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Abstract

In this paper we study the problem of estimating unknown parameters of a two-
parameter distribution with bathtub shape under the assumption that data are type I
progressive hybrid censored. We derive maximum likelihood estimators and then obtain
the observed Fisher information matrix. Bayes estimators are also obtained under the
squared error loss function and highest posterior density intervals are constructed as well.
We perform a simulation study to compare proposed methods and analyzed a real data set
for illustration purposes. Finally we establish optimal plans with respect to cost constraints
and obtain comments based on a numerical study.

Keywords: EM algorithm, Tierney and Kadane method, Metropolis-Hastings algorithm, Opti-
mal plan

1 Introduction

The reliability and life testing studies over the years have traditionally focused on finding pro-
cedures and appropriate statistical methods required for the analysis of various lifetime data.
The common framework under which such studies are modelled is closely related to a series of
censoring methodologies in the context of which inferences for any reliability data are made for
further interpretations. In literature, several censoring methodologies have been discussed to
study different observable physical phenomena. In this view, we mention that type I and type
II are two most common censoring schemes which are widely used in reliability and life testing
experiments. In type I censoring a total of n test units are subjected to a life test and the
experiment stops when a prescribed time point t reaches. The number of observed failures is
random in this censoring. On the other hand in type II censoring a test stops when a prescribed
r number of failure times is recorded. Here duration of the test is random in nature. In these

∗Corresponding author : Yogesh Mani Tripathi (yogesh@iitp.ac.in)

1



Chen distribution

two respective censoring it may happen that very few observations are recorded during a fixed
time period or that the test has to run for very long duration to obtain a prefixed number
of observations. To deal with such situations, Epstein [11] introduced the concept of hybrid
censoring as a mixture of type I and type II censoring. In this censoring an experiment stops
at random time point min{Xr:n, t}. It should be further noticed that live units from such ex-
periments can be withdrawn only at the end of a test. We now briefly describe the concept of
type II progressive censoring where live units can be removed during the experimentation also.
At the time of first failure, the s1 number of units are randomly removed from the remaining
n−1 test units. Similarly at the time of second failure, the s2 number of live units are randomly
removed from the remaining n − s1 − 2 test units. Finally, when rth (≤ n, prefixed) failure
occurs the test stops and all the remaining live units are removed from the test. Note that we
have n = r+

∑r
i=1 si and (s1, s2, . . . , sr) is referred to as the progressive censoring scheme with r

being a prescribed number. One may refer to Balakrishnan [3] and Balakrishnan and Aggarwala
[2] for a comprehensive discussion on progressive censoring. We next describe the concept of
type I progressive hybrid censoring. Let n test units be put on a life test and their lifetimes are
recorded. Then at the time of first failure the s1 number of units are randomly removed from
the remaining n− 1 live units. Similarly when the second failure is observed then s2 number of
units are randomly removed from the remaining n− s2 − 2 units and so on. The process stops
at a random time min{Xr:n, t}. In case Xr:n > t, let k denote the number of failures before
time t then observe data turn out to be X1:r:n, X2:r:n, . . . , Xk:r:n. Further the remaining live
units s∗k = n − k −

∑k
i=1 si are withdrawn at time t and experiment stops. Tomer and Panwer

[30] studied a one-parameter Maxwell distribution based on type I progressive hybrid censoring
scheme. Authors derived point and interval estimation procedures for the unknown parameter
using classical and Bayesian methods. They compared obtained procedures using simulations
and presented analysis of a real data set in support of proposed methods. Kayal et al. [15] ob-
tained classical and Bayes estimates of unknown parameters of a Burr XII distribution using this
censoring scheme. The problem of one-sample Bayesian prediction is also discussed. Recently
Kundu and Joarder [17] studied another generalized form of progressive censoring, namely the
type II progressive hybrid censoring and studied a one-parameter exponential distribution. Lin
et al. [20] discussed an adaptive type I progressive hybrid censoring and analyzed a Weibull
distribution based on this censoring.

In many lifetime analysis reliability data are often studied based on their hazard rate char-
acteristics and usually different censoring methodologies are then applied to obtain inference
for unknown quantities of interest. The most common hazard rate functions that are used to
analyze various physical phenomena for a wide variety of problems are constant, increasing or
decreasing in nature. This is the case where generalized exponential, gamma, Weibull and log-
normal distributions have found wide applications, among others. It is however quite difficult to
develop adequate inference using these models if data sets exhibit bathtub-shaped hazard rate
function because of their specified characteristics. Nevertheless these models have been applied
extensively in such studies, see for instance Kundu [18], Pradhan and Kundu [24], Singh et.al.
[28] and references cited there-in. Davis [9] analyzed breakdown behavior for a number of motor
buses and concluded that initial few failures of such buses cannot be model appropriately with
exponential distribution. Later on Smith and Bain [27] studied this data using an exponential
power distribution. Hjorth [14] showed that a bathtub model provides good fit to the failure
data observed on hydromechanical devices that drive electric generators in aircraft with constant
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revolutions per unit time. In fact, bathtub shaped distributions are derived as an important
class of models that can be used to study wide variety of problems in reliability and life testing
experiments. Block and Savits [7] mentioned that failure process of various electronic compo-
nents such as electric switches and lamps, circuits often lead to the study of bathtub shaped
models. One may also refer to Bebbington, Lai and Zitikis [5, 6] for some further applications
of such distributions in life testing experiments. In this paper, we study a two-parameter dis-
tribution as proposed by Chen [8] The probability density function (PDF) of this distribution
is of the form

f(x; η, λ) = ηλxλ−1 exp
[
η
(

1− exλ
)

+ xλ
]
, 0 < x <∞, 0 < η <∞, 0 < λ <∞, (1.1)

and the corresponding cumulative distribution function (CDF) is given by

F (x; η, λ) = 1− exp
[
η
(

1− exλ
)]
, x > 0, (1.2)

where η and λ denote unknown shape parameters. In sequel and for further use we denote this
distribution as B(η, λ). It is known that hazard rate function of this distribution is bathtub
shaped for 0 < λ < 1 and is increasing otherwise. In practical studies many empirical phenom-
ena lead to bathtub shaped hazard rate functions, e.g. Rajarshi and Rajarshi [25]. At recent
past, this model has gain some interest among researchers. Wu [31] derived maximum likelihood
estimates of unknown parameters η and λ based on progressive censoring and also studied the
problem of interval estimation. Author compared proposed methods using a simulation study
and obtained comments based on this study. Rastogi et al. [26] considered Bayesian estimation
against different symmetric and asymmetric loss functions. Ahmed [1] also studied this esti-
mation problem and obtained Bayes estimates of unknown parameters under balanced squared
error loss function. Recently Kayal et al. [16] obtained one- and two-sample Bayes predictive
estimates and also constructed prediction intervals of censored observations under progressive
censoring. They analyzed real data sets in support of proposed methods. In this paper, we con-
sider estimation of unknown parameters under both classical and Bayesian framework assuming
that the samples are type I progressive hybrid censored. The problem of optimal censoring is
also discussed.

We have organized this paper as follows. In Section 2, we consider maximum likelihood esti-
mation using an expectation maximization (EM) algorithm and based on it we further compute
the observed Fisher information matrix. The asymptotic confidence interval (ACI) of unknown
parameters η and λ are also constructed. Next in Section 3, we obtain Bayes estimators of
unknown parameters under the square error loss function. Tierney and Kadane method and
Metropolis-Hastings algorithm are discussed in this regard. Highest posterior density intervals
of unknown parameters are also obtained. We numerically compare proposed methods using
Monte Carlo simulations in Section 4 and a real data set is analyzed in Section 5 for illustra-
tion purposes. Finally in Section 6, we establish optimal plans under cost constraints and a
conclusion is given in Section 7.

2 Maximum likelihood estimation

In this section, we obtain maximum likelihood estimators of unknown parameters based on type
I progressive hybrid censored data. In this regard, let n identical units X1:n, X2:n, . . . , Xn:n be

3



Chen distribution

put on a test whose lifetimes follow a B(η, λ) distribution. Here one of the following cases may
arise {

Case I: {X1:r:n, X2:r:n, . . . , Xr:r:n}, if Xr:r:n < t,
Case II: {X1:r:n, X2:r:n, . . . , Xk:r:n}, if Xk:r:n < t < Xk+1:r:n.

The corresponding likelihood function is then given by

L(η, λ | x) ∝ ηjλj exp[G(η, λ | x)]

j∏
i=1

xλ−1i (2.3)

where

j =


r, Case I,

k, Case II,

and G(η, λ | x) =
∑j

i=1

[
xλi + η(1 + si)(1− ex

λ
i )
]

+ s∗kη(1 − et
λ
). We note that for j = r the

equation 2.3 yields type II progressive censoring which is Case I. We denote xi:r:n by xi for nota-
tional convenience. Note that likelihood equations can be obtained by partially differentiating
the equation 2.3 with respect to unknown parameters η and λ. We observe that it is difficult to
solve likelihood equations analytically due to their non-linear nature. However, one can employ
some numerical methods to obtain the required estimates of unknown parameters. Here instead
we propose to apply an EM algorithm for this purpose. One may refer to Dempster et al. [10]
(also, Ng et al. [23]) for further details on this method. Now suppose that X = {X1, X2, . . . , Xj}
denotes the observed samples and Y = {Y1, Y2, . . . , Yj} denotes the censored samples with each
of Yd representing a 1 × sd vector such that Yd = (Yd1, Yd2 . . . , Ydsd), d = 1, 2, . . . , j and that
Y ∗ = (Y ∗1 , Y

∗
2 , . . . , Y

∗
s∗k

). Then the complete sample is given by W = (X, Y, Y ∗). We now write
the associated log-likelihood function as

l(η, λ | x) = lnL(η, λ | x) ∝ n′ ln η + n′ lnλ+ (λ− 1)

j∑
i=1

lnxi + η

j∑
i=1

(1− exλi ) +

j∑
i=1

xλi

(λ− 1)

j∑
i=1

si∑
v=1

ln yiv + ln

j∑
i=1

si∑
v=1

(1− eyλiv) +

j∑
i=1

si∑
v=1

yλiv + s∗k(ln η + lnλ)

+(λ− 1)

s∗k∑
v=1

ln y∗v + η

s∗k∑
v=1

(1− ey∗
λ

) +

s∗k∑
v=1

y∗
λ

. (2.4)

In the E-step, we find the pseudo log-likelihood function as

lc(η, λ | x) ∝ n ln η + n lnλ+ (λ− 1)

j∑
i=1

lnxi + η

j∑
i=1

(1− exλi ) +

j∑
i=1

xλi + (λ− 1)

j∑
i=1

siA(xi, η(m), λ(m)) + η

j∑
i=1

siB(xi, η(m), λ(m)) +

j∑
i=1

siC(xi, η(m), λ(m))

+s∗k[ln η + lnλ+ (λ− 1)A(t, η(m), λ(m)) + ηB(t, η(m), λ(m)) + C(t, η(m), λ(m))]

(2.5)
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where

n′ = k+
k∑
i=1

si, A(c, η, λ) = E[ln yiv | yiv > c] =
1

λ(1− F (c; η, λ))

∫ c′

0

ln(ln(1−1

η
u)) du, c′ = exp[−η(ec

λ − 1)],

B(c, η, λ) = E[1− eyλiv | yiv > c] = − 1

1− F (c; η, λ)
[c′′e−ηc

′′
+
e−ηc

′′

η
], c′′ =

1

η
ln

1

c′

and

C(c, η, λ) = E[yλiv | yiv > c] =
1

1− F (c; η, λ)

∫ c′

0

ln(1− 1

η
u) du.

Now in the M-step, we maximize expression (2.5) with respect to η and λ. If (η(m), λ(m)) denotes
the mth stage estimate of unknown parameter (η, λ) then updated (m+ 1)th stage estimate of
λ is obtained by solving the following non-linear equation

n′ + s∗k
λ

+

j∑
i=1

lnxi− η̂(λ)

j∑
i=1

ex
λ
i xλi lnxi +

j∑
i=1

xλi +

j∑
i=1

siA(xi, η(m), λ(m)) + s∗kA(t, η(m), λ(m)) = 0.

(2.6)
The corresponding updated estimate of η is then be derived as

η̂(λ) = − n′+s∗k∑j
i=1[(1−e

x
λ(m+1)
i )+siB(xi,η(m),λ(m+1))]+s

∗
kB(t,η(m),λ(m+1))

.

We continue this iteration process until the desired convergence is achieved. We next discuss
the observed Fisher information matrix. The Fisher information matrix is useful in constructing
the asymptotic confidence intervals of unknown parameter θ = (η, λ). We here use the method
of Louis [21] for this purpose which suggest that

IX(θ) = IW (θ)− IW |X(θ) (2.7)

where IX(θ), IW (θ) and IW |X(θ) represent the observed, complete and missing information ma-
trix respectively. We also have

IX(θ) = −E
[
∂2Lc(W ; θ)

∂θ2

]
, IW |X =

j∑
i=1

I
(i)
W |X(θ) + s∗kIW |t(θ),

with

I
(i)
W |X(θ) = −EYi|x(i)

[
∂2 ln fYi(yi|x(i), θ)

∂θ2

]
and

IW |t(θ) = −EY ∗|t
[
∂2 ln fY ∗(y

∗|t, θ)
∂θ2

]
.

We compute elements of respective matrices in Appendix A1. Accordingly the corresponding
variance-covariance matrix of MLEs can be obtained as I−1X (θ). The corresponding 100(1 −
p)%, 0 < p < 1 asymptotic confidence intervals for η and λ can now be constructed using the
variance-covariance matrix.
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3 Bayesian estimation

In this section, we obtain Bayes estimates of unknown parameters η and λ based on type I
progressive hybrid censored data. The squared error loss function is taken into consideration for
this purpose. Following Rastogi et al. [26] and Ahmed [1] we assume that unknown parameters
η and λ are a priori distributed as gamma G(a′, b′) and G(p′, q′) distributions respectively. We
further note that when both the parameters of Chen distribution are unknown, the joint conju-
gate prior distributions do not exist. In such situations it is reasonable to consider independent
gamma prior distributions for these unknown parameters. Such priors are quite flexible in na-
ture and include noninformative priors as well. One may refer to Kundu and Pradhan [19] for
further details on this topic. Thus the joint prior distribution of η and λ is given by

π(η, λ) ∝ ηa
′−1λb

′−1 exp[−(b′η + q′λ)], a′, b′, p′, q′, η, λ > 0, (3.8)

where a′, b′, p′, q′ denote hyperparameters. After a simple calculation, the posterior distribution
of η and λ given type I progressive hybrid censored data turns out to be

π(η, λ | x) = D−1ηj+a
′−1λj+p

′−1 exp[G(η, λ | x)− (b′η + q′λ)]

j∏
i=1

xλ−1i , (3.9)

where D denotes the normalizing constant. The Bayes estimator of a parametric function is its
posterior mean if the loss is squared error. We observe that the corresponding posterior expec-
tation exists in the form of ratio of two integrals which is quite difficult to evaluate analytically
due to the reason that π(η, λ | x) appears in an intractable form. So we need to employ some
approximation method to compute the desired estimates. Here we propose to use the method
of Tierney and Kadane [29] which is discussed next.

3.1 TK method

Let the posterior expectation of a parametric function w(η, λ) be given by

Q(x) =

∫∞
0

∫∞
0
w(η, λ)elp(η,λ|x)+τ(η,λ) dηdλ∫∞

0

∫∞
0
elp(η,λ|x)+τ(η,λ) dηdλ

, (3.10)

where lp(η, λ | x) denotes the log-likelihood function and τ(η, λ) = ln π(η, λ). We now consider

functions ψ(η, λ) = lp(η,λ|x)+τ(η,λ)
n

and φ(η, λ) = ψ(η, λ) + lnw(η,λ)
n

and assume that θ̂ψ and θ̂φ
respectively maximize ψ(θ) and φ(θ), θ = (η, λ). Then using the TK method we can approximate
Q(x) into the form

Q(x) =

√
|Φ|
|Ψ|

exp[n{φ(η̂φ, λ̂φ)− ψ(η̂ψ, λ̂ψ)}] (3.11)

where Ψ,Φ denote the negative inverse Hessian of ψ(η, λ) and φ(η, λ) respectively. Now (η̂ψ, λ̂ψ)
can be obtained by solving the following non-linear equations:

1

n

[
j

η
+Gη(η, λ | x) +

a′ − 1

η
− b′

]
= 0,

1

n

[
j

λ
+Gλ(η, λ | x) +

j∑
i=1

lnxi +
p′ − 1

λ
− q′

]
= 0.
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We further observe that the determinant of the negative inverse of Ψ is |Ψ| = (Ψ11Ψ22−Ψ2
12)
−1

where

Ψ11 =
1

n

[
j

η2
−Gηη(η, λ | x) +

a′ − 1

η2

]
Ψ12 = −Gηλ(η, λ | x)

n

Ψ22 =
1

n

[
j

λ2
−Gλλ(η, λ | x) +

p′ − 1

λ2

]
.

with Gηη(η, λ | x) = 0, Gηλ(η, λ | x) = −
∑j

i=1 e
xλi xλi lnxi − s∗ket

λ
tλ ln t and

Gλλ(η, λ | x) =
∑j

i=1

[
xλi (lnxi)

2 − λ(1 + si)e
xλi xλi (lnxi)

2(1 + xλi )
]
− s∗kηet

λ
tλ(ln t)2(1 + tλ).

Proceeding in a similar manner, we can obtain elements of the matrix Φ. Finally to derive Bayes
estimate of η we take w(η, λ) = η and that for estimating λ we take w(η, λ) = λ in the above
calculations. It should be notice that the TK method is not useful in interval estimation. In
this regard we next discuss a Metropolis-Hastings algorithm which is not only useful in interval
estimation but also can be used to obtain point estimates of unknown parameters.

3.2 MH algorithm

In this section, we obtain Bayes estimates of η and λ and also construct HPD intervals using
an MH algorithm which was originally explored by Metropolis et al. [29] and Hasting [13].
This method is quite useful in situation where a prescribed posterior distribution is analytically
intractable and posterior samples from it can be generated using arbitrary proposal distributions.
The generated samples can be used to make Bayes inference on unknown parameters of interest.
The desired samples from the posterior distribution as given in (3.9) can be generated using the
following steps.

1. Choose an initial guess of (η, λ) and call it (η0, λ0).

2. Set i = 1.

3. Generate %′ from N(lnλi−1, σ
2) with i denoting an iterative stage and σ2 is the variance

of λ.

4. Set λ′ = exp(%′).

5. Generate η′ from the gammaG
(
j + a′, b′ −

∑j
v=1

[
{1 + sv}{1− ex

λ′
v }
]
− s∗k{1− et

λ′}
)

dis-

tribution.

6. Compute Ω = min
{

1, π(η′,λ′|x)λ′
π(ηi−1,λi−1|x)λi−1

}
.

7. Generate a sample u from U(0, 1).

8. if Ω ≥ u, set

ηi ← η′, λi ← λ′
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otherwise

ηi ← ηi−1, λi ← λi−1.

9. Set i← i+ 1.

10. Repeat the steps 2-9 K times.

For computational purpose we discard the initial K0 number of samples and then obtain esti-
mates of η and λ as

1
K−K0

∑K
i=K0+1 ηi

and

1
K−K0

∑K
i=K0+1 λi

respectively. The corresponding 100(1−p)% HPD intervals of unknown parameters η and λ can
be constructed using the method of Chen and Shao [4].

4 Simulation study

In previous sections, we considered point and interval estimation of unknown parameters of
a B(η, λ) distribution based on type I progressive hybrid censored data under classical and
Bayesian approaches. In this section we compare different estimators of η and λ using simulations
in terms of their bias and mean square error values. We arbitrarily take true value of (η, λ) as
(1.5,0.5). We compute MLEs of unknown parameters using an EM algorithm. The Bayes
estimates are derived using the TK method and MH algorithm with respect to the squared error
loss function. We compute these Bayes estimates with respect to gamma prior distributions
with a′, b′, p′, q′ being hyperparameters. Selection of legitimate values to these parameters is
usually based on a priori information. In this regard, suppose that N number of random sample
is available from a B(η, λ) distribution and that (η̂(i), λ̂(i)), i = 1, 2, . . . , N denote corresponding
MLEs of (η, λ). Next suppose that a parameter θ is a priori distributed as gamma with density
proportional to θg1−1e−g2θ, where θ can be either η or λ. Then prior mean and prior variance
are respectively given by g1

g2
and g1

g22
. Now equating the sample mean and sample variance of θ̂(i)

with the prior mean and prior variance, we have

1
N

∑N
i=1 θ̂(i) = g1

g2
and 1

N−1
∑N

i=1

(
θ̂(i) −

∑N
v=1 θ̂(v)

)2
= g1

g22
.

From these equations we get

g1 =
( 1
N

∑N
i=1 θ̂(i))

2

1
N−1

∑N
i=1(θ̂(i)−

∑N
v=1 θ̂(v))

2 and g2 =
1
N

∑N
i=1 θ̂(i)

1
N−1

∑N
i=1(θ̂(i)−

∑N
v=1 θ̂(v))

2 .
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Thus if the unknown parameter is η then corresponding hyperparameters are estimated as
g1 = a′, g2 = b′ and likewise for λ we have g1 = p′, g2 = q′. Following this we compute
hyperparameters by taking N = 1000 and for each N a sample of size 100 is taken into con-
sideration to obtain desired estimates. As a consequence hyperparameters are assigned val-
ues as a′ = 82.0408, b′ = 53.0227, p′ = 127.437, q′ = 248.618. We have computed various
Bayesian estimates of η and λ based on these assignments. In Table 1, we present average
values of all estimates of η and λ with corresponding mean square errors for two arbitrarily
chosen values 0.5, 1 of t. These estimates are computed for different sampling combinations
and censoring schemes, namely h1 = (10, 0∗9), h2 = (7, 1, 0∗5, 2, 0∗2), h3 = (15, 0∗14), h4 =
(8, 7, 0∗13), h5 = (8, 1, 0∗17), 1), h6 = (0∗6, 6, 0∗11, 4, 0), h7 = (5, 0∗24), h8 = (2, 0∗22, 3, 0), h9 =
(15, 0∗10, 5, 0∗8), h10 = (0∗5, 9, 3∗2, 0∗11, 5). Further for each scheme in Table 1, the first two row
respectively correspond to estimated values and MSE for the parameter η and the last two rows
are for the parameter λ. Tabulated values suggest that MLEs of both the parameters compete
quite well with respective Bayes estimates. However, Bayes estimates perform well as far as bias
and MSEs are concerned. Overall we conclude that MH estimates perform better compared
to its competitors. We also observe that with the increase in t efficiency of proposed methods
increase under a given sampling situation. This holds for all tabulated schemes computed under
different setup. In Table 2, we have constructed asymptotic confidence intervals and highest
posterior density intervals of unknown parameters η and λ for different schemes and for two dif-
ferent values of t. For each scheme respective average interval length for η and λ is given along
with corresponding coverage probabilities (CPs). It is seen that length of asymptotic intervals
are wider than those of HPD intervals. Also length of both the interval tend to decrease with
the increase in sample size. Similar behavior is observed for t also. Coverage probabilities of
both the interval remain close to the nominal 95% level.
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Table 1: Average values and MSEs of MLEs and Bayes estimates of η and λ

(n, r) Scheme t = 0.5 t = 1

ML TK MH ML TK MH
(20,10) h1 1.9430 1.9320 1.5380 1.6530 1.6440 1.5380

(0.237000) (0.227000) (0.003648) ( 0.097100) (0.093590) (0.003968)
0.5149 0.5131 0.5116 0.5115 0.5097 0.5120
(0.017080) (0.016920) (0.000355) (0.019480) (0.019310) (0.000370)

h2 1.7980 1.7880 1.5390 1.5940 1.5850 1.5390
(0.139300) (0.132900) (0.003796) (0.077710) (0.075370) (0.003994)
0.5134 0.5117 0.5118 0.5017 0.5009 0.5118
(0.016790) (0.016630) (0.000368) (0.015370) (0.015260) (0.000373)

(30,15) h3 1.9200 1.9100 1.5370 1.6240 1.6150 1.5380
(0.202500) (0.193600) (0.004292) (0.058700) (0.056210) (0.004745)
0.5102 0.5085 0.5117 0.4985 0.4969 0.5112
(0.011440) (0.011330) (0.000405) (0.012100) (0.012020) (0.000406)

h4 1.9090 1.8980 1.5390 1.6180 1.6090 1.5370
(0.191700) (0.183100) (0.004377) (0.057560) (0.055170) (0.004762)
0.5068 0.5052 0.5114 0.4994 0.4978 0.5113
(0.010200) (0.010120) (0.000407) (0.011440) (0.011370) (0.000427)

(30,20) h5 2.2120 2.2000 1.5380 1.7110 1.7030 1.5370
(0.560100) (0.543200) (0.005119) (0.11110) (0.10690) (0.005762)
0.5886 0.5868 0.5113 0.5447 0.5430 0.5113
(0.021270) (0.020880) (0.000432) (0.013750) (0.013530) (0.000447)

h6 1.9400 1.9300 1.5380 1.6150 1.6070 1.5390
(0.278900) (0.269200) (0.005205) (0.085270) (0.082720) (0.005431)
0.5626 0.5609 0.5114 0.5194 0.5179 0.5114
(0.018200) (0.017910) (0.000453) (0.008108) (0.008002) (0.000464)

(30,25) h7 2.4250 2.4130 1.5380 1.8320 1.8230 1.5360
(0.947100) (0.923500) (0.005324) (0.200600) (0.193900) (0.006002)
0.6470 0.6451 0.5114 0.5891 0.5873 0.5114
(0.036100) (0.035470) (0.000447) (0.019240) (0.018860) (0.000467)

h8 2.4260 2.4140 1.5370 1.7400 1.7310 1.5370
(0.962000) (0.938400) (0.005666) (0.169400) (0.164300) (0.006082)
0.6651 0.6632 0.5110 0.5710 0.5692 0.5115
(0.045460) (0.044730) (0.000448) (0.015460) (0.015150) (0.000482)

(40,20) h9 1.7900 1.7810 1.5380 1.5680 1.5600 1.5380
(0.104800) (0.099260) (0.004908) (0.033630) ( 0.032310) (0.005424)
0.4868 0.4985 0.5112 0.4903 0.4888 0.5114
(0.007433) (0.007390) (0.000453) (0.007591) (0.007575) (0.000476)

h10 1.6700 1.6620 1.5390 1.4530 1.4450 1.5380
(0.085980) (0.082510) (0.005220) (0.036780) (0.034160) (0.005216)
0.5023 0.5008 0.5110 0.4808 0.4794 0.5111
(0.0083020) (0.008252) (0.000480) (0.005588) (0.005213) (0.000486)
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Table 2: Average length and CP values of different intervals for α and β

(n, r) Scheme t = 0.5 t = 1

AL CP AL CP AL CP AL CP
ACI HPD ACI HPDI

(20,10) h1 3.5130 0.9694 0.4491 0.9875 2.5130 0.9378 0.4452 0.9720
0.5856 0.9610 0.1649 0.9934 0.5428 0.9410 0.1646 0.9601

h2 3.2670 0.9899 0.4481 0.9909 2.5620 0.9853 0.4456 0.9349
0.5896 0.9716 0.1639 0.9998 0.5441 0.9581 0.1636 0.8920

(30,15) h3 2.7890 0.9492 0.4413 0.9938 1.9770 0.9005 0.4360 0.9856
0.4770 0.9643 0.1611 0.9269 0.4321 0.9350 0.1602 0.9334

h4 2.7900 0.9965 0.4420 0.9336 1.9960 0.9639 0.4361 0.9999
0.4626 0.9667 0.1600 0.9759 0.4238 0.9412 0.1594 0.9851

(30,20) h5 2.9170 0.9967 0.4332 0.9999 1.8310 0.9782 0.4260 0.9993
0.5041 0.9822 0.1583 0.9999 0.4335 0.9722 0.1576 0.9641

h6 2.5490 0.9210 0.4317 0.9998 1.9060 0.9997 0.4290 0.9991
0.4731 0.9765 0.1558 0.9669 0.4251 0.9884 0.1554 0.9954

(30,25) h7 3.0770 0.9996 0.4276 0.9990 1.8090 0.9994 0.4184 0.9982
0.5270 0.9365 0.1570 0.9999 0.4404 0.9630 0.1559 0.9999

h8 3.0080 0.9189 0.4242 0.9988 1.7550 0.9116 0.4178 0.9983
0.5275 0.8868 0.1559 0.9763 0.4335 0.9745 0.1552 0.8756

(40,20) h9 2.3180 0.9551 0.4349 0.9995 1.7330 0.9409 0.4290 0.9995
0.4152 0.9700 0.1556 0.9459 0.3740 0.9477 0.1550 0.9999

h10 2.0900 0.8890 0.4329 0.9999 1.7370 0.9976 0.4311 0.9995
0.3898 0.9732 0.1518 0.9999 0.3726 0.9747 0.1517 0.9999
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5 Data analysis

In this section, we analyze a real data set originally reported in Hand et al. [12]. We have listed
the data set in Appendix A2. The data represent graft survival times in months of 148 renal
transplant patients. We first verify whether a Chen distribution with bathtub shape is appro-
priate for making inference from the considered data. We fitted three more distributions namely
generalized exponential, Weibull and exponential to this data set for comparison purposes. The
maximum likelihood estimates of unknown parameters of competing models along with values
of different model selection criteria like Kolmogorov-Sirnov (KS) statistics, Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) are reported in Table 3. For com-
putational convenience, we divided each data point by 10. The tabulated values indicate that
proposed model fit the data set really good compared to the other distributions. Also in Figure
1, we have provided density plots for all the competing models using the maximum likelihood
method. The corresponding visual analysis suggests that prescribed model can be used to make
desired inference on unknown quantities of interest. We obtain estimates of unknown parame-
ters with respect to different censoring schemes, namely hr1 = (2∗3, 0∗10, 3∗8, 0∗10, 2∗4, 0∗75), hr2 =
(2∗15, 0∗10, 6, 0∗83, 2), hr3 = (, 5∗4, 0∗45, 2∗2, 0∗45, 4, 0∗23), hr4 = (0∗8, 6, 21, 0∗50, 1, 0∗59). The ob-
served data for these scheme are listed below.

Scheme hr1:

0.0035, 0.0068, 0.01, 0.0101, 0.0167, 0.0168, 0.0197, 0.0213, 0.0233, 0.0234, 0.0508, 0.0508,
0.0533, 0.0633, 0.0767, 0.0768, 0.077, 0.1066, 0.1267, 0.13, 0.1639, 0.1803, 0.1867, 0.218, 0.2967,
0.3328, 0.37, 0.3803, 0.4867, 0.6233, 0.6367, 0.66, 0.66, 0.718, 0.78, 0.7933, 0.7967, 0.8016, 0.83,
0.841, 0.91, 0.9233, 1.0541, 1.0607, 1.0633, 1.0667, 1.1067, 1.2213, 1.2508, 1.2533, 1.38, 1.4267,
1.4475, 1.45, 1.5213, 1.5333, 1.5525, 1.5533, 1.5541, 1.5934, 1.62, 1.63, 1.6344, 1.66, 1.7033,
1.7067, 1.7475, 1.7667, 1.77, 1.7967, 1.8115, 1.8115, 1.8933, 1.8934, 1.9508, 1.9733, 2.018, 2.09,
2.1167, 2.1233, 2.21, 2.2148, 2.2267, 2.25, 2.2533, 2.3738, 2.4082, 2.418, 2.4705, 2.5213, 2.5705,
3.1934, 3.218, 3.2367, 3.2705, 3.3148, 3.3567, 3.4836, 3.4869, 3.6213, 3.941, 3.9433, 4.0001,
4.1733, 4.1734, 4.2311, 4.2869, 4.3279, 4.3902, 4.4267.

Scheme hr2:

0.0035, 0.0068, 0.01, 0.0101, 0.0167, 0.0168, 0.0197, 0.0213, 0.0234, 0.0508, 0.0508, 0.0533,
0.0633, 0.0767, 0.0768, 0.077, 0.1066, 0.1267, 0.13, 0.16, 0.1639, 0.1803, 0.1867, 0.218, 0.2667,
0.2967, 0.37, 0.3803, 0.4311, 0.4867, 0.518, 0.6233, 0.66, 0.7667, 0.7733, 0.7967, 0.83, 0.841,
0.8607, 0.8667, 0.88, 0.91, 0.9233, 1.0541, 1.0667, 1.0869, 1.1067, 1.118, 1.2213, 1.2508, 1.4267,
1.4475, 1.45, 1.5333, 1.5525, 1.5533, 1.5541, 1.5934, 1.62, 1.63, 1.66, 1.67, 1.6933, 1.7475, 1.7667,
1.77, 1.7967, 1.8115, 1.8115, 1.9508, 1.9574, 1.9733, 2.0148, 2.018, 2.09, 2.1167, 2.16, 2.21, 2.2148,
2.218, 2.2267, 2.23, 2.25, 2.2533, 2.3738, 2.4082, 2.5213, 2.5705, 2.9705, 3.1934, 3.218, 3.2367,
3.2672, 3.2705, 3.3567, 3.377, 3.3869, 3.4836, 3.4869, 3.5738, 3.618, 3.941, 4.1733, 4.1734, 4.2311,
4.2869, 4.318, 4.3902, 4.4267, 4.4475.

12



Chen distribution

Scheme hr3:

0.0035, 0.0068, 0.01, 0.0101, 0.0167, 0.0168, 0.0213, 0.0233, 0.0234, 0.0508, 0.0533, 0.0633,
0.0767, 0.0768, 0.077, 0.1066, 0.13, 0.16, 0.1639, 0.1803, 0.1867, 0.218, 0.2667, 0.2967, 0.3328,
0.3393, 0.37, 0.3803, 0.4311, 0.4867, 0.518, 0.6233, 0.6367, 0.66, 0.66, 0.718, 0.7667, 0.7933,
0.7967, 0.83, 0.841, 0.8607, 0.8667, 0.88, 0.91, 0.9233, 1.0541, 1.0607, 1.0633, 1.0667, 1.0869,
1.1067, 1.118, 1.2508, 1.3467, 1.38, 1.4267, 1.4475, 1.45, 1.5213, 1.5333, 1.5525, 1.5533, 1.5541,
1.62, 1.6344, 1.67, 1.6933, 1.7033, 1.7067, 1.7475, 1.7667, 1.77, 1.7967, 1.8933, 1.8934, 1.9508,
1.9574, 1.9733, 2.018, 2.09, 2.1167, 2.16, 2.21, 2.2148, 2.218, 2.218, 2.2267, 2.23, 2.25, 2.2533,
2.3738, 2.4082, 2.418, 2.4705, 2.5213, 2.5705, 3.0443, 3.1667, 3.1934, 3.218, 3.2672, 3.3148,
3.3567, 3.377, 3.3869, 3.4836, 3.4934, 3.618, 3.6213, 3.941, 3.9433, 3.9672, 4.1733, 4.1734, 4.318,
4.3279, 4.3902, 4.5148, 4.6451.

Scheme hr4:

0.0035, 0.0068, 0.01, 0.0101, 0.0167, 0.0168, 0.0197, 0.0213, 0.0233, 0.0234, 0.0508, 0.0508,
0.0533, 0.0633, 0.0767, 0.0768, 0.1066, 0.1267, 0.13, 0.16, 0.1639, 0.1803, 0.1867, 0.218, 0.2667,
0.2967, 0.3328, 0.3393, 0.37, 0.4311, 0.4867, 0.518, 0.6233, 0.6367, 0.66, 0.718, 0.7667, 0.7733,
0.78, 0.7933, 0.7967, 0.8016, 0.83, 0.841, 0.8667, 0.9233, 1.0541, 1.0607, 1.0633, 1.0667, 1.0869,
1.1067, 1.118, 1.2213, 1.2508, 1.3467, 1.38, 1.4267, 1.4475, 1.5213, 1.5333, 1.5525, 1.5533, 1.5541,
1.5934, 1.62, 1.63, 1.6344, 1.66, 1.67, 1.7067, 1.7475, 1.7667, 1.77, 1.7967, 1.8115, 1.8115, 1.8934,
1.9508, 1.9574, 1.9733, 2.1167, 2.1233, 2.16, 2.21, 2.2148, 2.218, 2.2267, 2.23, 2.25, 2.2867,
2.3738, 2.5213, 2.5705, 2.9705, 3.0443, 3.1667, 3.218, 3.2672, 3.2705, 3.3148, 3.3567, 3.377,
3.3869, 3.4836, 3.4869, 3.5738, 3.618, 3.6213, 3.941, 3.9672, 4.0001, 4.1734, 4.2869, 4.318, 4.3279,
4.3902, 4.4267, 4.5148, 4.6451

In Table 4 we have tabulated maximum likelihood and Bayes estimates of unknown parameters
η and λ for two different values of t under the suggested censoring schemes. The Bayes estimates
are derived with respect to a noninformative prior distribution. It is seen that a fixed t and a
given censoring scheme lead to estimates which remain close to each other. This holds true for
estimating both the unknown parameters. We further observe that with the increase in t the
estimated values of η tend to increase whereas opposite holds true for the parameter λ. In Table
5 we have constructed asymptotic and noninformative HPD intervals of unknown parameters
for the arbitrarily given sampling conditions. From this table we observe that in general HPD
intervals are shorter than the asymptotic intervals.

Table 3: Goodness of fit tests for competing models in real data set

Distribution η̂ λ̂ K-S AIC BIC
Bathtub 0.2650 0.6358 0.0603 433.8000 439.7000
GE 0.8927 0.5348 0.1334 462.8000 468.8000
Weibull 1.0260 0.5615 0.1189 464.0000 470.0000
Exponential 0.5744 0.1232 464.1000 470.1000
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Figure 1: Density plots for competing models

Table 4: Average values of MLEs and Bayes estimates of η and λ for the real data set

(n, r) Scheme t = 4.25 t = 5

ML T-K M-H ML T-K M-H
(148,110) hr1 0.3400 0.2961 0.2928 0.3411 0.2909 0.2883

0.6815 0.6059 0.6092 0.6344 0.6314 0.6338
hr2 0.3452 0.2956 0.2934 0.3470 0.2899 0.2874

0.6711 0.5742 0.5761 0.6147 0.6017 0.6042
(148,120) hr3 0.3208 0.2803 0.2774 0.3236 0.2731 0.2701

0.6851 0.6050 0.6079 0.6275 0.6334 0.6363
hr4 0.3432 0.3058 0.3027 0.3466 0.2969 0.2934

0.6676 0.5730 0.5761 0.5942 0.6112 0.6144
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Table 5: Interval estimates of η and λ for the real data set

(n, r) Scheme t = 4.25 t = 5

ACI HPD ACI HPDI
(148,110) hr1 (0.2619,0.4181) (0.2377,0.3524) (0.2637,0.4185) (0.2297,0.3491)

(0.5901,0.7729) (0.5332,0.6819) (0.5599,0.7089) (0.5560,0.7121)
hr2 (0.2645,0.4259) (0.2355,0.3551) (0.2677,0.4262) (0.2276,0.3476)

(0.5698,0.7723) (0.5012,0.6890) (0.5389,0.6905) (0.5304,0.6782)
(148,120) hr3 (0.2470,0.3946) (0.2242,0.3343) (0.2508,0.3963) (0.2113,0.3262)

(0.5904,0.7798) (0.5306,0.6898) (0.5545,0.7005) (0.5595,0.7145)
hr4 (0.2647,0.4217) (0.2435,0.3647) (0.2694,0.4237) (0.2341,0.3530)

(0.5715,0.7636) (0.5234,0.6727) ( 0.5260,0.6625) (0.5428,0.6893)
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6 Optimal plans

In previous sections, we obtained different point and interval estimates of unknown parameters of
a B(η, λ) distribution under the assumption that samples are type I progressive hybrid censored.
Furthermore, these estimates are obtained with respect to prescribed censoring schemes. In
many situations, life tests are conducted under cost limits as well. Thus selection of optimal
censoring schemes from a class of possible schemes satisfying cost constraints becomes a desirable
criterion for an experimenter. It is also desirable that selected schemes should provide efficient
procedures for unknown quantities of interest. This problem of comparing possible censoring
schemes to obtain optimal plans satisfying certain restrictions has received some attentions in
literature, e.g. Kundu [18] and Lin et al. [20]. The proposed criterion is based on efficiently
inferring the logarithm of the qth (0 < q < 1) quantile ln tq = 1

λ
ln[ln{1 − 1

η
ln(1 − q)}] of a

B(η, λ) distribution under the given cost limit. To this end, let Cb denote the total available
budget associated with a life testing experiment then the subsequent objective is to establish
optimum choice (n, r, s, t) so that it provides maximum information for the unknown parameters
of a B(η, λ) distribution. Let Ci denote the inspection cost, Cs denote the salvage cost for a live
unit during the inspection and Ct denote the cost per unit time required to run the test. Thus
the budget constraint of a life test under the given type I progressive hybrid censoring scheme
should satisfy the restriction

(Ci − Cs)n+ CsE(J) + Ctt ≤ Cb (6.12)

where t > 0 and E(J) ≥ 1. Note that, E(J) denotes the expected number of failures during a
test before its termination at min{Xr, t} (see also, Appendix A3). In sequel, we wish to solve
an optimization problem to explore a plan (nb, rb,Sb, tb) for which the information measure

V(S) =
[
Edata

(∫ 1

0
Vposterior(S)(ln tq) dq

)]−1
is maximized where S = (s1, s2, . . . , sr) and Vposterior(S)(.) denotes the posterior variance. For
given n, r and S we search the optimal solution using the algorithm as discussed by Lin et al.
[20]. For the sake of completeness, we provide required steps below:

1. Compute n̄ = bCb−Cs)
Ci−Cs

c where n̄ denotes the upper bound of n and bιc represents the great-
est integer less than or equal to ι.

2. Set n← 2

3. Compute t′ = Cb−(Ci−Cs)n−Cs

Ct
and the upper bound of t satisfying the equation 6.12.

4. Set r ← 1.

5. We now apply Newton-Raphson method to compute t and then evaluate V(S) for all pos-
sible choices of S with given n and r using the package partition of R software.
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6. Set r ← r + 1. If r ≤ n− 1 go to step 5, otherwise go to step 7.

7. Store all the entries of (n, r,S, t) for which V(S) has the maximum value among all pos-
sible choices of r and S.

8. Set n← n+ 1, if n ≤ n̄ go to step 3, otherwise go to step 9.

9. Tabulate {r, t, t′,V(S),S} for all n where 2 ≤ n ≤ n̄.

10. Select V(S) with the largest value and the corresponding {nb, rb, tb, t′b,Sb}.

We note that the expectation Edata

(∫ 1

0
Vposterior(S)(ln tq) dq

)
can not be evaluated analytically.

We further observe that we have

Vposterior(S)(ln tq) = Eposterior(S)(ln tq)
2 − (Eposterior(S)(ln tq))

2.

In order to compute the quantity Vposterior(S)(ln tq), we use the MH algorithm to estimate values
of posterior expectations Eposterior(S)(ln tq)

2 and Eposterior(S)(ln tq). We repeat the algorithm 1000
times to obtain the desired results.

For numerical illustration, suppose that Ci = 14.5, Cs = 5, Ct = 6 and Cb = 150 when
true values of unknown parameters η and λ are 1.5 and 0.5 respectively. In Table 6, we have
reported the maximum values of the optimal criterion along with the corresponding censoring
schemes for different values of n satisfying the budget constraint. It is seen that the scheme
(13,12,(0∗11,1),0.08579) provides the maximum information for the prescribed parameters. We
also verify whether or not proposed optimal plans are robust in nature. For example we have
V(S) = 0.2026 for the scheme S=(0∗5,1,0∗6) slightly deviated from the optimal scheme (0∗11, 1).
The corresponding relative efficiency is given by 0.2026

0.2083
= 0.9726, which suggests that both the

schemes are nearly optimal. From these observations we conclude that efficiency of optimal
plans does not change much under slight departure from these plans.
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Table 6: Optimal schemes

n r t Scheme t′ V(S)
2 1 21 (1) 21 0.1993
3 2 18.58 (0,1) 19.42 0.2006
4 3 16.17 (1,0∗2) 17.83 0.2049
5 4 13.75 (0∗3,1) 16.25 0.2017
6 5 11.33 (0∗4,1) 14.67 0.2077
7 6 8.917 (0∗5,1) 13.08 0.2016
8 7 6.5 (0∗6,1) 11.5 0.2074
9 8 4.083 (0∗7,1) 9.917 0.2030
10 9 1.679 (0∗8,1) 8.333 0.2023
11 10 0.4871 (0∗9,1) 6.75 0.2014
12 11 0.2077 (0∗10,1) 5.167 0.1997
13 12 0.08579 (0∗11,1) 3.583 0.2083
14 13 0.02834 (0∗12,1) 2 0.2018
15 14 0.004574 (0∗13,1) 0.4167 0.2004
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7 Conclusion

In this paper, we have studied a two-parameter distribution with bathtub shape or increasing
hazard rate function under type I progressive hybrid censoring. We computed different estimates
for its unknown parameters using maximum likelihood and Bayesian approaches. The asymp-
totic confidence intervals are constructed from observed Fisher information matrix obtained
using an EM algorithm. The Bayes estimates of unknown parameters are developed using TK
and MH algorithm with respect to gamma prior distributions. We have also considered highest
posterior density intervals based on MH procedure. Simulation results indicated that Bayes
estimates perform quite good compared to the corresponding MLEs. In particular, MH method
work really good in such situations. However, computational complexity of TK method is quite
less compared to the MH procedure. We further observed that TK estimates compete good with
MH estimates. We also observed that better estimates are obtained with an increase in duration
of the experimentation. Coverage probabilities of both asymptotic and HPD intervals are found
to be quite satisfactory with asymptotic intervals being more wider than corresponding HPD
intervals. We also analyzed a real data set to illustrate different findings. Finally, we estab-
lished optimal plans under cost constraints based on a Bayesian criterion. Through a numerical
illustration, we found that proposed plans are quite robust in nature in the sense that relative
efficiency does not change much with marginal deviations from optimal solutions.
Acknowledgement: The authors are thankful to the reviewers for providing useful suggestions
to improve our manuscript. They also thank the Editor and an Associate Editor for encouraging
comments.
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Appendices

A1.

Let

IW (θ) =

[
p11 p12

p21 p22

]
,

where p11 =
n′+s∗k
η2

, p12 = p21 =
(n′+s∗k)η

λ
ς, p22 =

n′+s∗k
λ2

+
(n′+s∗k)η

2

λ2
ϑ− (n′+s∗k)η

λ2
κ

and now let I
(i)
W |X(θ) denotes the information matrix of a single observation for the considered

model truncated at xi. Then it is observed that

I
(i)
W |X(θ) =

[
q11(x(i); η, λ) q12(x(i); η, λ)

q21(x(i); η, λ) q22(x(i); η, λ)

]

and

IW |t(θ) =

[
q11(t; η, λ) q12(t; η, λ)

q21(t; η, λ) q22(t; η, λ)

]

where q11(c; η, λ) = 1
η2
, q12(c; η, λ) = q21(c; η, λ) = η

λ(1−F (c;η,λ))
ξ(c; η, λ) − ϕ(c; η, λ) and

q22(c; η, λ) = 1
λ2

+ η
λ2(1−F (c;η,λ))

[η$(c; η, λ)− δ(c; η, λ)]− ζ(c; η, λ). Furthermore,

ς =

∫ ∞
0

ω1(ρ) dρ,

ϑ =

∫ ∞
0

ω2(ρ) dρ,

κ =

∫ ∞
0

ω3(ρ) dρ,

ξ(c; η, λ) =

∫ ∞
ecλ−1

ω1(ρ) dρ,

ϕ(c; η, λ) = ec
λ

cλ ln c,

$(c; η, λ) =

∫ ∞
ecλ−1

ω2(ρ) dρ,

δ(c; η, λ) =

∫ ∞
ec
λ−1

ω3(ρ) dρ,

ζ(c; η, λ) = η(ln c)2ec
λ

cλ(1 + cλ)

and ω1(ρ) = (ρ + 1) ln(ρ + 1) ln(1 + ρ)e−ηρ, ω2(ρ) = (ρ + 1) ln(ρ + 1){ln(ln(ρ + 1))}2(1 +
ln(ρ+ 1))e−ηρ and ω3(ρ) = ln(ρ+ 1){ln(ln(ρ+ 1))}2e−ηρ.
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A2.

0.035, 0.068, 0.100, 0.101, 0.167, 0.168, 0.197, 0.213, 0.233, 0.234, 0.508, 0.508, 0.533, 0.633,
0.767, 0.768, 0.770, 1.066, 1.267, 1.300, 1.600, 1.639, 1.803, 1.867, 2.180, 2.667, 2.967, 3.328,
3.393, 3.700, 3.803, 4.311, 4.867, 5.180, 6.233, 6.367, 6.600, 6.600, 7.180, 7.667, 7.733, 7.800,
7.933, 7.967, 8.016, 8.300, 8.410, 8.607, 8.667, 8.800, 9.100, 9.233, 10.541, 10.607, 10.633, 10.667,
10.869, 11.067, 11.180, 11.443, 12.213, 12.508, 12.533, 13.467, 13.800, 14.267, 14.475, 14.500,
15.213, 15.333, 15.525, 15.533, 15.541, 15.934, 16.200, 16.300, 16.344, 16.600, 16.700, 16.933,
17.033, 17.067, 17.475, 17.667, 17.700, 17.967, 18.115, 18.115, 18.933, 18.934, 19.508, 19.574,
19.733, 20.148, 20.180, 20.900, 21.167, 21.233, 21.600, 22.100, 22.148, 22.180, 22.180, 22.267,
22.300, 22.500, 22.533, 22.867, 23.738, 24.082, 24.180, 24.705, 25.213, 25.705, 29.705, 30.443,
31.667, 31.934, 32.180, 32.367, 32.672, 32.705, 33.148, 33.567, 33.770, 33.869, 34.836, 34.869,
34.934, 35.738, 36.180, 36.213, 39.410, 39.433, 39.672, 40.001, 41.733, 41.734, 42.311, 42.869,
43.180, 43.279, 43.902, 44.267, 44.475, 44.900, 45.148, 46.451.

A3.

To obtain the expected number of failures E(J), we need to first compute P (J = j) for a given
t. Now for the proposed model P (J = j) is given by

P (J = j) =



exp
[
nη(1− etλ)

]
, for j = 0,

bj−1 exp
[
ηνj+1(1− et

λ

)
] j∑
d=1

Υd,j

νd − νj+1

∆(d, j), for j = 1, 2, . . . , r − 1,

br−1

r∑
d=1

Υd,r

νd

[
1− exp

(
ηνd(1− et

λ

)
)]
, for j = m,

where νl = r − l +
∑r

i=l si, for l = 1, 2, . . . , r, bl−1 =
∏l

i=1 νl, Υd,m =
m∏

v=1,v 6=d
, 1
νv−νd

, for 1 ≤

d ≤ m ≤ r and Υ1,1 = 1. See Tomer and Panwar [30] for details in this regard. Furthermore,

∆(d, j) =
(

1− exp(1− exp{(νd − νj+1)η(1− etλ)})
)

.

Therefore for type I progressive hybrid censoring scheme E(J) can be obtained by computing

E(J) =
∑r

j=1 jP (J = j).
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