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Abstract: Generalized Phase Contrast (GPC) is an efficient method for 
generating speckle-free contiguous optical distributions useful in diverse 
applications such as static beam shaping, optical manipulation and recently, 
for excitation in two-photon optogenetics. To fully utilize typical Gaussian 
lasers in such applications, we analytically derive conditions for photon 
efficient light shaping with GPC. When combined with the conditions for 
optimal contrast developed in previous works, our analysis further 
simplifies GPC’s implementation. The results of our analysis are applied to 
practical illumination shapes, such as a circle and different rectangles 
commonly used in industrial or commercial applications. We also show 
simple and efficient beam shaping of arbitrary shapes geared towards 
biophotonics research and other contemporary applications. Optimized GPC 
configurations consistently give ~84% efficiency and ~3x intensity gain. 
Assessment of the energy savings when comparing to conventional 
amplitude masking show that ~93% of typical energy losses are saved with 
optimized GPC configurations. 

©2014 Optical Society of America 

OCIS codes: (070.6110) Spatial filtering; (070.0070) Fourier optics and signal processing; 
(120.5060) Phase modulation; (140.3300) Laser beam shaping. 
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1. Introduction 

The ability to shape light for both fixed and programmable shapes has many applications in 
both research and industry. With the widespread use of lasers that lend themselves to efficient 
reshaping, light’s versatility is further increased. Hence, laser beam shaping based on photon 
efficient phase-only methods are extensively applied in research such as advanced 
microscopy, optical trapping and manipulation [1], and more recently, neurophotonics two-
photon optogenetics [2] which applies optical tools to neuroscience. Outside the laboratory, 
efficient light shaping is also desirable for applications such laser machining, 
photolithography and video displays to name a few. These diverse applications would have 
different ideal shape requirements in the way they use light. For example, the illuminated 
surfaces of spatial light modulators (SLMs), used in both optics research and consumer 
display projectors, have a rectangular form factor. A variety of shapes bounded by steep edges 
are desirable in laser cutting or engraving. In two-photon optogenetics research [3], one would 
like to selectively illuminate intricate patterns of dendrites or axons within neurons, preferably 
with minimal noise or speckles. 

Despite the diverse shape demands, laser sources typically exhibit a Gaussian profile. 
Shaping a Gaussian beam with the commonly practiced simple hard truncation, i.e. amplitude 
modulation, is inefficient. For example, around 70% of the incident power can be lost when 
illuminating a rectangle with an expanded Gaussian beam [4]. To complicate matters, this 
wasted power could contribute to device heating which can either shorten the device lifespan 
or require even more power if active cooling is employed. Besides the obvious disadvantages 
of inefficiency, the high price tag of advanced laser sources, such as pulsed or 
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supercontinuum, used for multi-photon excitation, biolophotonics or other state-of-the-art 
experiments also demands efficient use of available photons. 

For static beam shaping, several solutions based on phase-only methods exist for 
efficiently transforming a Gaussian beam into rectangular, circular or other simple patterns. 
These include engineered diffusers, microlens arrays or homogenizers [5,6], refractive 
mapping [7], diffractive optical elements (DOE) [8,9] or phase plates [10,11]. Engineered 
diffusers, microlens arrays and homogenizers work similarly by sampling an incident beam as 
a collection of beamlets that are then redirected to form an output shape. These approaches, 
however, are more suitable for incoherent light as the recombination of randomly phase 
shifted beamlets would create interference effects [12], resulting in speckled or grainy output 
intensities. Refractive mapping operates using a similar principle but redirects rays without 
introducing random phase shifts, giving the transformed output beam a well defined 
wavefront. DOEs or single phase plates use Fourier optics principles and thus directly 
transforms a Gaussian to a sinc or Airy disk-like distribution which, in turn, becomes a 
rectangle or circle in the far field or after an additional lens. The quality of the transformed 
beam depends on how well the sinc or Airy distribution is approximated, and is thus sensitive 
to the input Gaussian which contributes convolution effects that blur the edges of the shaped 
output. 

Our proposed technique, the Generalized Phase Contrast method (GPC), belongs to a class 
of non-absorbing common path interferometers [13]. A phase-only aperture directly 
representing the desired output intensity is imaged through the interference of its high and 
phase-shifted low spatial frequencies. This is achieved by phase shifting the lower spatial 
frequencies through a phase contrast filter (PCF) at the Fourier plane (Fig. 1). GPC could thus 
be implemented with binary phase plates that are far simpler than those used by other 
Gaussian transformers as demonstrated in [14] with wet etched Pyrex. Binary phase plates are 
also easier to mass-produce with standard foundry processes common for silicon devices or 
microelectronics. When the phase mask and PCF are designed to give the same phase shift, 
both can even be fabricated from a single wafer. Unlike DOEs, GPC uses the target shape to 
directly interface with the incident Gaussian, instead of the target’s Fourier transform. This 
makes GPC robust to input beam variations. The use of common path interferometry renders 
steep well-defined edges in the shaped output. Furthermore, the target output shapes could 
easily be replaced without increasing the fabrication complexity of the phase aperture or PCF. 

PCF

Fourier
lens

Fourier
lens

phase
mask

Gaussian input

shaped output

 

Fig. 1. A GPC system efficiently transforming an incident Gaussian beam into a bright 
rectangle. Besides a standard imaging or telescopic 4f setup formed by the two Fourier lenses, 
GPC uses a simple binary phase mask at the input and phase contrast filter at the Fourier plane. 

Coupled with dynamic phase SLMs, the efficient generation of arbitrary light intensity 
patterns is also desirable. Applications include machine vision, optical trapping and 
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manipulation, and two-photon optogenetics. Depending on the requirements, digital 
holography (DH) [15,16] and GPC [17] are the main options for phase-only beam shaping. 
Digital holography usually employs a focusing configuration, such that the output is the 
Fourier transform of light modulated by the SLM. This makes DH ideal for creating 2D or 3D 
spot arrays useful for optical tweezing [18] or photo stimulation at different planes [19]. A 
focusing geometry with a fixed illumination, however, is inherently prevented from 
generating contiguous light patterns desirable for some applications. Extended intensity 
patterns formed by aggregating spots with differing phase values and overlapping point 
spread functions thus results in speckles that resemble noise [20]. The intensity fluctuations in 
speckled extended intensity patterns become a problem when they are enhanced by two-
photon excitation such as in direct laser writing [21] or in two-photon optogenetics [3]. 

With its advantage of contiguous, speckle-free patterns and computationally simple SLM 
encoding, GPC therefore finds uses in dynamic applications such as optical trapping and 
manipulation [1,22,23], and two-photon optogenetics [2]. Unlike speckled or discontinuous 
patterns, light distributions with contiguous intensity and phase remain localized while 
propagating enabling extended optical manipulation [1,22,24]. Instead of a focusing 
geometry, GPC uses an imaging geometry, hence avoiding dispersion effects which makes it 
advantageous for use with multiple wavelengths [25] or temporal focusing [2,3]. 

In practice, GPC generated light distributions resemble that of simple amplitude 
modulation. Both are characterized by sharply outlined patterns with contiguous phase and 
intensity. However, these techniques are opposites when it comes to photon efficiency. GPC’s 
photon efficiency is typically over ~80%. On the other hand, amplitude modulation typically 
has a low efficiency, directly proportional to the encoded pattern’s fill factor and also 
dependent on the modulating device (e.g. LCoS or DMD). 

Traditionally, GPC is used to transform top hat illumination into a plurality of intensity 
profiles [26]. Obtaining the initial top hat input, however, already removes a large fraction of 
the incident light unless employing another efficient beam shaping method like the ones 
mentioned earlier. Directly using Gaussian illumination for dynamic GPC applications is 
therefore an attractive alternative for delivering more power into beam shaping experiments. 

Given the applications and advantages, we therefore analyze GPC for efficient use with 
Gaussian illumination. In addition to output contrast optimization developed in [4], we also 
analytically determine the conditions for optimizing output efficiency. This additional 
constraint simplifies the task of choosing the phase mask and PCF combinations, hence 
making it easier to implement a GPC system that delivers a consistent shaping efficiency and 
intensity gain over a wide variety of projected output profiles. Our mathematical analysis will 
be discussed in the succeeding sections. Section 2 reviews GPC output contrast optimization 
applied to Gaussian illuminated GPC, followed by efficiency optimization that we introduce 
in Section 3, then demonstrate for rectangular phase masks in Section 4. Section 5 presents 
numerical experiments using analytically optimized circle and rectangle phase masks. Section 
6 extends to arbitrary patterns such as those found in biological experiments. Section 7 
summarizes this work and gives an outlook for improvements and applications. 

2. GPC with Gaussian beams 

2.1 Optimizing GPC for output contrast 

We now mathematically analyze the 4f setup depicted in Fig. 1. The field at the input plane 
can be described as 

 ( ) ( )( , ) , exp , .p x y a x y i x yφ=     (1) 

where a(x,y) is an amplitude profile that arises either due to the illumination beam, or from a 
limiting aperture and ( ),x yφ is the encoded phase modulation. This is formally equivalent to 
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the phase sensing case with the crucial difference that the phase information, ( ),x yφ , is now 

user-defined and, hence, fully reconfigurable. The optical Fourier transform on the phase-
encoded input light would then be located at the filter plane where the phase shifting PCF is 
applied. The transfer function of such PCF with a circular θ-phase shifting region has the 
form, 

 ( ) ( )( , ) 1 exp i 1 circ .x y r rH f f f fθ= + − Δ    (2) 

where fx, fy and fr are respectively the abscissa, ordinate and radial spatial frequency 
coordinates. Note that we have dropped the absorption factors originally present in the 
wavefront sensing filter [27] to ensure optimal energy throughput. As will be outlined later, 
we will instead exploit available freedoms at the input and filter for optimization. The 
associative groupings in Eq. (2) are chosen to explicitly model how the filter generates a 
synthetic reference wave (SRW). The first term in the filter simply transmits all the Fourier 
components and, hence, projects an inverted copy of the input at the output plane. The second 
term is a low pass filter whose cutoff frequency, Δfr, is the radius of the PCF’s phase shifting 
region. At the output plane, the low-pass-filtered image of the input phase variations, scaled 
by a multiplicative complex factor, [exp(iθ)–1], serves as a reference wave for the directly 
imaged input pattern. Thus the synthesized intensity pattern at the output plane is formed from 
the interference of an inverted copy of the original input and the low passed image acting as 
an SRW 

 ( ) ( ) ( ) ( ) ( )
2

', ' ', ' exp i ', ' exp i 1 ', ' .I x y a x y x y g x yφ θ α≈ + −        (3) 

Here, we have used an approximation for the SRW, ( ) ( )exp i 1 ', 'g x yθ α−    [4], where the 

spatial profile ( )', 'g x y  is the low passed version of the un-modulated input light 

 ( ) { }{ }1( ', ') circ ( . )r rg x y f f a x y−= ℑ Δ ℑ  (4) 

scaled by the strength of the normalized zeroth order, α , that would take input phase 
modulations into account 

 ( ) ( ) ( ) ( )exp , exp , ,i a x y i x y dxdy a x y dxdyαα α φ φ= =      (5) 

On the optical axis, optimal contrast in the interferogram is thus obtained when the two terms 
in Eq. (3) have matching amplitudes, which is satisfied when 

 ( ) ( )2 0,0 sin / 2 1.g α θ =  (6) 

2.2 GPC with Gaussian illumination 

To proceed with our analysis we set the illumination to follow a radially symmetric Gaussian 
profile with a 1/e2 waist, w0 

 ( )2 2
0( ) exp .a r r w= −  (7) 

To exploit the symmetry, we would, for now, assume that the phase mask is circular. We also 
assume that both phase mask pattern and PCF imparts π-phase shifts on the transmitted light. 
This allows us to conveniently express the phase modulation as a change in sign in the 
amplitude and deal with only real numbers. 

When evaluating Eq. (4), we notice that g(r’) is a Fourier transform of a truncated 
Gaussian. Evaluating this Fourier transform is not straightforward, thus different 
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approximations have been presented in the literature [28]. Nonetheless, the central value can 
be obtained analytically 

 ( ) ( ){ }1 2 2 2 2
0' 0 circ exp( / ) 1 exp( ).r r r fg r f f w f wπ η−= = ℑ Δ − = − −  (8) 

Here, we have defined η as the ratio of the PCF phase shifting radius to the Gaussian waist at 
the Fourier plane, wf, when the wavelength is λ and the focal length is f. 

 ( )0r f rf w f f wη λ π= Δ = Δ   (9) 

For a π-phase shifting circular phase mask with radius Δr, the modulated input could be 
expressed as 

 ( ) ( ) ( ) ( )2 2
0exp exp 1 2circ / .a r i r r w r rφ = − − Δ        (10) 

Since this also involves a truncated Gaussian, the evaluation of α is similar to g(r´ = 0) 

 22exp( ) 1α ζ= − −  (11) 

where we defined the dimensionless ζ as the ratio between the phase mask radius and input 
Gaussian waist, 

 0 .r wζ = Δ  (12) 

On the optical axis, we can express Eq. (6) using Eqs. (8) and (11) giving the condition for 
optimal contrast 

 2 22exp( ) 1 1 exp( ) 1/ 2.ζ η   − − − − =     (13) 

Although this derivation is for a circular phase mask, extending to any shape is a matter of 

finding the corresponding α . This can also be analytically derived for rectangular phase 

masks as we would later show, but in many cases involving arbitrary geometries, α  would 
have to be derived via numeric integration. 

3. Optimizing GPC for photon efficiency 

For a beam shaping system, efficiency (eff) is measured as the energy within the target output 
shape, S, divided by the overall incident energy, 

 ( ) ( )2GPC eff , , .
S

I x y dxdy a x y dxdy=    (14) 

Since the exact analytic form of the intensity is not readily available, we take a different 
approach where we look for phase mask and PCF configurations correlated with what is 
numerically found to be the most efficient (Fig. 2(a)). We find that efficiency is maximized 
when the first zero crossing of its Fourier transform coincides with the PCF radius, Δfr. 
Conceptually, this could be understood by working backwards, starting with the desired 
output shape of a GPC system. The region from the filter plane to the output plane can be 
treated as a 2f focusing geometry as in DH. Hence, if a circular output is desired, this means, 
that the filter plane should look like an Airy disk-like function (green plot in Fig. 2(b)). When 
we now consider GPC’s input plane, light outside of the desired shape, i.e. the peripheral 
Gaussian envelope, would perturb the central part of the desired Airy-like distribution at the 
filter plane. These low frequency perturbations reemerge at the output as light outside the 
desired shape. With an idea of how the Fourier distribution should look like, we thus adopt 
how DH applies phase constraints to get a desired Fourier transform output [29], or how 
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matched filtering GPC uses concentric rings to emulate plane wave focusing and, 
consequently, output focal spots [30]. For the circular pattern, the deviations from the ideal 
Airy-like function are minimized when the PCF’s radius coincides with the zero crossing at 
the central region at the Fourier plane. Applying a π-phase shift within this region inverts the 
sign of the low frequencies, making the Fourier distribution more similar to the desired Airy-
like function. 

Fourier plane for circle phase mask
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Fig. 2. (a) Color contour plot of numerically obtained efficiency as a function of (ζ, η). The 
black crosses mark the highest efficiency for a given ζ. The blue plot corresponds to our 
condition for the PCF radius to coincide with the first zero crossing of the Fourier transform. 
(b) The Fourier transform of the phase-only aperture (red plot) can be approximated with a 
displaced Gaussian (blue plot) near the PCF phase shifting region. The inverse Fourier 
transform of the ideal output (green plot) is also shown for reference. (The x and y axes are 
normalized to wf and πw0

2 respectively.) 

To obtain a simplified analytic expression for this efficiency condition, we assume that the 
Airy disk function has a negligible curvature within the phase shifting region, fr ≤ Δfr . At this 
region, the Fourier transform of Eq. (10) is approximately 

 ( ) ( ){ } ( ) ( ){ }2 2 2 2
0

2 2
0exp 1 2circ / exp / 2 1 expr fwr w r r f wπ ζ− − Δ  ℑ ≈ − − −−    (15) 

This is illustrated in Fig. 2(b), where the displaced Gaussian (blue plot), approximates the 
Fourier transform (red plot) at low frequencies. To make the PCF radius coincide with the 
first zero crossing, we thus impose 

 ( ) ( )2 2exp 2 1 exp 0.η ζ − − − − =   (16) 

3.1 Optimizing contrast and efficiency 

Solving for ζ and η from Eqs. (13) and (16) gives us the optimal parameters for a circular 
phase mask 

 
2

ln 0.3979,
1 1/ 2

ζ  = = + 
 (17) 

 ( ){ }2ln 2 1 exp 1.1081.η ζ = − − − =   (18) 
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Numerically evaluating the GPC output from this ζ-η pair gives an efficiency of ~84% and a 
gain of ~3x relative to the input Gaussian’s central intensity (see Table 1). To generalize to 

arbitrary shapes Eqs. (13) and (16) can be expressed in terms of α instead of ζ, giving 

 ( )21 exp 1/ 2,η α − − =   (19) 

 ( )2exp 1 0.η α− + − =  (20) 

These can be simplified further by solving for α  and η, resulting in 

 1 / 2 0.7071,α = =  (21) 

 ( )ln 1 1/ 2 1.1081.η = − − =  (22) 

These two equations summarize the conditions for an optimally performing GPC system 

under Gaussian illumination. The phase mask’s geometry is embodied in α , which can be 
tweaked in different ways such that Eq. (21) is satisfied. The fixed value for η in Eq. (22) 
means that a reconfigurable GPC system with a fixed PCF will still perform optimally with 
different phase masks satisfying Eq. (21). The succeeding sections use these two equations to 
optimize Gaussian GPC with rectangular and arbitrary patterns. 

4. Extending to rectangular apertures 

Gaussian illumination encoded with a π-phase shifting rectangle with dimensions W × H can 
be expressed as (cf. Eq. (10)) 

 ( ) ( ) ( ) ( ) ( )2 2 2
0, exp , exp 1 2 rect rect .a x y i x y x y w x W y Hφ  = − + −         (23) 

To optimize a GPC system using rectangular phase apertures, we first identify α . Using Eq. 
(23) to evaluate Eq. (5), noting that the x and y dependence are separable and that the rect 

functions can be treated as integration limits, results in an expression for α  involving the 
error function, erf(x), 

 ( ) ( )
2 2
0 0

0 0
Rect Rect2

0

/ 2 / 2
2 erf erf

1 2erf erf .R

W H
w w

w w
A

w

π π
α ζ ζ

π

   
−    

   = = −  (24) 

Here we defined the aspect ratio, /RA W H= and ζRect for rectangular phase apertures as half 

the width divided by the input Gaussian waist, Rect 0/ 2W wζ = . There is no direct way for 

solving ζRect to get 1 / 2α =  using Eq. (24), except for a square, AR = 1, which gives 

 1
Rect

1 1/ 2
erf 0.3533.

2
ζ −

 − = =
 
 

 (25) 

For other aspect ratios, ζRect can be found numerically or by graphically looking for the 

intersection of the plots of Eqs. (13) and (16) which we will show here. Using the form of α  
for rectangular phase apertures in Eqs. (13) and (16), we obtain 

 ( ) ( ) ( )2
Rect Rect1 exp 1 2erf erf 1 2,RAη ζ ζ − − − =     (26) 
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 ( ) ( ) ( )2
Rect Rectexp 2erf erf 0.RAη ζ ζ− =−  (27) 

For plotting, these two equations can be rearranged to give η in terms of ζRect 

 ( ) ( )Rect Rect

1
ln 1 ,

2 4erf erf RA
η

ζ ζ
 

= − −  − 
 (28) 

 ( ) ( )( )Rect Rectln 2erf erf .RAη ζ ζ= −  (29) 

Figure 3 shows the plots of Eq. (28) in solid lines and Eq. (29) in dashed lines. AR is chosen 
from common video display aspect ratios. The plot is zoomed at the intersections which occur 
at η = 1.1081, as implied by Eq. (22). The numeric values of ζRect at these intersections are 
listed in Table 1 (to 4 decimal places). 

ζ
Rect
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Rect
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0.34 0.36 0.38 0.4 0.42 0.44 0.46
0.8

0.9

1

1.1

1.2

1.3

Square
16:9
5:3
16:10
4:3
5:4

 

Fig. 3. Optimal ζRect for rectangular phase masks with different aspect ratios are found where 
the solid (Eq. (28)) and dashed lines (Eq. (29)) with the same color intersect, or where either of 
these lines intersect with η = 1.1081. 

5. Numerical experiments with circular and rectangular phase apertures 

Numerical results for a circle and different rectangular aspect ratios are summarized in Table 
1. These were obtained using an 8192 × 8192 sample FFT with w0 = 240.7957 samples such 
that Δfr is an integer value, ηwf = 12 samples. GPC efficiency is defined as in Eq. (14) and the 
gain is defined as the central intensity at the output (input central intensity is unity). Since 
discretization errors prevent ζ or ζRect from being represented accurately, we also list their 
effective values when integer rectangle sizes are used. 

Table 1. Efficiency, intensity gain and energy savings of GPC shaped light compared with 
a hard truncated or amplitude masked Gaussian for a circle and different rectangles. 

Shape or aspect 
ratio 

ζ or 
ζRect 

Effective ζ or 
ζRect 

GPC eff 
(%) 

GPC 
gain 

Amp masking eff 
(%) 

E. savings 
(%) 

circle 0.3979 0.3987 84.23 2.9751 27.20 92.72 
square 0.3533 0.3530 84.16 2.9884 27.02 92.74 

5:4 0.3954 0.3945 84.11 2.9967 26.91 92.74 
4:3 0.4087 0.4070 83.57 3.0060 26.71 92.54 

16:10 0.4491 0.4485 83.61 3.0017 26.70 92.55 
5:3 0.4587 0.4568 84.03 3.0155 26.61 92.78 
16:9 0.4745 0.4734 84.05 3.0162 26.58 92.80 
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The energy savings (E. savings) in the last column is defined as the energy saved when 
replacing an amplitude masking system with a GPC system that gives the same brightness. 
This definition is illustrated in Fig. 4 where both light shaping techniques are used to deliver 
84 watts within a rectangular region. While an 84% GPC system would require 100W and 
lose 16W, a 28% efficient hard truncated Gaussian would require 300W and lose 216W. 
Hence, using a GPC system saves 200W or 93% of typical photon energy losses. 

0.5

1

1.5

2

2.5
(a) (b) (c)

28W 84W 84W

100W 300W 100W

72W 216W 16W

x3

Input:

Losses:

Hard truncated Gaussian GPC Output
 

Fig. 4. Comparison of GPC light shaping to a hard truncated Gaussian delivering 84W on 
identical rectangular areas. Being only 28% efficient (a), the truncated Gaussian requires 300W 
and loses 216W (b). The GPC light shaper requires only 100W, saving 200W (c). 

Mathematically, we thus define the energy savings as 

 
( )

( ) ( )
100% GPC eff %

E. savings 1 100%.
GPC gain 100% Amp masking eff %

 −
= − ×  × − 

  
 

    
 (30) 

Figures 5(a)–5(c) show GPC output for a circle, square and a rectangle with 16:10 aspect ratio 
using optimized parameters listed in Table 1. The corresponding efficiencies, gain and energy 
savings are also shown for each shape. The corresponding line scans are shown in Figs. 5(d) 
and 5(e). 
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Fig. 5. GPC intensity outputs for circle (a), square (b), rectangle (c). The scale bar in (b) is 
twice the 1/e2 Gaussian waist, and tick marks in (a)-(c) are separated by half the Gaussian 
waist. Efficiencies, gain and energy savings are also shown, and are consistently ~84%, ~3x 
and ~93% respectively. The corresponding intensity line scans are shown in (d)-(f). The x-axis 
is normalized to w0. 
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6. Efficient generation of arbitrary intensity patterns 

6.1 Optimally scaled arbitrary patterns 

Gaussian GPC need not be constrained with patterns that can be dealt with analytically. In 
fact, it works best with arbitrary patterns that have high spatial frequencies, thus diverting 
light from the Fourier zero order, and reinforcing the validity of the Eqs. (19) and (20). 
Instead of analytically convenient circ or rect functions, we consider an arbitrary binary 
bitmap image, b(x, y), having values 0 and 1, as our aperture. Assuming the binary image is 
mapped to 0 and π phase shifts on an incident Gaussian, we can numerically evaluate and 
scale b(x, y) such that 

 ( ) ( ){ }22 2 2
0 0 1 / 21 2 p ., exb x y x y dxdyw wα π == − − +   (31) 

In our simulations we first start with a large bitmap and optimize w0 which is easier to change. 
Once (31) is satisfied, we revert to the original w0 and then scale the image preserving its 
optimal proportion with w0. Results for various optimized patterns are shown in Fig. 6. 
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Fig. 6. Intensity profiles of various arbitrary shapes scaled to satisfy Eq. (21). Corresponding 
efficiencies, gain and energy savings are also shown, and are consistently ~84%, ~3x and 
~93% respectively. 

6.2 Dynamic and arbitrarily sized excitation patterns 

In dynamic experiments, scaling the light pattern is often not an option. Such restriction 
usually applies when light has to interact with manipulated objects or biological samples. 
Nonetheless, it is possible to keep α optimal by addressing an additional outer phase ring 
such that Eq. (21) or (31) is still satisfied. This is similar to what is done in [2] for top hat 
illuminated GPC. By integrating similar to Eq. (8), the inner radius of the compensating ring 
could be found, 

 ( ) ( ) ( ){ }2 2
comp 0

2 2
0 0ln 1/ 2 1/ 8 , exp .R w b x y x y dxdyw wπ  = × − − − − +   (32) 

If desired, an output blocking mask with an aperture radius of ~1.386w0 can be applied 
(obtained by dropping the inner integral). We note however that the intensity beyond this 
radius is considerably lower than that in the utilized region. Results for ring compensated 
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neuron shaped patterns are shown in Fig. 7. Figures 7(d)–7(f) show the possibility to 
optimally illuminate a cell that is branching out. We observe that the gain tends to be higher 
with a less efficiency-optimized GPC setup. This counteracting behavior of intensity gain and 
photon efficiency helps keep the energy savings at around ~85-93%. 
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Fig. 7. (a)-(c) Intensity profiles of various neuron-inspired shapes, directly drawn without 
scaling, but α-compensated by an outer phase ring. (d)-(f) Intensity profile for a pattern that is 
branching out. Whereas the efficiencies and intensity gains are highly pattern dependent, the 
energy savings stays at around ~90%. 

7. Summary and outlook 

We have analyzed GPC with Gaussian beams to obtain phase mask and PCF configurations 
that give optimal contrast and efficiency for a wide variety of user desired patterns. Our 
results thus simplify the task of implementing GPC for Gaussian illumination for simple 
circle and rectangles and more complex arbitrary shapes. Furthermore, our derivations show 
that a GPC system could be reused with a fixed PCF in tandem with a variety of 
interchangeable phase masks and still maintain desired efficiency and gain levels. Numerical 
experiments with optimized configurations consistently give ~84% efficiency, ~3x intensity 
gain and ~93% energy savings compared to the commonly implemented hard truncated 
expanded Gaussian. Results also indicate robustness in terms of contrast and energy savings. 
As a first step to optimization and due to the potentially scalable simple fabrication, we have 
only considered π-phase shifting binary phase masks and filters and relaxed constraints on the 
flatness of the output intensity. Future work will therefore also consider flattening the output 
intensity by encoding a counteracting curved phase profile [31]. The energy saved by using 
GPC makes it attractive for many applications wherein light is best utilized in a particular 
shape, e.g. rectangles for SLM or display illumination, circles for laser materials processing or 
even intricate biological patterns found in research. 
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