Aims & Scope
The major goal of the JCMSE is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighbouring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE. Moreover, the JCMSE shall try to simultaneously stimulate similar initiatives, within the realm of computational methods, for knowledge transfer from engineering to applied as well as to basic sciences and beyond.

This special issue brings together contributions by eminent specialists in the field of the theoretical determination of electric polarizability. The contents of the issue cover a wide area of subjects relevant to Chemical Physics, Molecular Physics, Nonlinear Optics and Materials Science.

Specific subjects
Ab initio and Density functional theory calculations of electric polarizability and hyperpolarizability, intermolecular forces, aromaticity, molecular design, electric properties of solvated molecules, NLO materials, Raman intensities, polarizability of metal and semiconductor clusters, relativistic effects on electric properties, and more.

Special Issue: Computational aspects of electric polarizability calculations: Atoms, molecules and clusters

Guest Editor: Professor George Maroulis, Department of Chemistry, University of Patras, Greece

Part 1:
- Polarizability functions of diatomic homonuclear molecules: A semiempirical approach/ M.A. Buldakov and V.N. Cherepanov
- Dipole polarizability and second hyperpolarizability of difluoroacetylene: basis set dependence and electron correlation effects/ M. Medved, B. Champagne, J. Noga and E.A. Perpète
- PLS prediction of hyperpolarizabilities for donor-bridge-acceptor organic systems/ A.E. de A. Machado, B. de Barros Neto, A.A. de S. da Gam
- Collisional polarizability correlation functions. A step towards rotational-translational coupling/ W.Glaz
- Density functional calculations of the frequency-dependent optical rotation: comparison of theory and experiment for the gas phase/ C. Diedrich, S. Kaasemann and S. Grimme
- Ab initio determination of the interaction hyperpolarizability for the H-bond complex NH3-HF/ Wu Di, Li Zhi-Ru, Ding Yi-Hong, Zhang Man, Zheng Zhi-Ren, Wang Bing-Qiang and Hao Xi-Yun
- Reliable results for the isotropic dipole-dipole and triple-dipole dispersion energy coefficients for interactions involving formaldehyde, acetaldehyde, acetone, and mono- , di- , and tri-methylamine/ A. Kumar and W. Maath
- First principle calculations of dipole-dipole dispersion coefficients for the ground and first \(\pi \rightarrow \pi^* \) excited states of some azabenzenes/ P. Norman, A. Jiemchoorarod and B.E. Sernelius
- Electronic and vibrational polarizability and first hyperpolarizability of charge transfer chromatophores : Quantum chemistry investigation/ A. Saal and O. Ouamerali
- Electric dipole polarizability and hyperpolarizability of NCCN, NCCP and PCCP/ T. Pluta and P. Zerzucha
- Ab initio calculation of the nonlinear susceptibility \(\chi^{(3)} \) of a crystal surface/ I. Baraille, C. Darrigan and M. Rétat
- The molecular electric quadrupole moment and electric-field-gradient induced birefringence (Buckingham effect) of Cl_3 / C. Cappelli, U. Ekström, A. Rizzo and S. Coriani
- The calculation of excited-state polarizabilities of solvated molecules/ K. Ruud, B. Mennucci, R. Cammi and L. Frediani
- Static Dipole Polarizability of o-, m- and p-Benzene Isomers: Ab initio, DFT and CCSD Calculations/ H. Soscún, C. Toro-Mendoza, E. Chacín and J. Hernández
• First hyperpolarizability of 6-vertex carboranes 2. DFT study of NH3/N2O2-substituted 1,2-closo-dicarbahexaboranes/ K. Yu Suponitsky and T.V. Timofeeva
• Polarizabilities of amino acid residues/ M. Swart, J.G. Snijders and P.Th. van Duijnen
• Are polarizabilities useful as aromaticity indices? Tests on azines, azoles, oxazoles and thiazoles/ R.J. Doerksen, V.J. Steeves and A.J. Thakkar
• Molecular polarizability of Si/Ge/GaAs semiconductors clusters/ F. Torrens
• First-Principle Study on Polarizability and Hyperpolarizability of a Transition Metal Cluster, [MnO6(C6H11)3(CO)4]N(C6H5)3]/ K. Wu, P. Liu, Z. Zhou, C. Lin and B. Zhuang
• Real-space computational for linear and nonlinear polarizabilities/ J.I. Iwata, K. Yabana and G.F. Bertsch
• Rational Design of Atomic Gaussian Basis Sets for Ab Initio Calculations of the Dipole Polarizabilities and Hyperpolarizabilities. I: Optimized Polarization Sets for the First-Row Atoms from B to F/ M.B. Zuev and S.E. Nefediev
• Accuracy in ab initio calculations of the static dipole polarizability components: Examples of the water molecule and hydroxide ion/ G. Weck, A. Milet, R. Moszynski and E. Kochanski

Part 2:

• Dynamical and static dipole polarizability of metal clusters studied within different density functional approximations/ M.B. Torres and L.C. Balbás
• The Influence of Polarizability on the Two-Photon Absorption Cross Section and Hyperpolarizability of Molecules Exhibiting Large Solvatochromic Shifts/ W. Bartkowiak, B. Skwara and R. Zalesny
• A Sequential Monte Carlo–Quantum Mechanics Study of the Dipole Polarizability of Liquid Benzene/ E.E. Fileti and S. Canuto
• Hyperpolarizability of novel carbo-meric push-pull chromophores/ C. Lepetit, P. Lacroix, V. Peyrou, C. Saccavini, R. Chauvin
• On the theoretical calculation of the static dipole polarizabilities of Li4, Cu, (n≥8) and Li,Cu, (n≥5)/ P. Fuentealba, L. Padilla-Campos and O. Reyes
• Computation and interpretation of Raman scattering intensities/ K.M. Gough, C. Lupinetti and R. Dawes
• Electric properties of diatomic molecules using stationary coupled-cluster method/ S. Pal and N. Vaval
• Electric properties of molecules using stationary coupled-cluster method/ S. Pal and N. Vaval
• Accuracy in ab initio calculations of the static dipole polarizability components: Examples of the water molecule and hydroxide ion/ G. Weck, A. Milet, R. Moszynski and E. Kochanski

Order Form

Please complete this form and send it to your usual supplier or to:

IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Fax: +31 20 620 3419
E-mail: market@iospress.nl
www.iospress.nl

For rush orders: order@iospress.nl

VISIT OUR WEBSITE AT WWW.IOSPRESS.NL