchor
points.

Detection only
based on

spatiotemporal
information

[12] Mobility patterns
Statistical and

Correlation
Analysis

Spearman’s rank
coefficient (ρ) statistics,
Pearson’s correlations,

and the cumulative
distribution function

Offender anchor
points.

Detection only
based on

spatiotemporal
information

5.1.6. Detecting Criminals Based on Spatiotemporal Information

On the other hand, studies have investigated the use of spatiotemporal information to
identify criminal relationships and activities.

For instance, Hassan et al. [47] identified suspects by monitoring the spatial–temporal
movements of criminals, while the authors in Reference [12] carried out cumulative fre-
quency analysis using various statistical functions, including cumulative distributions and
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cumulative probability distributions, to determine whether criminals have routine activity
spaces. Thus, the authors extracted spatiotemporal characteristics of criminals, such as the
distances between their homes and safe houses (i.e., bomb manufacturers or armories) and
the most commonly visited locations. The findings indicated that the criminals frequented
particular areas, with most of their activity clustered between their home and safe house
(crime location). Ultimately, this implies that criminals do not select targets randomly and
that their movements are routine and steady.

Furthermore, Feng et al. [51] studied spatial variations in crimes perpetrated by
both native and migrant criminals by correlating multiple mobility datasets, including
offender data, mobile phone data, and points-of-interest (POI) data. The authors selected
anchor points to identify criminal spatial patterns as well as to understand what motivates
criminals to carry out crimes in the proximity of their homes. The findings revealed that
offender anchor points are more prominent in native violent crimes than those perpetrated
by migrants. This is because criminals’ homes and crime scenes share similar spatial
patterns. This means that native offenders are much more likely to use their homes as
anchor points when selecting targets for their crimes. On the other hand, migrant criminals
are more likely to be impacted by crime attractors, crime generators (such as bars, clubs,
etc.), and areas with vast populations.

The studies of both [12,51] explored criminal anchor points. Anchor points may be
residences, workplaces, or any significant area that a criminal leaves to carry out a crime.
Anchor points play a critical role in identifying places of importance to criminals and in
detecting the spatial mobility of criminals. This is because criminals typically target areas
near their residences to commit crimes. In other words, the probability of committing a
crime decreases as one moves further away from their anchor points; thus, violent crimes
tend to take place near the offender’s anchor points.

To summarize, some studies detected criminal networks by analyzing communication
behaviors based on extracting call information, whereas other studies analyzed criminals’
activities based on spatial–temporal mobility patterns, as presented in Table 6; however,
detecting criminal activities by taking into account both criminal communication behavior
and mobility patterns may be extremely useful [4].

5.1.7. The Third Application Deals with Using Mobile Phone Data to Investigate Human
Mobility Patterns and Spatial–Temporal Crime Patterns

The spatiotemporal patterns of crimes can be determined by extracting human routine
activities and mobility patterns from mobile phone data [52] and then examining the
correlations between the human dynamics and crime data [64]. Accordingly, mobile phone
data have been widely used in crime analysis and predictions to identify crime hotspots [14],
investigate the relationship between ambient population and crime hotspots [21], and
measure population density at a certain place based on the number of mobile devices
connected to a given cell tower located in the area where a crime has taken place.

Unlike previous applications, here, a large sample of the population is considered as
a measure to investigate the relationship between human dynamics and crime patterns.
Such a measure helps gain further insight into exploring whether mobility patterns of the
population can help predict where criminals commit crimes [67] or serve as a measure of
ambient population-at-risk [66]. Estimating the correlation between population dynamics
and crime patterns was earlier investigated by Bogomolov et al. [13], who extracted users’
locations to estimate population counts at a given location. However, these studies [51,52]
have been interested recently in finding out the correlation between the spatiotemporal
patterns of crimes and human routine activities, which may ultimately help to provide
information about criminals’ movements since the mobility patterns of the general pop-
ulation provide a template for the mobility of criminals [67]. The third application thus
investigates the relationship between population dynamics and crime patterns.

Multiple types of data and different spatial units have been proposed to investigate
the correlation between human dynamics and crime patterns. The spatial unit of analysis is



Sensors 2023, 23, 4350 32 of 49

different according to the format of the data and the official providers. Census units are used
in Reference [67] because they are homogeneous in terms of population composition, and
Lower Layer Super Output Area (LSOA) units are considered in these studies [13,21,52,66].
Additionally, spatiotemporal characteristics extracted from mobile phone data, such as
“the number of times a mobile device communicates with the network”, “timestamp”, “cell
ID”, and “the most-contacted tower during daytime or nighttime”, are used in different
contexts. For example, the Mobile Phone Origin Destination (MPOD) dataset is used in
References [52,66], and the lack of spatial granularity is marked as a weakness, as is the
density of signal towers, which is higher in urban areas and lower in suburban ones. This
may cause some errors in spatializing the data; thus, a geographical information system
(GIS) is used in order to distribute MPOD data across LSOAs.

Statistical models were suggested in the literature to investigate such a correlation. As
statistical methods are employed, multiple statistical scores and parameters are used to
calculate correlations. For example, in Reference [21], the authors observed that there is
no normal distribution; thus, Spearman’s rank correlation coefficient (ρ) statistic was used
over Pearson’s product-moment coefficient (r) to calculate correlations between ambient
population and crime rates. In Reference [67], the authors applied a discrete choice model
to test this hypothesis and determine if the daily mobility flows of the general population
can provide a template for the daily mobility of criminals.

The methods used for accomplishing each goal are different, but one aspect is common
to all papers: the variables taken into account as ‘crime generators’ are: underground
stations; schools (i.e., middle and primary schools); music venues; hotels; hospitals; restau-
rants; supermarkets; clubs; bars; subway stations; and banks. The mean, standard deviation,
minimum, and maximum values were calculated and reported at the census level. For
example, there are 11.15 restaurants on average per census unit. In Reference [67], primary
schools, hospitals, basic stores, bus stops, supermarkets, banks, and restaurants are listed
as ‘crowded spaces’. Song et al. [67] then used the conditional logit model, which aims to
analyze the effect of distance, crime generators, and the role population mobility patterns
play in offenders’ choice of locations for committing TFP (theft from person). The results
showed that all facilities except schools, markets, and bars function as crime generators,
and so their presence shows a high likelihood of offenders committing TFP. Furthermore,
with larger facilities that have significant effects, such as subway stations, cinemas, or
hospitals in the census unit, the odds of being chosen increase by 57.0, 15.4, and 13.5%,
respectively. The results also showed that there is a strong correlation between a criminal’s
home and crime sites, where criminals often choose places nearby to commit crimes close
to where they live.

In the study [21], the variables are residential population, workday population, geo-
located Twitter messages, mobile phone activity counts, population 24/7 estimates, and
theft from the person who committed the offense. Malleson and Andresen [21] used Getis–
Ord Gi*statistics, which examine each location i (LSOAs in this case) together with its
neighboring locations j, and then “it calculates whether or not the total number (or rate) of
occurrences in i and j is greater or lesser than would be expected by chance when compared
to surrounding locations up to a distance from i. If a difference is found, then the areas I and
j are assumed to be associated with and different from their surroundings, i.e., a hotspot
or coldspot.” The results showed that there is a poor correlation between the residential
and ambient populations. On the other hand, strong correlations are noticed between some
of the measures of the ambient population (workday population, mobile phone data, and
population 24/7 daytime estimates). Moreover, the correlation between thefts and ambient
population is stronger than the one between thefts and residential population. Thus, for
calculating the crime rate, the ambient population is more suitable than the residential
population.

However, Haleem et al. [52] calculated both the ambient and exposed population-
at-risk by correlating two datasets: census data to capture residential population counts
and mobile phone data to capture transient population counts. This procedure allows
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for the estimation of the ambient and exposed populations for different time bins. The
ambient population-at-risk, thus, was calculated by estimating the residential population
at a given spatial unit, summing it with the population entering this unit at a certain
period of the day, then subtracting the population existing in this area for the same time
of the day. The Spearman’s rank correlation coefficient (ρ as rho) statistic was used to
evaluate the correlation between the ambient and exposed population-at-risk measures
and violent crimes. The results showed that the exposed population is more significant
than the ambient population, and the exposed population measure appears to be a more
suitable denominator for exploring violent crimes in public space.

5.1.8. Recent Advances in Method

Recently, a variety of machine learning models and social network analysis techniques
have employed mobile phone data [4] to improve criminal network detection, fraud activity
detection, and crime prediction.

In recent years, the reconstruction of social networks from mobile phone data by
means of graph theory and social network analytics (SNA) has become common in mobile
phone data studies. Graph theory refers to the mathematical study of interactions between
sets of nodes (otherwise known as vertices) linked by edges. Through the use of social
network analysis tools and methods, computer and mobile social networks, including the
internet and mobile communications, can be represented graphically in this manner, and
graph theory techniques have thus been widely applied in the field of mobile phone data to
identify various types of social networks, including the detection of criminal networks [91],
the identification of ethnic communities [81], the development of specific socio-economic
communities [92], and the determination of geographical networks [93]. This has become
possible due to the fact that call data and spatial–temporal data acquired from mobile
phones disclose multiple details about a variety of communication links and dynamic
networks. The communications recorded on a mobile phone are assumed to constitute
a representative part of a person’s overall social networking, with mobile phone data
creating a social network among those individuals making or receiving calls or messages,
who are classified as actors (nodes) within the network; each link between the actors
is then represented by the type of communication (call or message). Empirically, the
resulting social networks are constructed based on both the communication behaviors
(calling information) and the spatiotemporal information (mobility patterns) extracted from
the mobile phone data, allowing observation of a range of social interactions. A network
can thus be constructed based on the call patterns created by all the individuals making or
receiving calls or messages in the network. A geographical network may, however, be based
instead on spatiotemporal information, with the nodes set as geographic locations (e.g.,
cell towers) and the edges between nodes being represented by the interactions (mobile
phone activity) between pairs of these cell towers.

Cavallaro et al. [91] reconstructed the criminal network of the Sicilian Mafia by ap-
plying SNA tools and matrices to identify key leaders and their reports, such as bosses
and intermediaries. Ficara et al. [94] built a network of suspected criminals based on their
calling information; here, the nodes were represented by suspected members and the edges
were represented by phone call records. Dileep et al. [95] similarly proposed a forensic
detection system to detect the development of suspicious communities based on extracted
phone call records.

Statistical methods and machine learning techniques have also been employed to
predict crime and detect fraud in other ways. For example, Bogomolov et al. [13] extracted
human mobility patterns from mobile phone records to predict crime hotspots in London by
using the Random Forest classifier to classify geographical areas into two classes based on
whether they displayed high or low crime levels. However, Wu et al. [96] criticized previous
data collection methods such as CDRs, Twitter, and Foursquare data in terms of errors
in estimating mobility flows for crime prediction, choosing instead to estimate human
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origin–destination mobility flows using GPS data alongside applied deep learning models
such as the gated recurrent units (GRU) model and the graph convolution network (GCN).

While many existing studies have used correlation and regression analysis to inves-
tigate the relationship between human dynamics and crime spatial–temporal patterns,
Rummens et al. [22] used mobile phone data to investigate whether residential populations
or ambient populations have the greatest positive impact on crime rates; the results showed
a stronger correlation between ambient populations and crime rates, particularly those
for bicycle theft and aggressive theft. Going further, while previous studies examined the
impact of ambient and residential population on crime rates, Long et al. [97] aimed to in-
vestigate the impact of ambient populations on street robbery rates by applying correlation
and regression analysis; they found that the ambient population has a significant effect in
terms of reducing opportunistic street robbery and similar crimes. Long and Liu [98] also
applied discrete choice models to investigate spatial differences in the patterns of two types
of criminals committing street robberies, namely, migrant robbers and native robbers; those
results suggested that migrant offenders tend to commit street robberies outside of the old
town areas, in industrial areas, while native robbers prefer to commit crimes in villages
and older urban areas due to their familiarity with the area, supported by the high mobility
of the population and high socioeconomic heterogeneity.

Some studies have employed mobile phone data to detect suspicious and fraudu-
lent behaviors for telecom companies, such as fraud call detection methods based on
machine learning. Studies [99–101] proposed a range of deep learning models, such as
deep neural networks (DNN), convolutional neural networks (CNN), and graph neural
networks (GNN), to detect fraudulent phone calls, for example. Using unsupervised learn-
ing techniques, such as K-means, density-based spatial clustering of applications with
noise (DBSCAN), and hierarchical clustering, References [102,103] also sought to detect
fraudulent behaviors for telecom companies, such as fraudulent calls and suspicious call
records. Finally, Reference [104] aimed to detect suspicious call behavior by using a range
of supervised and unsupervised learning models, including K-means and Random Forest.

5.2. RQ2: How Can Identifying Empirical Mobile Phone Data Studies to Predict Human Behavior
and Mobility Patterns Contribute to a Clearer Understanding of the Dynamics of Criminal
Behavior Contexts through a People- and Place-Centric Perspective?

This question was designed to explore research that has utilized mobile phone data to
gain a greater understanding of human behaviors and mobility patterns in urban environ-
ments. Experts need to explore people’s actions and activities in the urban areas in which
they live and socialize and classify individuals according to their mobility patterns so that
the authorities can determine population flows in these zones before and during crimes
and provide significant information about criminals’ movements while they are engaging
in criminal activities.

These approaches can generate significant information about the tools and methods
previously used to analyze mobile phone data, as well as provide a broader understanding
of human and/or individual actions and activities.

5.2.1. Human Mobility Patterns in Urban Environments

The spatiotemporal information provided by mobile phone data can help one under-
stand population behavior and mobility patterns in several applications. Investigating
population mobility patterns helps one to understand the way humans live, since such
patterns reflect the places they visit and stay in the most, as well as their movements during
working hours and weekends; thus, many studies use mobile phone data to understand
human mobility patterns. To name a few, Thuillier et al. [19] classified individuals into
6 groups based on their daily mobility profiles to comprehend the mobility flows of individ-
uals inside a territory in southwest Paris. These profiles were developed by leveraging the
spatiotemporal characteristics extracted from mobile phone data. Ghahramani et al. [71]
estimated the frequency of calls at each spatial object (cell towers) to construct a map
of hotspots in China. These studies deal with human mobility in urban settings, where
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crimes are more likely to be committed. Therefore, it is highly important to analyze human
mobility patterns inside the city since understanding where and how populations live
and socialize and classifying individuals based on their mobility can help to understand
population flow [31], which may ultimately help provide information about criminals’
spatial–temporal patterns [67]. This section then reviews important contributions to the
study of mobile phone data in urban settings.

5.2.2. Land Use Inference

Long-standing discussions in several disciplines have focused on the connection be-
tween land use and human mobility patterns [105] extracted from mobile phone data. This
is because understanding the relationship between human activity and land use can help
to provide valuable insights into human dynamics and interactions with their physical
environment, such as depicting human lifestyles in urban areas and how humans interact
and socialize, and investigating the impact of the land use characteristics (commercial,
industrial, residential) on urban crime. Thus, many studies have acknowledged the impor-
tance of classifying land use to understand the relationship between land use patterns and
human activities and interactions.

The classification of land use patterns for visitors or in residential or business areas
can be conducted based on extracting human activity characteristics from mobile phone
data. Specifically, spatiotemporal and call features extracted from mobile phone data can be
used to depict human activity characteristics and infer land use types. For example, Refer-
ences [20,106] explored human activity patterns to infer land use based on spatiotemporal
calling volume patterns. Novovic et al. [45] employed user activity variations in space
and time to depict human activities; commuting flow patterns to infer land use types was
investigated by [107]; and Lenormand et al. [90], along with Ríos and Muñoz [37], inferred
land use based on the temporal changes in human activities.

5.2.3. Spatial Distribution of Mobile Phone Presence from Cell Towers to Census
Spatial Units

Determining the spatial distribution of mobile phone presence in a cell tower’s cov-
erage area is an important step that needs to be resolved before conducting any further
analysis, and it is a common standard procedure for mobile phone data processing. This
requires that the spatial configuration of the base stations of a mobile network be matched
with the census data. In order to match census data with mobile phone data, we must
coincide the spatial scale because the use of different spatial units introduces difficulties
when comparing the datasets [3]. Census data are collected according to geographical areas,
such as blocks, tracts, or at the country level, whereas mobile phone data are collected at
the base station. Thus, the spatial distribution of the base stations should be equal to the
spatial units of the census data.

Identifying the position of a mobile device is based on the location of cell towers,
which serve as a proxy for the mobile device. The cell towers are represented as Voronoi
cells (polygons) using Voronoi tessellation [58]. Voronoi tessellation is used to visualize the
position of mobile phones inside the cell towers’ coverage area, which has been approxi-
mated as a Voronoi region of a cell tower. The Voronoi diagram contains a point for each
cell tower, where the centroid of each point is based on the location of the corresponding
cell tower. The resulting Voronoi cells can be viewed as a partition that corresponds to the
optimum distribution of towers in a geographical area in a cellular network layout in the
real world.

Hence, it is important to perform the spatial distribution of the base stations of a
mobile network such that the bases correspond with predefined census units to obtain a
fine-scale spatial resolution and to represent the spatial scale of the census data collected
at a spatial unit with the mobile phone data collected at the cell towers. This entails the
matching of the spatial configuration between the base stations and the census data, which
represent the same geographical units.
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6. Discussion

Previously, this work reviewed the mobile phone data domain and its applications in
the areas of crime analysis and urban sensing, developing a consistent taxonomy based on
a scientific approach in which studies can be classified at the first level based on human
behavior analysis, then subcategorized based on the mobile phone data types used, before
being finally classified based on applications derived from each mobile phone data type.
This taxonomy helps to answer the research question, shed light on the current state of
mobile phone data applications and the current investigation trends in mobile phone data,
and highlight existing research gaps. This process was followed by the formulation of
two research questions intended to investigate human behavior from both mobility and
communication perspectives, the investigation of which helped to generate significant
information about the tools and methods previously used to analyze mobile phone data as
well as providing a broader understanding of human and individual actions and activities.

The purpose of this section is thus to discuss privacy concerns and investment behavior,
and shed light on the emerging common challenges.

6.1. Privacy Concerns and Ethical Implications

Previously, this work discussed the benefits that such data can provide for the com-
munity and researchers in terms of fighting crime, detecting congestion zones, enhancing
urban infrastructure design and urban planning, fighting epidemics, and preventing the
spread of infectious diseases. However, mobile phone data are subject to various limita-
tions, including the risk of privacy breaches due to their containing sensitive information
about individuals’ locations and their communication information. The potential for a
breach of these sensitive details thus raises both privacy concerns and ethical questions
about the use of such data.

Various privacy-preserving techniques have been suggested to address this issue.
Arcolezi et al. [108] proposed the use of local differential privacy (LDP) techniques, in
which each user’s CDRs data are sanitized in the server held by the mobile network oper-
ator (MNO) before any data collection processes are performed, while Arfaoui et al. [50]
proposed the application of specific anonymization techniques, such as suppression, k-
anonymity, and L-diversity, to help guarantee anonymity and prevent personal identifi-
cation of users. To protect mobile phone users’ location privacy, Gramaglia et al. [109]
also proposed a privacy model based on the application of generalization and suppression
techniques to achieve k-anonymity in terms of mobile phone spatiotemporal trajectories.

Some authors have also provided recommendations with regard to the multiple ethical
implications of such data use. Vespe et al. [110] suggested the development of an expert
group of telecommunication engineers, data scientists, lawyers, and data protection and
ethics experts, with the aim of addressing various scientific challenges to develop sound
data security and protection protocols, alongside the establishment of an Ethical Committee
to take on the mission of considering all ethical aspects of work in this field. Similarly,
Cinnamon et al. [111] encouraged researchers to facilitate the development of global mobile
data usage guidelines, regulations, and standards to provide rapid, secure data access for
organizations and researchers that included rapid and efficient techniques for detecting
gaps and biases in mobile phone data. Boenig-Liptsin et al. [112] developed a data science
lifecycle framework that aims to educate data science students and researchers about the
ethical elements of their work and teach or promote ethical principles for responsible
data science.

However, privacy implications and ethical concerns still represent challenging ob-
stacles in terms of the use of mobile phone data. In particular, most existing solutions
and recommendations have been based on theoretical frameworks rather than empirical
work, many of which are impractical and do not conform with national and interna-
tional data protection regulations. Most existing privacy techniques thus rely heavily on
anonymization solutions.
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Recently, mobile phone data have been widely used to combat the spread of infectious
diseases in emergency situations such as the COVID-19 pandemic and to prevent criminal
activities such as terrorist attacks and street robberies. Ignoring the previous advantages of
mobile phone data in enhancing quality of life and ensuring citizen safety, some fears and
ethical implications have been raised about the violation of people’s privacy and liberty and
the imbalance of justice between the right to preserve personal data and law enforcement.
However, during emergency situations and natural disasters, government surveillance
operations serve to enforce laws against terrorism and serious crime and to place restrictions
on people’s basic liberties [113]. For example, in an emergency situation in which suspected
terrorists are suspected of criminal activities, the acquisition of their mobile phone data
is warranted for forensic analysis and real-time monitoring of their mobility dynamics.
Thus, in some cases, it is difficult to strike a balance in data protection during dangerous
situations such as terrorist attacks. In addition, creating a balance between controlling
national security threats and preserving the personal privacy of suspected phone users is
questionable when it comes to the public security and safety of citizens, which are more
important than preserving users’ data rights.

Mobile phone data are not the only critical data form that suffers from privacy com-
plications; such concerns have been an ongoing topic with regard to other mobile sensing
data. With the growing popularity of mobile wireless devices equipped with various kinds
of sensing abilities and a plethora of on-board sensors, the emergence of a large variety
of people-centric mobile crowd-sensing (MCS) systems has been rapid [114,115], raising
additional concerns. As a result, MCS has become the main emerging sensing paradigm
for large-scale sensing applications [116], and it is now used in a range of applications
that includes urban dynamics mining, public safety, traffic planning, and environmental
monitoring [117].

Mobile crowd-sensing systems are designed to collect city-wide spatiotemporal
data [118] from a range of embedded and connected sensors such as GPS sensors, air
quality sensors, cardio meters, and health care sensors [119]. However, although these
recordings of valuable information offer various benefits for communities in terms of
transportation planning and developing public health in communities, such data contain
sensitive spatiotemporal information about individuals, such as home addresses, work
locations, and health records, which may create possible threats to user privacy if such data
are misused or re-identified [120] by attackers.

Privacy-preserving mobile crowd-sensing systems have thus been proposed to pre-
serve and protect user privacy. Agir et al. [121] proposed a form of location privacy
protection based on location obfuscation techniques while preserving worker location
privacy. Jin et al. [122] designed an auction-based incentive mechanism for MCS systems
that enabled data owners to sell location trace information and choose the level of location
information to disclose to the MCS system. Chen et al. [123] also proposed a blockchain-
based, decentralized framework for MCS systems that aimed to detect fake tasks input by
malicious requesters as well as guarantee the task information was not tampered with.

This study contributes to addressing such aspects of privacy concerns in data formats
such as MCSs by examining how the approaches proposed can preserve user privacy and
protect their information. This is conducted to allow other privacy-preserving mechanisms
to be adopted in a mobile phone data context, helping scholars discover new tools and
mechanisms for protecting and preserving user privacy.

6.2. Investment Behavior

In recent years, advances in artificial intelligence and sensor technology as part of the
technological revolution have influenced investment behavior and provided opportunities
for corporate development [124,125]. Investments in the field of healthcare have produced
highly advanced sensor technology, and many technology companies have invested in
digital health products, such as new screening interventions and diagnostic testing. For
example, the conversion from the Sanger sequencing method to parallel processing tech-
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nologies in next-generation sequencing (NGS) has resulted in a significant decrease in
the cost of whole-genome sequencing over the past 13 years [126]. There have also been
advances in microfluidic technology and devices used to investigate cancer biology and
cancer diagnostics. Microfluidic devices are favored for cancer cell detection because of
their high sensitivity, control of fluids in the range of micro- to picoliters, and low cost [127].
Similarly, as the high-precision scientific research industry rapidly grows, so do the de-
mands for extremely sophisticated sensor technologies [128]. For example, Reference [129]
proposed a photonic spin Hall effect (PSHE) sensor with high sensitivity and the ability to
detect both cancer cells and biomedical blood glucose. Thus, with the emergence of health
technologies and technological advances in healthcare, individuals are able to make better
decisions on how to invest in their health based on the available technology, and firms
are able to make better decisions about investing in technology that is both profitable and
effective at disease prevention, diagnosis, and cure.

Advances in agricultural technology have also played an important role in farmers’
investment intentions and willingness to invest [130]. Despite the fact that investments in
big data analytics solutions are still risky and the cost is substantial [131], firms that invest
effectively can benefit from increased customer satisfaction and market performance [132].

6.3. Challenges

Although mobile phone data have proven useful in various domains and disciplines
with respect to understanding human behavioral patterns, the literature shows a number
of serious issues and challenges arising with regard to data access and analysis.

6.3.1. Data Acquisition Challenges

While accessing the required datasets in any study may be hard work, mobile phone
data can be among the most difficult to access for several reasons. In particular, mobile
phone data at the individual level (CDRs data) contain a wide range of sensitive details
about personal characteristics that may expose a person’s identity and personal characteris-
tics. Calabrese et al. [3] thus recommended the use of mobile phone data at the aggregated
level and at the cell tower level. However, mobile phone data at the cell tower level lacks
calling information, and it is thus not suitable for applications related to human social
interactions and communication behaviors. The literature also shows that the use of mobile
phone data at the individual level in criminology studies always requires permission from
police and law enforcement, which might be a long process.

Several studies have attempted to provide solutions and recommendations to protect
and ensure data privacy so as to facilitate access to mobile phone data, such as that
conducted by De Montjoye et al. [133], who proposed a remote access model wherein
mobile phone data are held by mobile phone operators. However, accessibility remains a
significant barrier to using mobile phone data, as governments and businesses are reluctant
to make such data public due to privacy concerns [31].

6.3.2. Data Analysis Challenges

The first challenge arising during analysis is that mobile phone data are unlabeled,
causing issues around later labeling, especially in supervised ML approaches that require
a model to be trained with ground truth data. In the absence of ground truth data, some
studies have turned to the use of semi-supervised models in which the model is primed
with a small amount of labeled data, such as [20,78], with still others relying on a process of
data annotation using domain experts and manual labeling, such as in [39,40,134]; however,
the latter requires a lot of manual work.

6.3.3. Challenges Related to the Standardization of Mobile Phone Data Keywords (Terms)

In the literature, we found that there was misunderstanding and misuse of the correct
terms for each mobile phone data type. For example, several studies have used various
terms or keywords that refer to the mobile phone data, with “the mobile phone data”
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and “call detailed records data” being the most frequently used in the vast majority of
articles. This makes it difficult to search for related papers on this topic. More specifically,
when reporting relevant journals and conference proceedings that focus on the topic of
mobile phone data in a systematic literature review (SLR), the inconsistent use of keywords
by authors makes it infeasible to create search strings that cover all studies within the
aforementioned domain. Furthermore, some papers completely omit the relevant “mobile
phone data” terms from their keywords or abstracts, necessitating extra time to be dedicated
to scanning the full text of such papers, which is a considerably tedious and inefficient job.

7. Problem Definition and System Model

This section defines the current problem in mobile phone data with regard to detecting
criminal behaviors and proposes a system model to overcome the current challenge.

Problem definition:
The current state of mobile phone data in the context of detecting criminal behaviors

and dynamics is still incomplete and inaccurate [4] due to challenges in mobile data pre-
processing and analysis.

The problem with pre-processing mobile phone data comes from the fact that raw data
can be rough, noisy, and sparse, making it hard to work with. Therefore, the data must be
cleaned and preprocessed before being used [71,72,100]. Additionally, during analysis, the
use of incomplete or partial mobile phone data, missing values, and partial information
(incomplete mobility and calling information) can result in the misleading and inaccurate
detection of criminal behaviors and a partial aspect of human behavior [4,79,135,136]. As a
result, there is a need to address the issues of incomplete and inaccurate preprocessing and
analysis of mobile phone data to improve the detection of criminal behaviors and dynamics.

Proposed model:
Based on a review of the available literature, a forensic analysis system for the detection

of criminal behaviors and dynamic activity is proposed for future research. Figure 14 illus-
trates the different steps of the criminal detection model, which is composed of two stages.

The first stage incorporates mobile phone data at two levels (individual and cell tower
levels) to capture different aspects of criminal behaviors (communication behaviors, social
networks, and mobility patterns). This stage is then followed by data preprocessing and
feature extraction, with several tools and techniques applied, including spatial mapping,
feature dimensionality reduction, and uncertainty reduction methods.

The first step in the first stage is the data collection process, which includes the gather-
ing of two types of mobile phone data: mobile phone data at the individual level (CDRs),
which can represent the mobility and communication records of suspected criminals, and
cell tower location data, which represents a larger sample of the general population, in-
cluding victims, criminals, suspects, and visitors, with the latter indicating individuals’
locations at the moment a crime takes place based on their use of cell towers in the crime
area location. These can thus be used to investigate the relationships between human
dynamics and interactions and spatiotemporal crime patterns, along with crime scene
data that provides spatiotemporal information on crime incidents according to the official
records. The second step is the preprocessing of mobile phone data, which includes the
extraction of stay points to detect home location and other meaningful location and spatial
mapping techniques to intersect or project mobile network cells into spatial units. The
third step involves feature extraction, which helps describe criminal behaviors in terms of
spatiotemporal features and call features.
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The second stage itself is composed of two steps: analysis and validation. In the
analysis step, the construction of a detection model is performed using multiple machine
learning classifiers to classify individuals as criminals and non-criminals, thus constructing
a classifier that enables the recognition of criminal activities based on spatiotemporal and
phone use features. These algorithms are then evaluated to determine the most effective
ones, which should yield better results than the other classification algorithms. The results
are then used to build up a criminal network of suspected criminals based on applying
social network analysis tools and metrics. The construction of a criminal network is
conducted to assist law enforcement and crime agencies in identifying the most influential
members (who issue commands) and low-level members in a criminal network, clarifying
each member’s role in the relevant criminal organizations. The final step is to evaluate
the detection model in terms of its accuracy in detecting criminal activity, and this also
involves evaluating the model results with the help of forensic experts.
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8. Future Research Directions, Conclusions, and Limitations

The present review of the existing literature reveals possible directions for future
research. The findings highlight aspects that should be considered with regard to data
collection, data preprocessing, data analysis, and other considerations.

8.1. Data Collection

While collecting mobile phone information, researchers need to consider some points.
First, these data should be obtained from leading mobile network operators with a min-
imum market share of 40–50% and a network providing spatial coverage for 95% of the
target population, although these criteria can vary depending on the studies’ goals. Sec-
ond, researchers need to collect mobile phone data with a full range of users’ attributes,
including mobility and communication characteristics. Records that lack all or part of this
information hamper analyses and make interpretations of human behavior difficult or even
provide misleading evidence.

Last, anonymization is another important step that helps safeguard personal pri-
vacy. Before mobile phone data depart storage facilities, mobile telecom operators must
anonymize subscribers’ phone numbers and replace them with a unique security iden-
tity [5]. During analysis, k-anonymity techniques and approaches should be applied to
avoid exposing personal characteristics or leaving enough patterns to reveal individual
users’ identities.

8.2. Pre-Processing Steps
8.2.1. Labeling Home and Other Meaningful Locations

Previous research has shown that identifying home and other meaningful locations
is a crucial step in handling mobile phone data, which is part of pre-processing this
information so that further analyses can be conducted using this information, as has been
conducted in multiple studies [13,18,34,52,67,137]. Identifying these locations provides a
better understanding of human mobility patterns and increases the comprehensiveness
of the conclusions that can be drawn from the data. For example, Griffins et al. [12] first
established the location of criminals’ homes to clarify their involvement in terrorist attack
plots since criminal activities often take place at or near frequently visited locations and
criminals often commit crimes close to where they live.

8.2.2. Mapping Population Distribution

The geographical distribution of mobile phone users can be determined based on
cell towers’ coverage areas. This crucial step must be completed before proceeding with
any further analysis. Defining geographical distribution is, more specifically, a standard
technique used in mobile phone data, which has been conducted in multiple studies [57–63].
It requires a correspondence between census or land cover data and the spatial structure
of a mobile network’s base stations because unevenly distributed cell towers will hamper
any attempt to map population distribution. Each mobile phone’s geographical location is
assigned to a specific cell tower that provides the network signal, so mobile phone location
data’s accuracy depends on the towers’ coverage area. The literature shows that researchers
often allocate their target population to 1 km- or 500-m-grid cells using methods such as
Voronoi tessellation, areal weighting, and dasymetric interpolation.

For instance, Deville et al. [6] applied areal weighted interpolation to the spatial
distribution of each cell tower’s coverage area matching a specific spatial unit in order
to map the relevant population’s presence at that tower. The spatial unit used can vary
between studies and can represent blocks, tracts, administrative units, or any other division
that reflects how census data were collected. Deville et al. [6] calculated—for each cell tower
j simulated and delineated as a Voronoi cell—the population density based on the number
of calls or mobile phone presence per cell tower (σci), in which ci denotes the Voronoi cell



Sensors 2023, 23, 4350 42 of 49

associated with cell tower j. Equation (2) was used to estimate mobile phone presence σcj

for an area of unit ci that intersects cj:

σci =
1

Aci
∑cj

σcj
(
ci ∩ cj

)
(1)

in which Aci is spatial unit ci’s area and A(ci ∩ cj) is the intersection between unit ci’s area
and Voronoi cell cj.

8.3. General Recommendations
8.3.1. Recommendations for Improving Interpretation and Justification

Providing a theoretical explanation can play a key role in interpreting differences in
results. Justification is absent from the existing literature due to the absence of validation
data, so Vanhoof et al. [69] observed that researchers could have trouble discussing re-
sults on a theoretical level and determining which outcomes and approaches are better.
Blondel et al. [1] also mentioned the need to provide theoretical explanations along with
empirical evidence, which can facilitate the interpretation of variations in results and,
subsequently, the determination of which findings are significant.

8.3.2. Recommendations for Considering Spatiotemporal Information

Extracting spatiotemporal characteristics to visualize the geographical location of
nodes (to visualize the spatial distribution of nodes, or subscribers, in a social network)
has been missing in many studies, and current studies rely either on communication
information or spatial information to construct social networks. Thus, we recommend
including spatiotemporal information with communication information to investigate the
interplay between criminal mobility patterns and social interactions. For instance, previous
studies [10,11,28] have not considered spatiotemporal information to detect criminals (i.e.,
the geographic position of nodes is unknown) and have overlooked the spatial position
of a node that can connect it to a crime scene or area. Moreover, geographic proximity
offers opportunities for face-to-face interactions between individuals. Thus, during graph
partitioning into groups of nodes, their geographic locations should be considered to be
where nodes have a geographic position.

In addition, the identification of important members was founded on features extracted
from communication information and conducted by placing a weight on the edges between
nodes (criminals), such as the maximum number of outgoing phone calls or messages and
call duration. Therefore, location data will play an important role in the weighting in that
some nodes may not reflect the importance value of a given node in criminal networks.
Thus, weighting edges by considering criminals’ mobility patterns could affect results,
since the weights of edges reflect their relational strength between the network’s vertices.

Furthermore, few studies have attempted to investigate the relationship and interplay
between all aspects of human behavior (mobile communication behavior, social networks,
and mobility patterns). This suggestion should arise more in the future for investigating
the interplay between communications, social interactions, and mobility patterns through
the lens of mobile phone data.

8.3.3. Recommendations to Build a Data-Driven Approach

The study results show that various spatiotemporal and call features have been ex-
tracted from mobile phone data to depict or capture criminal behaviors and activities [4].
However, there is no generalized approach in which mobility and social (communication)
characteristics can be extracted to capture human behavior, as the literature shows that
there are various and multiple spatiotemporal and temporal scales to characterize human
and criminal behaviors. Thus, a data-driven framework is needed to determine which
measurements and characteristics can be extracted from mobile phone data to visualize
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and depict different aspects of criminal behaviors, as well as to differentiate and generalize
all features and their different functionalities.

8.3.4. Recommendations for Labeling Mobile Phone Data

As mobile phone data are unlabeled, semi-supervised approaches are needed to tackle
this issue. A small number of labeled data can be obtained from surveys, censuses, or other
geospatial data sources, such as training samples. Mobile phone data can also be labeled
by domain experts.

8.4. Conclusions and Limitations

This study conducted an SLR to gain comprehensive, up-to-date insights into the
current state-of-the-art methods and techniques utilizing mobile phone data in crime-
control applications, as well as research that has used mobile phone data to investigate and
predict human actions and mobility patterns with reference to urban sensing, which can
significantly assist researchers in forming a complete picture of all related crime dimensions.
By including studies that have utilized mobile phone data to understand and predict human
behavior, the present review made an important contribution to what topics need to be
included and discussed to provide a complete understanding of how such studies can help
meet objectives in this area. Exploring the movements of human beings in urban areas
enables researchers to gain more profound insights into how humans live and the places
they most often frequent. The present investigation thus examined the current state of
mobile phone data usage in criminology research and shed light on the methods employed
to process these data in order to understand the dynamics of human behavior and mobility
in the context of urban sensing applications. The latter include estimating and mapping
population density, inferring the correlations between human dynamics and land use, and
detecting home and work locations.

This study was the first to review the research focused on human mobility and com-
munication behavioral patterns and to make both variables the SLR’s main focus in crime
applications, in combination with a lesser emphasis on urban zones. The review covered
the most prominent results reported thus far, in particular, analyses of mobile phone data
in criminology. The current research is concentrated on detailed data processing and
analysis techniques used to understand mobile phone data. The results also include a list
of recommendations regarding which techniques and features to use and a discussion of
the extant lacunae and obstacles to help researchers and scholars better plan their studies.
In addition, the SLR explored which applications have been derived based on human
behavioral patterns extracted from mobile phone data.

Although the present research’s approach was based on standard SLR methodology,
this study was still subject to limitations. First, the review was intended to provide up-
to-date comprehensive coverage of the chosen topic, but the results are neither complete
nor should they be regarded as a definitive summary of all the related research. This
limitation is primarily due to the exclusion of relevant academic material published in
other languages. Nonetheless, the studies included in this review were carefully selected
from eight databases and published in international journals. A number of other relevant
journals may also have fallen outside the scope of the current review. Those excluded cover,
among others, studies of churn prediction, the transportation sector (e.g., transportation
planning, transportation mode detection, and commuter trips), anomaly detection, and the
epidemiology of infectious diseases, such as COVID-19, in which human mobility patterns
have been investigated. These publications were left out because of the large body of
literature available and the chosen research objective.

Last, the findings provide unique and potentially useful contributions to the field of
criminology, including supporting the conclusion that mobile phone data’s applications in
the crime domain still have great potential for further extending the existing knowledge.
These approaches can be adopted to explore other domains. On a technical level, the
existing analytical perspectives on mobile phone data are somewhat similar in all academic



Sensors 2023, 23, 4350 44 of 49

fields that mainly focus on human communication behaviors and mobility patterns. For
example, human mobility analyses have been widely conducted in many domains as
part of varied practical applications in which mobile phone data facilitated the capture of
individuals’ spatial–temporal mobility patterns in a range of human activities associated
with urban zones, crime, transportation, and the COVID-19 pandemic. Researchers can
adopt more of the techniques and approaches applied in other areas, as well as combine
two or more methods, to develop the current understanding of human mobility and
interactions further.

In addition, the experiments reported in the mobile phone data literature have often
incorporated a variety of different setups and assumptions, each adjusted to complement
the techniques applied. In other words, the empirical research conducted with these data
has involved various contexts and applications designed to serve each study’s purpose.
The current SLR provided a broad overview that can help scholars decide which tools serve
their purpose best and discover new uses, thus opening up the possibility of broader—and
fewer limitations on—applications so that they can be tailored to serve each study’s specific
goals. This finding further justifies this SLR’s consideration of other experiments conducted
in different contexts.
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