The Immersed Interface Method
Numerical Solutions of PDEs Involving Interfaces and Irregular Domains

Zhilin Li
Kazufumi Ito

North Carolina State University
Raleigh, North Carolina

Society for Industrial and Applied Mathematics
Philadelphia
Contents

Preface
1 Introduction

1.1 A one-dimensional model problem
1.2 A two-dimensional example of heat propagation in a heterogeneous material
1.3 Examples of irregular domains and free boundary problems
1.4 The scope of the monograph and the methodology

1.4.1 Jump conditions

1.4.2 The choice of grids

1.5 A minireview of some popular finite difference methods for interface problems

1.5.1 The smoothing method for discontinuous coefficients

1.5.2 The harmonic averaging for discontinuous coefficients

1.5.3 Peskin's immersed boundary (IB) method

1.5.4 Numerical methods based on integral equations

1.5.5 The ghost fluid method

1.5.6 Finite difference and finite volume methods

1.6 Conventions and notation

1.6.1 Cartesian grids

1.6.2 Limiting values and jump conditions

1.6.3 The local coordinates

1.6.4 Interface representations

1.7 What is the IIM?

2 The IIM for One-Dimensional Elliptic Interface Problems

2.1 Reformulating the problem using the jump conditions

2.2 The IIM for the simple one-dimensional model equation

2.2.1 The derivation of the finite difference scheme at an irregular grid point

2.3 The IIM for general one-dimensional elliptic interface problems

2.4 The error analysis of the IIM for one-dimensional interface problems

2.5 One-dimensional numerical examples and a comparison with other methods
5.2.2 The orthogonal projections in Cartesian and polar coordinates in two dimensions .. 76
5.2.3 The discretization strategy using the transformation ... 77
5.2.4 An outline of the algorithm of removing source singularities ... 78
5.2.5 A closed formula for the correction terms .. 78
5.2.6 Computing the gradient using the new formulation ... 82
5.2.7 An example of removing source singularities ... 83
5.3 Removing source singularities for variable coefficients ... 85
5.4 Orthogonal projections and extensions in spherical coordinates ... 86

6 Augmented Strategies ... 89
6.1 The augmented technique for elliptic interface problems ... 90
6.1.1 The augmented variable for the elliptic interface problems .. 90
6.1.2 The discrete system of equations in matrix-vector form ... 91
6.1.3 The least squares interpolation scheme from a Cartesian grid to an interface 94
6.1.4 Invertibility of the Schur complement system .. 97
6.1.5 A preconditioner for the Schur complement system .. 98
6.1.6 Numerical experiments and analysis of the fast IIM ... 99
6.2 The augmented method for generalized Helmholtz equations on irregular domains 104
6.2.1 An example of the augmented approach for Poisson equations on irregular domains 107

7 The Fourth-Order IIM ... 109
7.1 Two-point boundary value problems ... 110
7.1.1 The constant coefficient case ... 111
7.1.2 General boundary conditions .. 111
7.1.3 The smooth variable coefficient case .. 112
7.1.4 The piecewise constant coefficient case .. 114
7.2 Two-dimensional cases .. 116
7.2.1 The fourth-order compact central finite difference method ... 116
7.2.2 Neumann boundary conditions .. 117
7.2.3 The fourth-order method for Poisson equations on irregular domains .. 121
7.2.4 Projections and a fourth-order polynomial interpolation ... 124
7.2.5 The fourth-order method for heat equations on irregular domains ... 125
7.2.6 The fourth-order method for PDEs with variable coefficient on irregular domains 127
7.2.7 The fourth-order method for interface problems 129
7.2.8 The fourth-order method for heat equations with interfaces .. 132
7.3 The fourth-order methods for three dimensional cases 134
7.3.1 The fourth-order scheme for problems on irregular domains in three dimensions 134
7.3.2 The fourth-order scheme for three-dimensional interface problems ... 136
7.4 The preconditioned subspace iteration method 138
7.4.1 The irregular domain case ... 140
7.4.2 The interface case .. 141
7.5 Numerical experiments .. 142
7.5.1 The irregular domain case ... 142
7.5.2 Examples for eigenvalues and eigenfunctions in a circular domain .. 145
7.5.3 Results for the variable coefficient case 148
7.5.4 Results for the interface problem 151
7.5.5 An eigenvalue problem with an interface 153
7.6 The well-posedness and the convergence rate 155
7.6.1 Convergence rate .. 156

8 The Immersed Finite Element Methods 159
8.1 The IFEM for one-dimensional interface problems 160
8.1.1 New basis functions satisfying the jump conditions 160
8.1.2 The interpolation functions in the one-dimensional IFEM space .. 163
8.1.3 The convergence analysis for the one-dimensional IFEM .. 166
8.1.4 A numerical example of one-dimensional IFEM 167
8.2 The weak form of two-dimensional elliptic interface problems 170
8.3 A nonconforming IFE space and analysis 171
8.3.1 Local basis functions on an interface element 171
8.3.2 The nonconforming IFE space .. 173
8.3.3 Approximation properties of the nonconforming IFE space ... 174
8.3.4 A nonconforming IFEM ... 177
8.4 A conforming IFE space and analysis 177
8.4.1 The conforming local basis functions on an interface element ... 178
8.4.2 A conforming IFE space ... 179
8.4.3 Approximation properties of the conforming IFE space 179
8.5 A numerical example and analysis for IFEMs 182
8.5.1 Numerical results for the conforming IFEM 183
8.5.2 A comparison with the finite element method with added nodes .. 185
8.6 IFEM for problems with nonhomogeneous jump conditions 186
9 The IIM for Parabolic Interface Problems

- **The IIM for one-dimensional heat equations with fixed interfaces**
- **The IIM for one-dimensional moving interface problems**
 - 9.2.1 The modified Crank–Nicholson scheme
 - 9.2.2 Dealing with grid crossing
 - 9.2.3 The discretizations of u_x and $(\beta u_x)_x$ near the interface
 - 9.2.4 Computing interface quantities
 - 9.2.5 Solving the resulting nonlinear system of equations
 - 9.2.6 Validation of the algorithm for a one-dimensional moving interface problem
- **The modified ADI method for heat equations with discontinuities**
 - 9.3.1 The modified ADI scheme
 - 9.3.2 Determining the spatial correction terms
 - 9.3.3 Decomposing the jump condition in the coordinate directions
 - 9.3.4 The local truncation error analysis for the ADI method
 - 9.3.5 A numerical example of the modified ADI method
- **The IIM for diffusion and advection equations**
 - 9.4.1 Determining the finite difference coefficients for the diffusion term
 - 9.4.2 Determining the finite difference coefficients for the advection term

10 The IIM for Stokes and Navier–Stokes Equations

- **The derivation of the jump conditions for Stokes and Navier–Stokes equations**
- **The IIM for Stokes equations with singular sources: The membrane model**
 - 10.2.1 The force density of the elastic membrane model
 - 10.2.2 Solving the Poisson equation for the pressure
 - 10.2.3 Solving the Poisson equations for the velocity (u,v)
 - 10.2.4 Evolving the interface using an explicit method
 - 10.2.5 Evolving the interface using an implicit method
 - 10.2.6 The validation of the IIM for moving elastic membranes
- **The IIM for Stokes equations with singular sources: The surface tension model**
- **An augmented approach for Stokes equations with discontinuous viscosity**
 - 10.4.1 The augmented algorithm for Stokes equations
 - 10.4.2 The validation of the augmented method for Stokes equations
- **An augmented approach for pressure boundary conditions**
 - 10.5.1 Computing the Laplacian of the velocity along a boundary for a nonslip boundary condition
Contents

10.6 The IIM for Navier–Stokes equations with singular sources 250
10.6.1 Additional interface relations ... 251
10.6.2 The modified finite difference method for Navier–Stokes equations with interfaces .. 252
10.6.3 Determining the correction terms ... 253
10.6.4 Correction terms to the projection method 254
10.6.5 Further corrections near the boundary and the interface 255
10.6.6 Comparisons and validation of the IIM for Navier–Stokes equations with interfaces .. 255

11 Some Applications of the IIM 265
11.1 The framework coupling the IIM with evolution schemes 265
11.1.1 The front-tracking method .. 266
11.1.2 Coupling the level set method with the IIM 267
11.1.3 Orthogonal projections and the bilinear interpolation 268
11.1.4 Velocity extension along normal directions 269
11.1.5 Reconstructing the interface locally from a level set function 270
11.2 The hybrid IIM-level set method for the Hele–Shaw flow 271
11.2.1 Dynamic stability of the Hele–Shaw flow 272
11.2.2 The IIM for the Hele–Shaw flow 272
11.2.3 Numerical experiments of the Hele–Shaw flow 274
11.3 Simulations of Stefan problems and crystal growth 278
11.3.1 A modified Crank–Nicolson discretization 280
11.3.2 The modified ADI method for Stefan problems 282
11.3.3 Numerical simulations of the Stefan problem 285
11.4 An application to an inverse problem of shape identification 287
11.4.1 An outline of the algorithm for the inverse problem 292
11.4.2 Identifying several minima .. 292
11.4.3 Numerical examples of shape identification 293
11.5 Applications to nonlinear interface problems 297
11.5.1 The substitution method .. 298
11.5.2 Computing β and its derivatives 300
11.5.3 Numerical experiments of MR fluids with particles 302
11.6 Other methods related to the IIM ... 306
11.6.1 The IIM for hyperbolic systems of PDEs 306
11.6.2 The explicit jump immersed interface method (EJIIIM) 307
11.6.3 The high-order matched interface and boundary method 308
11.7 Future directions ... 309

Bibliography 311

Index 331